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Abstract: Pre-knowledge of machined surface roughness is the key to improve whole machining efficiency and 
meanwhile reduce the expenditure in machining optical glass components. In order to predict the surface roughness in 
ultrasonic vibration assisted grinding of brittle materials, the surface morphologies of grinding wheel were obtained 
firstly in the present work, the grinding wheel model was developed and the abrasive trajectories in ultrasonic vibration 
assisted grinding were also investigated, the theoretical model for surface roughness was developed based on the above 
analysis. The prediction model was developed by using Gaussian processing regression (GPR) due to the influence of 
brittle fracture on machined surface roughness. In order to validate both the proposed theoretical and GPR models, 32 
sets of experiments of ultrasonic vibration assisted grinding of BK7 optical glass were carried out. Experimental results 
show that the average relative errors of the theoretical model and GPR prediction model are 13.11% and 8.12%, 
respectively. The GPR prediction results can match well with the experimental results. 
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1 Introduction 
 

Optical glass materials are typical hard and 
brittle materials. Because of their unique superior 
performance, they are widely used in the field of 
optics, micro-electronics, biomedicine, inertial 
confinement fusion (ICF), aerospace and national 
defense [1–4]. Ultrasonic vibration assisted 
grinding has been used for precision machining of 
brittle materials due to the fact that the cutting force 
and cutting heat can be significantly reduced [5–7]. 
The effect of the process parameters on the process 
performances has been investigated experimentally 
[8–10]. 

The surfaces finish of optical glass 

components are always produced by polishing and 
lapping because of the engineering demands of 
no-damage surfaces. However, to improve the 
whole machining efficiency and meanwhile reduce 
the expenditure, the previous machining process is 
always chosen as grinding. The surface quality 
generated by grinding, especially the most 
important representative factor, surface roughness, 
determines the follow-up processing time and also, 
the maximum subsurface damage determines the 
follow-up processing margins. Hence, the grinding 
process will be one of the most important steps of 
optical glass machining process. Meanwhile, the 
grinding process is highly complex and hard to 
control, it is necessary to perform further studies to 
achieve a more comprehensive knowledge of 
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surface forming in grinding process and a better 
prediction of surface roughness. 

Over the last two decades, in order to assess 
the surface roughness in grinding optical glasses, 
empirical and theoretical prediction models of 
surface roughness have been developed by 
researchers. Empirical surface roughness models 
are based on quite a few experimental data, and 
usually are functions of machining parameters and 
cutting tool parameters. DABNUN [11] developed a 
prediction model for surface roughness in terms of 
cutting speed, feed rate and cutting depth based on 
12 sets of turning experiments. Empirical surface 
roughness model has the advantage of less effort 
required and more success in the industry, but the 
inherent disadvantage is that the empirical surface 
roughness model lacks of theoretical basis, and  
only is accurately described for the experiments in 
paper, cannot be well used for other machining 
conditions. 

To make the prediction results more accurate, 
the analytical surface roughness model has been 
tried out by quite a few researchers. The analytical 
surface roughness models are always based on the 
description of microstructure of grinding wheel and 
the analysis of machined surface forming 
mechanism and analytical models are deductively 
derived from fundamental principles. ALI et al [12] 
developed a surface roughness prediction model 
based on the fuzzy theory. ZHANG et al [13] 
proposed an analytical surface roughness model 
considering the influence of random distribution of 
abrasives, grinding conditions and ultrasonic 
vibration. According to his experimental validation, 
the prediction results can match well with the 
experimental results. However, the brittle fracture 
was not taken into consideration, which restricts the 
application field of the prediction model. The 
analytical model has the advantage of easily using 
under other machining conditions and generality. 
The analytical models have the disadvantage that 
they have to make different degrees of hypothesis 
during the prediction, and always divorce from the 
actual machining process. Hence, due to the highly 
complexity of ultrasonic vibration assisted grinding 
process, the prediction results of analytical model 
may exist different degrees of errors. 

Although the potential of ultrasonic vibration 
assisted grinding has been recognized, and lots of 
empirical and analytical surface roughness 

prediction models have been developed, there are 
few reports on the prediction model for surface 
roughness that both considering actual machining 
process and surface forming mechanism in 
machining optical glasses by this technology. To 
overcome the problems, empirical method and 
analytical method should be taken into 
consideration together. After the surface roughness 
being calculated by analytical model, it is important 
to further correct the results through the actual 
machining experiments. Thus, the introduction of a 
regression method is essential. A general regression 
method for calculating the correction coefficient is 
least square method. Though the least square 
method is widely used, and the regression precision 
is high, it has obvious disadvantage that the 
prediction precision is low. Compared to other 
regression method, Gaussian processing regression 
(GPR) has the advantages such as easy to 
implement, hyper-parameter adaptive acquisition, 
flexible interpretation in nonparametric inference, 
and also has the advantage in non-linear fields [14, 
15]. 

In the present work, the surface morphologies 
of grinding wheel were obtained by using LSCM 
(OLS 3000), the grinding wheel model was 
developed, the abrasive trajectories in ultrasonic 
vibration assisted grinding was also investigated, 
the theoretical model for surface roughness was 
developed based on the above analysis. The 
correction prediction model was developed by 
using GPR method. 32 sets of experiments of 
ultrasonic vibration assisted grinding of BK7 
optical glass material were carried out to validate 
the prediction results. 
 
2 Development of theoretical surface 

roughness model 
 
2.1 Modelling of diamond grinding wheel 

In order to predict the machined surface 
roughness, both the surface morphologies of 
grinding wheel and the forming mechanism of 
machined surface should be investigated. 

The method to develop the grinding wheel 
model was roughly the same with other researchers 
[16]. The diameter of grinding wheel used in the 
present work was 4 mm, the LSCM instrument was 
used to acquire the height data of grinding wheel, 
the ranges on X and Y directions were both  
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1278.75 μm, and the step was 1.25 μm. To 
eliminate the random error, 6 sampling points were 
selected randomly on the surface of grinding wheel, 
and the height data were averaged. The grinding 
wheel used in the present work and the LSCM 
instrument are shown in Figures 1 and 2. 
 

 
Figure 1 Photo of grinding wheel used in present work 

 

 
Figure 2 Photo of LSCM instrument 

 
To eliminate the curvature error, the least 

square method was used and the final binomial for 
grinding wheel can be written as: 

 
4 2( , ) 49.96 0.1705 0.03158 1.487 10f x y x y x       

5 5 21.23 10 1.15 10xy y                   (1) 
 
where x and y are the coordinates of sampling 
points. 
 
2.2 Algorithm of randomly distribution of 

abrasives 
In order to make the prediction results more 

accurate, the randomness of abrasive on grinding 
wheel should be taken into consideration. 

The shape of abrasive was assumed as 
spherical firstly, and all the abrasives array orderly, 
the spacing between each abrasive is lr, the average 
abrasive diameter is dg, the abrasive arraying before 
randomly distribution processing is shown in  
Figure 3. 
 

 
Figure 3 Abrasive arraying before randomly distribution 

processing 

 
The volume fraction of the abrasives can be 

written as the ratio of the cross-sectional area of 
average abrasive diameter and the area of dashed 
box: 
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Thus the initial spacing between each abrasive 

lr can be derived as: 
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To introduce the randomness of distribution, 

let all the abrasives vibrate along horizontal 
direction. The initial position of the abrasive Gi is 
(xi0, yi0), the displacement of abrasives along X and 
Y directions after each vibration are δx and δy, 
respectively. Thus, after nth vibration, the position 
of abrasive Gi can be written as: 
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where δxn[–lr, lr], δyn[–lr, lr]. 

To make sure that there are no overlaps 
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between abrasives, the following conditions should 
be met:  

   22
gin in in jnx x y y d                     (5) 

 
According to the researches by LIU et al [17], 

and aiming at the average abrasive diameter in the 
present work, the vibration times n was selected as 
1000. MATLAB was used to calculate the final 
coordinates of the abrasives. After the 1000th 
vibration, the abrasives on the grinding wheel can 
be treated as randomly distributed. 
 
2.3 Kinematics analysis of abrasive in ultrasonic 

vibration assisted grinding 
The mechanical movements in ultrasonic 

vibration assisted grinding process can be divided 
into rotation movement of master axis, feed 
movement along cutting direction and ultrasonic 
vibration movement along axis direction. In order 
to clarify the compound movement of abrasive in 
ultrasonic vibration assisted grinding, each 
movement should be analyzed separately. The 
movement of abrasive in ultrasonic vibration 
assisted grinding process can be shown in Figure 4. 
 

 
Figure 4 Movement of abrasive in ultrasonic vibration 

assisted grinding process 

 
The rotation movement of master axis, feed 

movement along cutting direction and ultrasonic 
vibration movement along axis direction can be 
written as Eqs. (6)–(8), respectively:  

π
cos

30

π
sin

30

iR

iR

i

i

n t
x r

n t
y r

      


      

                         (6) 

ifx vt                                  (7) 
 

sin(2π )iA iz A ft h                          (8) 
 
where ri (mm) is the distance between abrasive Gi 
and center of grinding wheel, n (r/min) is rotation 
speed, v (mm/min) is feed rate, t (s) is grinding time, 
A (μm) is ultrasonic vibration amplitude, f (Hz) is 
ultrasonic vibration frequency and hi is height of 
abrasive Gi. 

Thus the space movement equations of 
abrasive Gi can be derived as:  
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where θ is the angle between the abrasive G1 and 
Gi. 

The ri and θ can be respectively written as 
follows:  

2 2
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2.4 Theoretical model for surface roughness 

Lots of researchers have pointed out that, in 
the grinding of optical glass materials, quite a few 
micro and macro cracks with different 
morphologies and distribution can be found on 
machined surfaces [18, 19]. It was also pointed out 
that the cracks morphologies, cracks sizes and the 
cracks amounts present different changing law 
when changing different grinding parameters. 
Hence, the brittle fracture and crack propagation 
processes are particularly complicated. Considering 
the randomness of the cracks morphologies, crack 
sizes and the crack amounts, the influence of brittle 
fracture on surface roughness was ignored 
temporarily in the development of theoretical model 
for surface roughness. 

The forming process of machined surface 
outline along feed direction is shown in Figure 5. 
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Figure 5 Forming process of machined surface outline along feed direction in ultrasonic vibration assisted grinding 

 
The coordinate OXYZ was set at the machining 

starting point, and the coordinate oxyz was set at the 
center point of the end face of grinding wheel that 
the protrusion heights of all the abrasives are zero. 
The abrasive trajectory can be written as gi(x, z), 
i=1, 2, … , n. The coordinate oxyz was then 
transferred into the coordinate OXYZ, and 
meanwhile the feed movement was superposed in 
the abrasive trajectory. Thus the new abrasive 
trajectory can be rewritten as Gi(x, z), i=1, 2, …, n. 
It is believed that there exist much probability in the 
interaction effects between abrasives, however, the 
final outlines of machined surfaces always consist 
of the deepest trajectories of abrasives. Thus, the 
interaction effects between abrasive G1 and G2 can 
be written as: 
 

 1, 2 1 2, =min ( , ) ( , )G X Z G X Z G X Z（ ）          (12) 
 

And the final outlines of machined surfaces 
can be written as: 
 

 1 2, =min ( , ) ( , ) ( , ) ,G X Z G X Z G X Z Gi X Z  （ ）  

i=1, 2, …, n                          (13) 
 

Let the final outlines of machined surfaces 
propagate along radial direction, the final 
morphologies of machined surfaces can be 
obtained. 

After obtaining the final morphologies of 
machined surfaces, the surface roughness Sa can be 
calculated as follows: 
 

a
1 1

1
( , )

N M

i j

j i

S z x y
MN  

                      (14) 

 
2.5 Development of prediction model by using 

GPR method 
Because the brittle fracture was ignored in the 

theoretical model for surface roughness, there may 
exist tiny errors between theoretical results and the 
real values. Thus, Gaussian processing regression 
method was used to reduce the errors. The 
theoretical results can be written as Sat, and the GPR 
prediction results can be written as Sac. 

A Gaussian processing that can describe the 
function distribution is a collection of random 
variables. For the regression problem in the present 
work, the regression model can be written as: 
 

ac at( )S f S                            (15) 
 
where f is unknown function and ε is the noisy 
signal. 

To make the regression problem more simple 
and convenient, let the distribution of noisy signal 
be N(0, σn

2). Thus the prior on noisy observations 
can be written as: 

 
2

ac at at~ (0, ( , ) )n nS N K S S I                  (16) 
 
where In is n-dimensional unit matrix. 

And therefore the prior joint distribution of the 
variables Sat and Sac can be formulated as follows: 
 

2 *
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   (17) 

 
where Sat

* is the new theoretical prediction result 
and Sac

* is the new prediction value. 
Then the posterior distribution of the 

prediction value Sac
* can be obtained: 

 
2

ac* ~ ( *, * )R N                           (18) 
 
where 
 

* 2 1
at at at at ac* ( , )[ ( , ) ]n nK S S K S S I S            (19) 
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2 1 *
at at] ( , )n nI K S S                     (20) 

 
The covariance functions used in the present 

work is the Matern distance measure, which is 
formulated as follows:  

2
f( , ) (1 3 ( )) exp( 3 ( ))i j ji j iK x x M x x M x x        

2
n                                  (21) 

 
where σf

2 is the signal variance, and the matrix 
M=diag (I) is scaling factors. The hyper-parameters 
collection θ= {M, σf

2, σn
2} can be obtained by using 

the maximum likelihood method. 
The log term of the posterior distribution of 

the prediction value Sac* can be expressed as:  
T 2 1
ac at at ac

1
log( ) ( ( , ) )

2 n nR K S S I S       

2
at at

1
log ( , ) log 2π

2 2n n
n

K S S I           (22) 
 

Then, the partial derivatives of the log 
likelihood can be obtained, and in order to achieve 
the hyper-parameters, the optimization techniques 
such as conjugate gradient ascent [20] were used in 
the present work. After obtaining optimum 
solutions of hyper-parameters, GPR prediction 

result and its covariance of surface roughness can 
be obtained by using Eqs. (19) and (20). 
 
3 Experimental validation and discussion 
 
3.1 Validation experiments of theoretical surface 

roughness model 
In order to verify the validity of the theoretical 

results for surface roughness, the ultrasonic 
vibration assisted grinding experiments of BK7 
optical glass were carried out on a 5-axis precision 
ultrasonic vibration center (DMG Ultrasonic 70-5 
linear). The cutting tool oscillates along the axial 
direction of the spindle at a frequency of 30 kHz 
during the experiments. A diamond wheel whose 
diameter is 4 mm was used as the grinding tool. 
Rectangular shaped BK7 optical glass samples with 
50 mm in length, 50 mm in width and 6 mm in 
thickness were used as the workpiece. The grinding 
parameters and ultrasonic vibration parameters used 
in experiments are listed in Table 1. 

Due to the huge amount of computation, the 
MATLAB software was used in both the theoretical 

 

Table 1 Grinding parameters and ultrasonic vibration parameters used in experiments 

Number of  
experiment 

Rotation 
speed, 

n/(r·min–1) 

Feed rate, 
Vf/(mm·min–1) 

Grinding 
depth, ap/μm

Ultrasonic 
vibration 

amplitude, A/μm

Surface 
roughness,

Sa/nm 

Surface roughness 
in theoretical 

prediction, Sat/nm 

Relative 
error, Et/%

1 1000 110 60 10 441.84 402.65 14.6639 

2 3000 110 60 10 479.86 356.24 17.1265 

3 5000 110 60 10 389.34 337.98 13.1916 

4 7000 110 60 10 380.53 325.74 14.3983 

5 9000 110 60 10 309.29 262.17 15.2349 

6 11000 10 60 10 276.15 226.66 17.9214 

7 11000 30 60 10 347.05 260.17 6.0928 

8 11000 50 60 10 278.44 253.33 9.0181 

9 11000 70 60 10 305.17 267.93 12.203 

10 11000 90 60 10 326.56 297.02 18.971 

11 11000 110 10 10 400.95 346.49 13.5827 

12 11000 110 20 10 398.93 449.69 12.724 

13 11000 110 30 10 428.9 481.36 12.2313 

14 11000 110 40 10 437.03 539.9 8.6252 

15 11000 110 50 10 426.93 579.36 12.0771 

16 11000 110 60 0 590.96 520.1 11.9907 

17 11000 110 60 1.5 531.92 482.64 9.2646 

18 11000 110 60 3 528.63 466.34 11.7833 

19 11000 110 60 4.5 489.86 434.13 11.3767 

20 11000 110 60 6 478.43 384.4 19.6539 
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calculation and GPR prediction for surface 
roughness. The theoretical results are also listed in 
Table 1. 

The relative error of theoretical results (Et) is 
defined as: 
 

t at a a( ) / 100%E S S S                     (23) 
 

And the average relative error of theoretical 
results (EAt) is calculated by: 
 

At t

1

1
100%

n

E E
n

                        (24) 

 
Figure 6 shows the comparison of theoretical 

and experimental results. It can be seen from  
Figure 6 that the whole changing tendency of 
theoretical and experimental results are roughly the 
same. But there exists a deviation to some extent 
between two kinds of results in several experiments. 
By using Eq. (24), the EAt in theoretical results is 
13.11%. 
 

 
Figure 6 Comparison of theoretical and experimental 

results 

 
The main reason of this deviation is that, in 

actual grinding process, the brittle fracture will 

strongly influence the morphologies and protrusion 
heights of machined surface. Figure 7 shows the 
surface morphologies when n=11000 r/min, Vf=  
110 mm/min, ap=10 μm and A=10 μm. It can be 
seen from Figure 7(a) that brittle fracture is in a 
large proportion and, some brittle fractures with 
large size distributed randomly on machined 
surface. 

Several researchers have focused on the 
fracture forming mechanism in machining process 
of brittle materials [21], in this research, the fracture 
induced by one abrasive grain can be simplified as a 
half ellipse with three half-axis lengths of CL, CH 
and L/2, as shown in Figure 8, where CL is the 
lateral crack length, mm; CH is the lateral crack 
depth, mm; L is the effective cutting distance that 
an abrasive grain travels during effective cutting 
time Δt. In Figure 7(a), the zones marked as S1 and 
S4 are half well-developed half ellipse while zones 
S2 and S3 are well-developed half ellipses. Among 
them, zone S2 is induced by an abrasive grain whose 
protrusion height is relatively small while zone S3 is 
induced by an abrasive grain whose protrusion 
height is relatively big. 

Figure 7(b) shows the zoomed image of zone 
S3. In Figure 7(b), Zone A marked as the yellow 
dotted block is the fracture zone, zone B and zone C 
are other two zones randomly selected on machined 
surface. Thus, in coordinate OXYZ established in 
Figure 5, the protrusion heights of zone A will be 
much lower than that of zone B and zone C. And 
according to the calculating method of surface 
roughness illustrated in Eq. (15), the sum of 
absolute value of protrusion heights in zone A and 
zone C will become bigger than that in zone B and 
zone C. That is: 

 

 
Figure 7 Surface morphologies when n=11000 r/min, Vf=110 mm/min, ap=10 μm and A=10 μm 
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Figure 8 Fracture zone for one abrasive grain 
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           (25) 

 
However, if the fracture sizes are roughly 

similar, the sum of protrusion heights on machined 
surface in experiments may be smaller than that in 
theoretical results. According to the analysis above, 
there will exist a deviation to some extent between 
two kinds of results in several experiments. 
 
3.2 Validation experiments of GPR prediction 

model 
In order to verify the validity of the proposed 

GPR surface roughness prediction model, another 
12 sets of ultrasonic vibration assisted grinding 
experiments of BK7 optical glass were carried out. 
The experimental condition was the same with the 
validation experiments in section 3.1. The grinding 
parameters and ultrasonic vibration parameters used 

in experiments are listed in Table 2. And the GPR 
prediction results are also listed in Table 2. 

The GPR prediction relative error is defined 
as: 

 
c ac a a( ) / 100%E S S S                    (26) 

 
And the average GPR prediction relative error 

(EAc) of the prediction results is calculated by: 
 

cAc
1

1 n

E E
n

                             (27) 

 
Figure 9 shows the comparison of GPR 

prediction and experimental results. It can be seen 
from Figure 9 that the deviation between two kinds 
of results becomes much smaller than that in the 
validation experiments of proposed theoretical 
prediction model. By using Eq. (27), EAc in 
prediction results is 8.12%. From the prediction 
results, it can be seen that the correction prediction 
model for surface roughness is a good approach to 
achieve this object. 

 
4 Conclusions 
 

1) A theoretical surface roughness model has 
been developed to relate the grinding wheel 
morphologies and machining parameters to the 
abrasive trajectories in ultrasonic vibration assisted 
machining of glass materials. 

2) The prediction model for surface roughness 
is developed by using GPR method due to the 
influence of brittle fracture on machined surface  

 
Table 2 Grinding parameters and ultrasonic vibration parameters used in experiments 

Number of  
experiments 

Rotation speed, 
n/(r·min–1) 

Feed rate, 
Vf/(mm·min–1) 

Grinding depth, 
ap/μm 

Ultrasonic 
vibration 

amplitude, A/μm

Surface 
roughness, 

Sa/nm 

Surface roughness
in theoretical 

prediction, Sac/nm

Relative
error, Ec/%

1 11000 110 60 10 315.26 320.65 14.3976

2 13000 110 60 10 320.56 316.24 4.4672 

3 15000 110 60 10 300.2 307.98 7.4017 

4 11000 100 60 10 304.95 295.74 6.2994 

5 11000 120 60 10 315.29 324.17 5.9881 

6 11000 140 60 10 349.75 360.66 11.6969

7 11000 110 80 10 455.69 470.17 7.1277 

8 11000 110 90 10 516.65 523.33 2.2607 

9 11000 110 100 10 611.49 597.93 10.3943

10 11000 110 60 7.5 465.02 479.02 3.0106 

11 11000 110 60 9 461.45 446.49 7.5761 

12 11000 110 60 9.5 367.65 379.69 16.8747
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Figure 9 Comparison of GPR prediction and 

experimental results 

 
roughness. 

3) The experimental results show that the 
maximum relative error and average relative error 
of the theoretical surface roughness model are 
19.65% and 13.11%, respectively. 

4) The maximum relative error and average 
relative error of the GPR surface roughness 
prediction model are 16.87% and 8.12%, 
respectively. 

5) In actual grinding process, the brittle 
fracture with large size in height direction will 
strongly influence the morphologies and protrusion 
heights of machined surface. 

6) The GPR prediction results can match well 
with the experimental results. It is believed that the 
prediction model for surface roughness is reliable. 

In order to improve the accuracy of surface 
roughness prediction model, some other covariance 
functions should be compared to the one used in 
this work in the further work. 
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中文导读 
 

BK7 光学玻璃超声振动磨削加工表面粗糙度预测模型 
 
摘要：在光学玻璃零件加工过程中，对加工表面粗糙度进行预测是提升整个制造工艺链效率和减小总

体加工成本的关键。为预测脆性材料超声振动磨削过程中的加工表面粗糙度，首先获取金刚石砂轮表

面的实际微观形貌，建立砂轮表面数字化仿真模型，并分析超声振动磨削过程中磨粒的运动轨迹，建

立加工表面粗糙度的理论预测模型。超声振动加工过程中材料脆性断裂对加工表面粗糙度影响严重，

因此采用高斯过程回归（GPR）方法对理论预测模型进行了修正。为验证理论模型和 GPR 模型的准

确性，进行 32 组 BK7 光学玻璃超声振动磨削加工实验。结果表明：理论模型和 GPR 预测模型的平

均误差分别为 13.11%和 8.12%。GPR 预测模型所获预测结果与实验值吻合较好。 
 
关键词：表面粗糙度；预测模型；超声振动；光学玻璃；高斯过程回归 

 

 
 
 
 
 


