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Abstract: A modified artificial bee colony optimizer (MABC) is proposed for image segmentation by using a pool of 
optimal foraging strategies to balance the exploration and exploitation tradeoff. The main idea of MABC is to enrich 
artificial bee foraging behaviors by combining local search and comprehensive learning using multi-dimensional 
PSO-based equation. With comprehensive learning, the bees incorporate the information of global best solution into the 
solution search equation to improve the exploration while the local search enables the bees deeply exploit around the 
promising area, which provides a proper balance between exploration and exploitation. The experimental results on 
comparing the MABC to several successful EA and SI algorithms on a set of benchmarks demonstrated the 
effectiveness of the proposed algorithm. Furthermore, we applied the MABC algorithm to image segmentation problem. 
Experimental results verify the effectiveness of the proposed algorithm. 
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1 Introduction 
 

Image segmentation is considered useful 
method to separate objects from background that 
has distinct gray levels. Among existing 
segmentation techniques, multi-level threshold is a 
simple but effective tool and requires multiple 
threshold values to accomplish segmentation. This 
approach can be classified into optimal threshold 
methods [1–4] and property based threshold 
methods [5–7]. The first category searches for the 
optimal thresholds which make the threshold 
classes on the histogram reach the desired 
characteristics. The second category detects the 
thresholds by measuring some property of the 

histogram. Property-based threshold methods are 
fast and suitable for the case of multilevel threshold, 
while the number of thresholds is hard to be 
determined. 

Several algorithms have been proposed in 
literatures for optimal threshold [8–12]. In Refs. [4, 
8, 9], some novel methods, derived from optimizing 
an objective function for bi-level and multi-level 
threshold, were proposed. These methods suffer 
from a common drawback that the computational 
complexity raises exponentially when the problem 
is extended to multi-level threshold. Recently, 
swarm intelligence (SI) algorithms have been 
introduced to image segmentation [12–16]. Among 
them, artificial bee colony algorithm (ABC) is one 
popular member of the SI family [17]. Due to its 
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good robustness, the ABC has been widely 
employed to solve many engineering optimization 
problems [18–21]. Especially, Refs. [19, 20] have 
proposed and developed the novel and effective 

ABC variants by using a hybridization of life- 
cycle and optimal search strategies have obtained 
significant performance improvement. However, 
when tackling complex problems, these ABCs still 
suffer from the drawbacks of poor exploitation [18]. 

Aiming to conquer above drawbacks to some 
extent, this paper presents a modified artificial bee 
colony algorithm (MABC) for image segmentation. 
In our proposed MABC model, the local search 
operation is activated when a bee finds promising 
area and the comprehensive learning is used to 
facilitate more information shared in bee colony. 
By this hybrid mechanism, the proposed MABC 
can be claimed very powerful due to the fact that the 

exploitation and exploration can be elaborately 
balanced. 
 
2 Standard ABC algorithm 
 

The recently introduced artificial bee colony 
(ABC) algorithm is motivated by intelligent social 
behaviors of three types of bees [17]. In ABC, there 
are three groups of bees: employed bees, onlookers 
and scouts. The employed bees explore the food 
sources and transmit related information to 
onlooker bees. The onlooker bees select good food 
sources, and these food sources with higher quality 
will have a bigger probability to be chosen. If a 
food source found by employed bee is exhausted, 
the corresponding employed bee will be 
transformed to a random scout. The detailed 
procedures are given as follows. 

Step 1: Initialization 
In initialization phase, a group of food sources 

representing possible solutions are generated 
randomly by the following equation: 
 

min max min
, (0,1)( )i j j j jrandx x x x                  (1) 

 
where i=1, 2, …, SN; j=1, 2, …, D; SN is the 
population size (the number of solutions); D 
donates the number of variables, i.e. problem 
dimension; min

jx  and max
jx  represent the lower 

upper and upper bounds of the jth variable, 
respectively. 

Step 2: Sending employed bees 
In this phase, the neighbor food source 

(candidate solution) can be generated from the old 
food source of each employed bee in its memory 
using the following expression: 
 

, , , ,( )i j i j i j k jv x x x                          (2) 

where xk is a randomly selected individual as a 
neighbor bee and is different from current bee; xi,j is 
another randomly chosen index donating a random 
dimension;  is a number randomly falling into 
[–1,1]. 

Step 3: Sending onlooker bees 
In this phase, an onlooker bee selects a food 

source lying on the probability value linked with 
that corresponding food source; Pi can be defined as 
following expression: 
 

1

fitness

fitnessN

i
i S

jj

P






                           (3) 

 
where fitnessi donates the fitness value of the jth 
solution. 

Step 4: Sending scout bees 
In the scout bees’ phase, once a food source 

cannot be ameliorated further during a 
predetermined cycle (defined as “limit” in ABC), 
the food source should be replaced with a new one 
while the employed bee associated with it 
subsequently becomes a scout. The new food 
source is generated randomly according to Eq. (1). 

Those procedures from Step 2 to Step 4 will be 
carried out repetitively until the termination 
condition is met. 
 
3 Modified artificial bee colony 

algorithm 
 
3.1 Local search 

The Powell’s local search algorithm is an 
extension of basic pattern search method, and has a 
merit of tackling the non-differentiable objective 
functions without derivatives [22]. This algorithm 
searches the objective optima bi-directionally along 
each vector, alternately. Then the new point is 
donated as a linear combinational vector as a new 
member added to the search vector list. 
Accordingly, the most successful search vector with 
most contribution to the new direction is removed 
from this list. This process is iterated until no 
significant improvement is achieved. The detailed 
implantation of this algorithm can refer to Ref. [22]. 
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3.2 Comprehensive learning based on multi- 
dimensional best-solution information 
In the original ABC version, the search 

equation (i.e., Eq. (2)) is used to generate a new 
position by a random-dimension disturbance, 
whereas this approach is similar to a blind mutation 
operator. That is, this equation drives the old 
individual bee towards (or away from) its 
randomly-selected neighbor at a random dimension. 
This inevitably causes the inefficiency of 
information exchange at the individual-level and 
population-level because the useful information of 
elites is not utilized fully and the dimension of 
learning is not enough. 

Inspired by the social learning in PSO model 
[23], a new learning strategy is employed in search 
equation of ABC (i.e., Eq. (2)). To learn fully from 
the best individual in current bee population, 
assume that individuals exchange information to 
other individuals in a full-dimension manner. 
Specifically, in the employed or onlooker stage, the 
foraging direction of a bee is governed by the 
information combination of its randomly-selected 
neighbor and the best individual in the population 
(i.e., gbest). And this search equation is modified as 
follows: 

 

new 1 best, , 2( ) ( )
i i g j i j i kx x l x x l x x               (4) 

 
where xgbest is the best member from current 
population; xk is randomly chosen neighbor 
individual (note that k is different with i); l1 and l2 is 
a random number within the scope of [–1, 1]. 

According to Eq. (4), the gbest term can drive 
the new candidate solution towards the global best 
solution, as well as the full-dimension learning can 
enhance the efficacy of information exchange. 
 
3.3 Proposed algorithm 

The balance between exploration of the search 
space and exploitation of potentially good solutions 
is considered a fundamental problem in population- 
based optimization algorithms. In practice, the 
exploration and exploitation contradict with each 
other. By using the local search and comprehensive 
learning, the proposed MABC will act as the main 
optimizer for searching the near-optimal position 
while the local search will make fine tune the best 
solutions obtained by the MABC in each iteration. 
The main steps of the proposed algorithm are given 
as the following processes. The following is the 
proposed MABC algorithm. 

Step 1) Initialization. 
Step 1.1) Randomly generate SN food sources 

in the search space to form an initial population by 
Eq. (1). 

Step 1.2) Evaluate the fitness of each bee. 
Step 1.3) Set the maximum cycle (LimitC). 

Step 2) Iteration=0. 
Step 3) Employ bee phase. Loop over each food 
source. 

Step 3.1) Generate a candidate solution Vi by 
Eq. (4) and evaluate f (Vi). 

Step 3.2) Greedy selection and memorize the 
better solution. 
Step 4: Calculate the probability value Pi by     
Eq. (3). 
Step 5: Onlooker bee phase. 

Step 5.1) Generate a candidate solution Vi by 
Eq. (4) and evaluate f (Vi). 

Step 5.2) Greedy selection and memorize the 
better solution. 
Step 6: Powell’s search phase. 

If mode (Iteration, Tp) ==0, randomly choose 
m∈{1, …, SN} that has to be different from the 
best one, Xbest, and generate a new solution Vs by  
Eq. (4). Use the Vs as a starting point and generate a 
new solution Vm by Powell’s method as illustrated 
in standard ABC algorithm. 
Step 7) Iteration= Iteration +1. 
Step 8) If the iteration is greater than LimitC, stop 
the procedure; otherwise, go to Step 3). 
Step 9) Output the best solution achieved. 
 
4 Benchmark test 
 

In the experimental studies, according to the 
no free lunch (NFL) theorem [24], a suit of 15 
benchmark functions are employed to fully evaluate 
the performance of the MABC algorithm without a 
biased conclusion towards some chosen problems 
[25–28]. The involved benchmark functions can be 
classified as basic continuous benchmarks (f1–f8), 
CEC2005 benchmarks (f9–f15). The formula for each 
basic benchmarks and CEC2005 test functions is 
shown in Tables 1 and 2. In order to compare the 
different algorithms fairly, the number of function 
evaluations (FEs) is adopted as a time measure 
substituting the number of iterations, due to the fact 
that the algorithms do differing amounts of work in 
their inner loops. 
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Table 1 Classical test suite 

Name Function Limit 
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2

1
1
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
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Table 2 CEC 2005 test suite 

Name Function Limit 

Shifted sphere (f9) 
2

9 bias1
1

( ) ,  
D

i
i

f x z f z x o

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2
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4.1 Parameters settings for involved algorithms 
Experiment was conducted to compare with 

original artificial bee colony algorithm (ABC) [18], 
canonical PSO with constriction factor (PSO) [23], 
genetic algorithm with elitism (EGA) [29] and 
covariance matrix adaptation evolution strategy 
(CMA-ES) [30]. All algorithms were run 30 times 
respectively on each benchmark and the maximum 
evaluation number (FEs) was set at 100000. For 
involved benchmarks, the dimensions are all set as 
30. All the control parameters for the EA and SI 

algorithms are set to be default of their original 
literatures: initialization conditions of CMA-ES are 
the same as those in Ref. [30]; the number of 
offspring candidate solutions generated per time 
step is λ=4μ, where μ is a adjustable parameter 
defined in Ref. [30]; the limit parameter of ABC is 
set to be SN×D, where D is the dimension of the 
problem and SN is the number of employed bees 
[18]. For canonical PSO, the learning rates c1 and c2 
are both set as 2.05 and the constriction factor 
=0.729 [23]. For EGA, crossover rate of 0.8, 
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mutation rate of 0.01, and the global elite with a 
rate of 0.06 are adopted [29]. For the proposed 
MABC, the control parameter Tp can be 
empirically set as 90 in the experiments and other 
parameters can be referred the setting of original 
ABC [18]. 
 
4.2 Numerical results and comparison 
4.2.1 Results on classical benchmarks 

The means and stand deviations of the 30 run 
times of involved algorithms on classical test 
functions are listed in Table 3 where the best results 
are highlighted in bold. From Table 3, MABC and 
ABC obtain satisfactory results on the unimodal f1, 
f2, f3 in terms of accuracy and convergence. MABC 
performs a little worse than ABC on these functions, 
but significantly better than other algorithms. f5–f8 
are the most commonly used test multimodal 
functions, and an algorithm can be easily trapped in 
a local minimum. As expected, the MABC gets 
more favorable results than the compared 

algorithms on all these cases. The superior 
performance of MABC on these multimodal 
functions suggests that MABC is good at a fine- 
gained search. The performance improvement is 
mainly due to its Powell’s search and improved 
search equation in MABC. That is, the ABC guided 
by so-far-best information will act as the main 
optimizer for exploration while the Powell’s 
method aims to fine exploitation. From computation 
results on these classical functions, MABC 
performs most powerful on most test cases due to 
its using the proposed foraging strategies. 
4.2.2 Results on CEC2005 benchmarks 

Benchmarks f9–f15 from CEC 2005 test bad are 
employed in this section and correlative 
computation results are presented in Table 4. From 
these results, it can be observed that MABC 
performs best on five out of the seven functions. 
ABC and CMA-ES achieve similar ranking, only 
worse than MABC. It is clearly visible and proven 
that MABC performs more powerful on CEC 2005 

 
Table 3 Results obtained by all algorithms on classical test suite 

Function MABC ABC PSO CMA-ES GA 

f1 

Mean 1.7198×10–11 1.6191×10–11 2.2059×10–4 1.8626×10–6 1.4077×10–3 

Std 2.9544×10–11 2.2532×10–11 4.8068×10–4 4.2273×10–4 1.9295×10–3 

Rank 2 1 4 3 5 

f2 

Mean 5.7139×10–15 1.0238×10–4 2.1456×10–4 6.2334×10–3 5.3335×10–2 

Std 1.2333×10–10 2.0252×10–14 1.0572×10–5 2.1883×10–6 5.0792×101 

Rank 1 2 3 4 5 

f3 

Mean 1.4679×10–1 3.0075×10–6 1.7778×10–2 1.4562×10–1 2.5940×10–1 

Std 1.4503×10–2 1.9804×10–6 5.1131×10–3 1.4532×10–32 3.8971×10–2 

Rank 4 1 2 3 5 

f4 

Mean 1.3043×10–10 6.1442×10–3 1.4789×10–3 3.3235×10–3 3.4971×10–2 

Std 1.5945×10–10 2.2358×10–2 2.9159×10–4 2.5874×10–3 2.1107×10–3 

Rank 1 4 2 3 5 

f5 

Mean 1.7471×10–3 6.6937×10–2 8.9786×10–2 4.1529×10–2 3.0978×10–1 

Std 5.3145×10–4 4.9569×10–4 7.2506×10–3 7.0509×10–3 2.9555×10–2 

Rank 1 3 4 2 5 

f6 

Mean 3.23811×10–5 3.2986×10–5 1.6616 4.3748×10–2 3.0685 

Std 3.1251×10–2 3.2325×10–2 1.3884×10–1 2.3449×10–2 1.3645 ×10-1 

Rank 1 2 4 3 5 

f7 

Mean 3.6592×10–6 3.0293×10–6 1.0526×10–2 1.6812×10–3 2.0852×10–2 

Std 2.8258×10–6 2.6086×10–6 7.2454×10–5 7.7436×10–4 8.6817×10–6 

Rank 1 3 4 2 5 

f8 

Mean 4.4537×10–10 8.3839×10–8 8.5416×10–5 2.1706×10–7 5.3409×10–4 

Std 1.9980×10–10 3.4183×10–7 1.6413×10–5 4.3498×10–7 1.9193×10–4 

Rank 1 2 4 3 5 
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Table 4 Results obtained by all algorithms on CEC05 benchmarks 

Function MABC ABC PSO CMA-ES EGA 

f9 

Mean –4.5832×102 –4.4132×102 3.4613×101 –4.3127×102 –3.5686×102 

Std 1.9472×10–14 2.227×10–14 5.8420×102 5.1713×10–14 2.0814×101 

Rank 1 2 5 3 4 

f10 

Mean –4.5631×101 –4.3815×101 9.5247×102 –4.6012×102 1.4385×104 

Std 2.1225×102 2.3419×102 2.9622×103 2.2718×10–14 5.4253×103 

Rank 2 3 4 1 5 

f11 

Mean 4.2331×102 4.3429×102 2.6559×107 4.4678×102 4.0998×104 

Std 2.1056×100 1.9871×100 2.6716×107 1.8864×100 3.5523×104 

Rank 1 2 5 3 4 

f12 

Mean –1.9178×102 2.4681×103 6.4552×103 2.4392×103 3.2963×103 

Std 7.2376×10–3 1.4429×10–2 2.2961×102 1.3490×10-3 4.6746×102 

Rank 1 3 5 2 4 

f13 

Mean –1.1831×102 –1.7658×102 –1.7397×102 –1.1896×102 –1.6903×102 

Std 1.3423×10–1 6.4345×1023 1.6532×10–1 3.7856×10–2 2.1242×10–2 

Rank 2 3 4 1 5 

f14 

Mean –3.3021×102 –3.3021×102 –2.5985×102 –2.5849×102 –2.4729×102 

Std 1.2349×10–14 3.3386×10–14 3.3534×101 2.3651×101 3.5474×100 

Rank 1 1 4 3 5 

f15 

Mean –2.8243×102 –1.2346×102 –1.8931×102 –1.6559×102 –1.3717×102 

Std 1.1367×101 3.4544×101 2.5676×101 2.6985×101 3.9898×101 

Rank 1 5 2 3 4 

 
benchmarks than on basic benchmarks. This means 
that MABC with the proposed effective strategies is 
more competent in tackling complex problems. 
 
5 Multilevel threshold for image 

segmentation by MABC 
 
5.1 Kapur criterion 

The Kapur multi-threshold entropy measure 
[31] has been popularly employed in determining 
whether the optimal threshold method can provide 
image segmentation with satisfactory results. It is 
aimed to find the optimal thresholds that can yield 
the maximum entropy. For multilevel threshold, 
Kaptur’s entropy may be described as follows. 

Consider an image containing N pixels of gray 
levels from 0 to L. H(i) represents the number of 
the ith gray level pixel and P(i) represents the 
probability of i. Then, we obtain: 

 
( ) ( )

lni
k ki

P i P i
H

 
                           (5) 

 
Assuming that there are M–1 thresholds {t1, 

t2, …, tM–1} that divide the original image into M 
classes (C1 for [0, t1], C2 for [t1, t2], and CM for 

[tM–1, L]), the optimal thresholds {t1, t2, …, tM–1} 
selected by the Kapurmethod are depicted as 
follows: 

 
1

* * *
1 2 1

1

{ , ,  ,  } arg  max
M

M i
i

t t t H





    
  
             (6) 

 
Equation (6) is used as the objective function 

for the proposed MABC based procedure which is 
to be optimized (minimized). A close look into this 
equation will show that it is very similar to the 
expression for uniformity measure. 
 
5.2 Experiment setup 

The datasets involve a set of popular tested 
images used in previous studies [32], including 
avion.ppm, house.ppm, lena.ppm, peppers.ppm, 
safari04.ppm and hunter.pgm. The size of each 
involved image is 512×512. The proposed 
algorithm and compared algorithms are evaluated 
based on Kapur. The parameters of these algorithms 
including MABC, ABC, PSO, EGA and CMA_ES 
are set as described in Section 4.1. We strived to 
utilize the proposed algorithm to obtain multiple 
thresholds with larger fitness values and fast 
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computation ability. The numbers of thresholds 
M-1 investigated in the experiments are 2, 3, 4, 5, 7, 
and 9. The population size is set to 20 and the 
maximum FE is set to 2000. All the experiments are 
repeated 30 times. 
 
5.3 Experimental results of multilevel threshold 

Table 5 gives the fitness, mean computation 
time, and optimal thresholds with M–1=2, 3, and 4 
obtained by Kapur. From Table 5, we can see that 
Kapur takes too long computation time on these 
cases. From computation results in Table 6, it can 
be observed that population- based methods 
consume similar CPU time, which exhibits superior 
performance to pure Kapur. As can be seen form 
Table 7, the proposed MABC algorithm generally 
performs satisfactory fitness values with M–1=2, 3 
and 4, and consumes less time than Kapur. This is 
mainly due to the fact that the comprehensive 
learning strategy using improved PSO-based search 
equation enables the proposed algorithm obtain 
faster convergence speed. Furthermore, the MABC- 
based algorithm achieves the best achievements 
among the population-based methods in most cases. 
Moreover, the differences between the MABC and 
the other algorithms are more evident as the 
segmentation level increases. 

To further investigate the population-based 

methods over high-dimensional segmentation, we 
conduct these algorithms on image segment with 
M–1=5, 7 and 9. Table 8 gives the average fitness 
and standard deviation obtained by each 
population-based algorithm. From Table 8, it can be 
observed that MABC demonstrates the best 
performance and stability on these high- 
dimensional functions, which is more efficient than 
the conventional ABC and other classical 
population-based algorithms, which proves that the 
MABC-based algorithm is more suitable for 
resolving multilevel image segmentation problems. 
 
6 Conclusions 
 

In order to apply artificial bee colony 
algorithm to solve complex optimization problems 
efficiently, this paper proposes a modified artificial 
bee colony algorithm, namely MABC. The 
potential of the proposed MABC to balance the 
exploration and exploitation tradeoff is achieved by 
combining local search and comprehensive learning 
strategies. In MABC, each individual can be 
characterized by focused and deeper exploitation of 
the promising regions and wider exploration of 
other regions of the search space. The algorithm 
achieves this by employing local search to 
encourage fine exploitation when it enters the  

 

Table 5 Objective values and thresholds by Kapur method 

Image 
M–1=2 M–1=3 M–1=4 

Objective value Optimal threshold Objective value Optimal threshold Objective value Optimal threshold

Avion 12.3225 70,171 15.6050 68,126,181 18.4232 66,105,142,183

House 12.5950 89,149 15.6664 70,123,171 18.5158 58,96,143,182 

Lena 12.4577 98,163 15.4294 81,124,173 18.1234 63,96,134,173 

Peppers 12.7457 73,142 15.7998 60,110,168 18.6505 57,102,144,193

Safari04 11.9905 75,141 15.0652 62,115,163 17.7978 50,85,122,160 

Hunter 12.4885 91,177 15.7247 57,115,177 18.6384 43,91,132,178 

Mean CPU time 1.24333 — 51.342 — 2325.472 — 

 

Table 6 Mean CPU time of compared population-based methods on Kapur algorithm 

Dimension MABC ABC PSO CMA-ES EGA 

2 0.12038 0.48146 0.5631 0.45652 1.55012 

3 0.043328 0.64661 0.8669 0.47340 2.51913 

4 0.046637 0.57266 1.2099 0.49143 3.43565 

5 0.060344 0.73647 1.5804 0.48354 4.81492 

7 0.046105 0.56812 2.6771 0.48564 7.04398 

9 0.041402 0.59253 3.1064 0. 48209 8.98092 
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Table 7 Objective value and standard deviation by compared population-based methods on Kapur algorithm 

Image M–1 
Objective value (standard deviation) 

MABC ABC PSO CMA-ES EGA 

Avion 

2 

1.4788×10 

0 

71 

173 

1.4788×10 

0 

71 

173 

1.4788×10 

0 

71 

173 

1.4763×10 

2.7853×10–2 

76.9428 

166.8398 

1.4787×10 

4.1077×10–4 

70.7000 

171.7000 

3 

1.8791×10 

4.1095×10–4 

69.0000 

126.7000 

183.0000 

1.8790×10 

7.0527×10–4 

69.0000 

126.8000 

182.9000 

1.8790×10 

1.5756×10–3 

68.8000 

126.9000 

183.0000 

1.8366×10 

8.3349×10–1 

65.9486 

127.1134 

182.6826 

1.8775×10 

9.9384×10–3 

68.6000 

127.7000 

183.7000 

4 

2.2212×10 

5.3515×10–4 

66.7000 

106.1000 

145.2000 

185.0000 

2.2191×10 

1.9772×10–2 

68.0000 

98.4000 

149.0000 

181.4000 

2.2212×10 

6.5323×10–4 

66.7000 

105.6000 

144.8000 

185.0000 

2.21010×10 

5.4463×10–2 

64.8520 

103.3790 

139.7959 

179.9956 

2.2166×10 

1.8436×10–2 

64.0000 

103.6000 

144.4000 

185.1000 

House 

2 

1.5118×10 

1.7778×10–4 

88.0000 

147.9000 

1.5118×10 

2.2674×10–15 

88 

148 

1.5118×10 

2.2674×10–15 

88 

148 

1.5104×10 

1.8044×10–2 

85.8326 

152.1452 

1.5116×10 

1.1003×10–3 

87.3000 

147.6000 

3 

1.8853×10 

0 

72 

122 

174 

1.8853×10 

4.2836×10–4 

72.6000 

122.8000 

174.6000 

1.8853×10 

0 

72 

122 

174 

1.8832×10 

1.5877×10–2 

73.0233 

124.4326 

177.2193 

1.8848×10 

4.2420×10–3 

73.3000 

123.4000 

175.3000 

4 

2.2324×10 

8.6056×10–5 

59.0000   

99.0000 

 139.7000 

 183.7000 

2.2309×10 

9.2188×10–3 

60.5000 

99.9000 

140.7000 

183.1000 

2.2324×10 

5.6337×10–5 

59.0000 

99.0000 

139.9000 

183.9000 

2.2193×10 

1.7201×10–1 

62.2997 

100.9495 

137.2325 

181.2818 

2.2281×10 

1.8558×10–2 

59.6000 

101.9000 

141.6000 

184.0000 

Lena 

2 

1.4951×10 

2.2693×10–15 

97 

164 

1.4951×10 

2.2693×10–15 

97 

164 

1.4951×10 

2.2693×10–15 

97 

164 

1.4943×10 

1.2241×10–2 

97.8584 

167.7098 

1.4951×10 

6.9023×10–4 

97.7000 

164.3000 

3 

1.8565×10 

2.2694×10–15 

82 

126 

175 

1.8565×10 

0 

82 

126 

175 

1.8565×10 

5.7544×10–4 

82.1000 

126.2000 

175.3000 

1.8548×10 

3.9026×10–2 

86.2773 

132.6633 

179.4721 

1.8558×10 

4.8480×10–3 

83.0000 

128.0000 

175.1000 

4 

2.1848×10 

5.6279×10–4 

64.0000 

96.9000 

137.0000 

179.0000 

2.1823×10 

1.7588×10–2 

72.1000 

109.0000 

140.8000 

177.8000 

2.1839×10 

9.8253×10–3 

68.2000 

104.0000 

141.2000 

180.3000 

2.1747×10 

7.2537×10–2 

78.3727 

110.8736 

147.5074 

182.6328 

2.1811×10 

1.5890×10–2 

66.6000 

100.7000 

138.7000 

179.3000 
to be continued 
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continued 

Image M–1 
Objective value (standard deviation) 

MABC ABC PSO CMA-ES EGA 

Peppers 

2 

1.4163×10 

2.0990×10–15 

75 

147 

1.4163×10 

2.0989×10–15 

75 

147 

1.4163×10 

2.0989×10–15 

75 

147 

1.4161×10 

2.3541×10–3 

74.8766 

149.3480 

1.4163×10 

4.5835×10–4 

75.0000 

147.2000 

3 

1.9015×10 

2.2694×10–15 

61 

113 

165 

1.9014×10 

9.5451×10–4 

61.6000 

113.5000 

165.2000 

1.9015×10 

1.3614×10–4 

60.9000 

112.8000 

164.8000 

1.8965×10 

5.1873×10–2 

65.5961 

117.3846 

167.3244 

1.9010×10 

3.6360×10–3 

61.9000 

112.7000 

163.3000 

4 

2.2483×10 

1.6533×10–2 

56.7000 

102.5000 

145.7000 

191.7000 

2.2465×10 

2.1955×10–2 

60.6000 

107.2000 

142.8000 

188.8000 

2.2488×10 

0 

58 

105 

148 

194 

2.2315×10 

1.9638×10–1 

45.8509 

89.9624 

137.9354 

177.9564 

2.2444×10 

2.3047×10–2 

56.5000 

102.4000 

144.5000 

190.7000 

Safari04 

2 

1.4387×10 

2.2675×10–15 

76 

142 

1.4387×10 

5.4502×10–5 

76.0000 

141.9000 

1.4387×10 

2.2674×10–15 

76 

142 

1.4384×10 

4.7229×10–3 

73.9177 

136.6354 

1.4386×10 

3.3076×10–4   

75.8000 

141.2000 

3 

1.8124×10 

5.2475×10–5 

62.9000  112.0000  

161.0000 

1.8124×10 

3.8681×10–4 

62.7000  111.7000  

161.0000 

1.8124×10 

9.7458×10-5 

62.5000 

111.9000 

161.0000 

1.8069×10 

5.4540×10–2 

60.7060 

102.1697 

149.8310 

1.8111×10 

8.2416×10–3 

63.5000 

111.4000 

160.3000 

4 

2.1453×10 

1.3760×10–3 

51.6000  

87.4000 

123.8000 

161.0000 

2.1421×10 

3.4449×10–2 

51.6000 

92.3000 

123.3000 

157.8000 

2.1453×10 

1.1111×10–3 

51.5000 

87.3000 

123.7000 

161.0000 

2.0807×10 

7.7656×10–1 

51.8837 

84.8792 

120.7795 

166.8326 

2.1407×10 

3.1659×10–2 

49.2000 

84.0000 

121.5000 

160.3000 

Hunter 

2 

1.4989×10 

0 

92 

179 

1.4989×10 

0 

92 

179 

1.4989×10 

1.1776×10–5 

91.9000  179.0000

1.4889×10 

9.5063×10–2 

85.8257 

165.4642 

1.4988×10 

1.0474×10–3 

91.5000 

178.7000 

3 

1.8923×10 

4.6933×10–4 

58.7000 

116.9000 

179.0000 

1.8922×10 

2.5452×10–3 

60.0000 

119.2000 

179.0000 

1.8923×10 

2.2693×10–15 

59 

117 

179 

1.8664×10 

2.7682×10–1 

56.7791 

119.5081 

180.1028 

1.8905×10 

1.1392×10–2 

59.7000  117.2000  

179.1000 

4 
2.2472×10 

2.9198×10–3 

2.2442×10 

2.4866×10–2 

41.3000 

85.4000 

131.8000 

179.5000 

2.2449×10 

6.6593×10–2 

47.3000 

92.8000 

137.5000 

183.1000 

2.2250×10 

1.3027×10–1 

53.3592 

104.8610 

150.0102 

192.8985 

2.2414×10 

2.9961×10–2 

42.3000 

90.8000 

133.2000 

180.0000 
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Table 8 Objective value and standard deviation by compared population-based methods on Kapur algorithm 

Image M–1 
Objective value (standard deviation) 

MABC ABC PSO CMA-ES EGA 

Avion 

5 

2.5320×101 
3.0374×10–4 

60.0000 
89.3000 

123.5000 
155.6000 
187.3000 

2.5221×101 
6.2487×10–2 

61.3000 
87.1000 

121.1000 
161.7000 
186.1000 

2.5320×101 
5.6043×10–4 

59.9000 
89.1000 

123.2000 
155.3000 
187.2000 

2.4698×101 
6.2887×10–1 

64.5832 
102.3949 
137.5997 
164.8053 
198.8899 

2.5206×101 
3.4271×10–2 

57.9000 
92.8000 
125.0000 
155.9000 
188.2000 

7 

3.1061×10 
6.7274×10–3 

43.6000 
66.9000 
90.1000 
116.3000 
141.7000 
167.6000 
192.3000 

3.0740×10 
1.1938×10–1 

47.6000 
63.8000 
95.5000 
114.7000 
147.4000 
173.8000 
198.8000 

3.1057×10 
9.4536×10–3 

44.0000 
67.2000 
91.3000 
118.1000 
144.4000 
169.9000 
193.5000 

3.0458×10 
3.5232×10–1 

39.3285 
63.7742 
89.9932 
116.6315 
142.9119 
169.8573 
200.1482 

3.0737×10 
1.2871×10–1 

45.5000 
70.9000 
96.6000 
118.9000 
144.3000 
166.8000 
190.6000 

9 

3.6244×10 
2.4223×10–2 

42.2000 
64.4000 
85.5000 

106.2000 
127.3000 
147.9000 
167.7000 
186.5000 
204.9000 

3.5535×10 
2.1094×10–1 

44.4000 
57.1000 
75.4000 
98.1000 
117.8000 
134.9000 
153.2000 
183.3000 
203.8000 

3.6257×10 
1.8195×10–2 

41.8000 
63.8000 
85.6000 

105.5000 
125.9000 
146.1000 
166.2000 
186.0000 
204.6000 

3.4846×10 
9.0016×10–1 

40.3983 
64.6187 
91.3059 
108.8207 
125.8186 
148.9948 
169.2357 
189.5198 
207.7511 

3.5698×10 
1.8886×10–1 

42.1000 
63.9000 
84.3000 
100.6000 
123.5000 
142.4000 
161.4000 
181.5000 
202.8000 

House 

5 

2.5443×10 
1.3814×10–3 

55.4000 
89.0000 

122.1000 
154.7000 
189.4000 

2.5396×10 
2.1435×10–2 

57.5000 
87.7000 
117.7000 
165.3000 
177.7000 

2.5440×10 
8.7192×10–3 

55.0000 
88.3000 

121.3000 
154.4000 
189.4000 

2.4888×10 
7.4379×10–1 

56.5953 
89.8251 
131.6330 
160.5719 
195.8798 

2.5350×10 
2.6642×10–2 

56.0000 
90.4000 
121.1000 
154.9000 
189.7000 

7 

3.1207×10 
1.1586×10-2 

47.8000 
75.7000 

103.7000 
131.5000 
158.8000 
184.5000 
206.4000 

3.0864×10 
1.2958×10–1 

43.0000 
66.0000 
88.7000 

121.6000 
155.9000 
158.8000 
200.9000 

3.1200×10 
1.5622×10–2 

44.7000 
71.8000 
99.1000 

126.3000 
153.5000 
181.0000 
204.8000 

3.0399×10 
6.6363×10–1 

34.5695 
60.0280 
86.2298 
114.9345 
145.4023 
175.8786 
205.5610 

3.0914×10 
6.9148×10–2 

43.7000 
68.2000 
96.5000 
123.6000 
149.6000 
176.1000 
202.4000 

9 

3.6579×10 
1.3848×10–2 

36.9000 
57.8000 
79.2000 

100.2000 
121.8000 
143.9000 
166.2000 
188.4000 
208.1000 

3.5752×10 
1.5598×10–1 

39.6000 
62.0000 
88.9000 
113.9000 
132.1000 
148.1000 
177.8000 
191.5000 
210.9000 

3.6587×10 
9.4458×10–3 

37.0000 
57.6000 
78.8000 

100.3000 
121.7000 
143.6000 
165.9000 
188.1000 
208.0000 

3.4492×10 
1.4665 

32.5149 
58.6964 
82.0648 
103.7049 
130.1625 
151.2134 
170.4859 
187.9515 

213 

3.5792×10 
1.6954×10–1 

35.8000 
61.1000 
81.2000 
10.2000 
121.9000 
141.4000 
165.3000 
186.3000 
205.6000 
to be continued 
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continued 

Image M–1 
Objective value (standard deviation) 

MABC ABC PSO CMA-ES EGA 

Lena 

5 

2.4958×10 
1.0276×10–4 

63.2000 
94.2000 

128.0000 
163.0000 
194.0000 

2.4891×10 
3.9236×10–2 

62.7000 
92.0000 

124.2000 
159.9000 
191.6000 

2.4958×10 
4.9381×10–4 

62.9000 
94.0000 

127.7000 
162.8000 
194.0000 

2.4445×10 
6.2124×10–1 

62.8437 
104.2379 
138.3126 
166.6784 
200.1172 

2.4825×10 
5.9339×10–2 

62.6000 
96.0000 
127.8000 
159.8000 
191.8000 

7 

3.0525×10 
1.4092×10–2 

61.1000 
88.0000 
113.2000 
137.7000 
161.7000 
184.4000 
207.6000 

3.0192×10 
1.3635×10–1 

68.1000 
82.0000 

122.2000 
134.9000 
159.8000 
183.2000 
199.3000 

3.0523×10 
1.5635×10–2 

60.5000 
86.1000 
110.7000 
134.8000 
159.3000 
181.3000 
204.4000 

3.0014×10 
1.7392×10–1 

55.8296 
76.1711 

100.9903 
124.6230 
155.3930 
185.0724 
208.8168 

3.0269×10 
1.0835×10–1 

61.0000 
84.8000 
106.0000 
127.6000 
150.3000 
178.9000 
204.1000 

9 

3.5610×10 
6.5984×10–2 

54.6000 
74.5000 
94.7000 
115.8000 
136.7000 
157.7000 
177.2000 
197.0000 
216.7000 

3.5010×10 
1.1778×10–1 

48.3000 
72.4000 
93.3000 
111.5000 
136.3000 
156.6000 
179.0000 
201.4000 
212.9000 

3.5593×10 
6.1620×10–2 

53.8000 
73.4000 
93.0000 
113.9000 
134.2000 
154.8000 
174.9000 
195.3000 
216.1000 

3.4753×10 
5.4634×10–1 

54.6064 
77.0530 
10.5115 

122.6892 
146.5324 
166.3013 
185.4754 
203.6046 
218.7176 

3.5098×10 
1.1050×10–1 

52.9000 
73.0000 
92.9000 
112.8000 
134.1000 
152.5000 
172.5000 
193.8000 
213.5000 

Peppers 

5 

2.5772×10 
4.5351×10–15 

42 
77 
114 
154 
195 

2.5688×10 
6.4304×10–2 

40.1000 
76.1000 
115.4000 
152.7000 
193.1000 

2.5771×10 
3.3908×10–3 

41.8000 
76.7000 
113.3000 
153.6000 
195.0000 

2.5437×10 
3.1946×10–1 

40.5265 
71.0672 
10.6263 
136.5532 
177.9534 

2.5681×10 
3.6330×10–2 

42.1000 
75.3000 
111.8000 
151.5000 
189.9000 

7 

3.1805×10 
1.8739×10–3 

28.9000 
53.1000 
78.9000 

106.6000 
136.6000 
166.0000 
196.0000 

3.1367×10 
8.5931×10–2 

33.6000 
61.9000 
92.3000 
119.3000 
145.6000 
175.2000 
198.8000 

3.1798×10 
2.7512–2 

28.9000 
53.2000 
79.3000  
107.6000 
137.9000 
166.7000 
196.2000 

3.1249×10 
5.1110×10–1 

32.2749 
63.7187 
88.3016 
116.1936 
140.5088 
168.7356 
193.8358 

3.1486×10 
1.1696×10–1 

32.8000 
59.1000 
87.8000 
113.5000 
139.2000 
167.6000 
196.3000 

9 

3.7063×10 
8.7697×10–3 

27.5000 
49.4000 
71.3000 
91.7000 
112.5000 
134.3000 
155.9000 
176.9000 
198.6000 

3.6283×10 
2.1931×10–1 

27.9000 
50.6000 
71.9000 
88.0000 
117.1000 
139.2000 
158.1000 
179.0000 
193.4000 

3.7062×10 
8.9762×10–3 

27.4000 
49.1000 
70.6000 
91.7000 
113.2000 
135.0000 
156.1000 
177.2000 
199.0000 

3.5389×10 
6.5672×10–1 

28.9289 
49.4507 
73.2390 
93.4893 
117.1072 
143.7611 
170.0757 
189.4210 
208.8491 

3.6501×10 
1.1960×10–1 

23.9000 
48.2000 
69.8000 
90.6000 
111.2000 
135.5000 
155.3000  
178.3000 
200.5000 

to be continued 
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continued 

Image M–1 
Objective value (standard deviation) 

MABC ABC PSO CMA-ES EGA 

Safari04 

5 

2.4425×10 
8.8404×10-4 

44.4000 
73.5000 

103.1000 
132.2000 
161.8000 

2.4278×10 
4.9409×10-2 

42.7000 
67.9000 

100.7000 
129.2000 
155.7000 

2.4421×10 
1.2716×10-2 

43.5000 
72.1000 

102.2000 
131.6000 
161.9000 

2.3760×10 
5.4677×10-1 

46.2046 
78.7147 
112.6111 
143.8856 
165.4592 

2.4264×10 
4.6987×10-2 

49.7000 
77.0000 
106.3000 
133.0000 
161.6000 

7 
2.9744×10 

3.5518×10–2 

2.9323×10 
1.6447×10-1 

37.2000 
54.8000 
82.1000 

106.6000 
120.4000 
151.7000 
169.2000 

2.9775×10 
4.2420×10-3 

35.6000 
55.8000 
76.5000 
97.7000 
119.0000 
140.2000 
162.0000 

2.8735×10 
8.4573×10-1 

44.2517 
69.5757 
86.8598 
111.3488 
132.8446 
155.3272 
178.8638 

2.9431×10 
9.8657×10-2 

36.8000 
58.1000 
77.1000 
97.6000 
119.1000 
139.5000 
161.0000 

9 

3.4530×10 
2.2465×10-2 

33.1000 
51.4000 
69.6000 
87.3000 

105.9000 
124.0000 
142.3000 
161.0000 
175.9000 

3.3853×10 
2.5449×10-1 

31.9000 
49.2000 
64.3000 
80.3000 
97.5000 

121.9000 
140.0000 
156.2000 
172.7000 

3.4540×10 
2.8748×10-2 

31.8000 
49.5000 
67.6000 
85.9000 

104.3000 
122.8000 
142.0000  
161.0000 
176.0000 

3.3090×10 
8.5686×10-1 

26.5241 
45.7286 
62.2029 
80.8269 
10.0816 
118.5414 
140.4589 
157.1801 
176.4394 

3.3969×10 
1.6485×10-1 

28.6000 
46.3000 
63.7000 
82.6000 
100.1000 
119.6000 
138.0000  
155.7000 
172.2000 

Hunter 

5 

2.5753×10 
4.7560×10-4 

45.6000 
90.1000 

133.3000 
179.0000 
221.8000 

2.5648×10 
4.1053×10-2 

45.8000 
82.3000 

127.5000 
169.4000 
211.9000 

2.5752×10 
4.7229×10-3 

45.5000 
89.8000 

132.6000 
178.9000 
222.0000 

2.5336×10 
3.0699×10-1 

49.9880 
88.7777 
128.8345 
171.0519 
206.6578 

2.5620×10 
3.2818×10-2 

38.0000 
83.4000 
125.0000 
166.8000 
208.1000 

7 

3.2041×10 
1.5440×10-2 

34.0000 
68.8000 

103.4000 
138.4000 
174.1000 
198.5000 
226.6000 

3.1816×10 
6.7630×10-2 

28.9000 
57.5000 
93.1000 

122.9000 
154.5000 
184.5000 
223.7000 

3.2028×10 
2.3392×10-2 

32.2000 
65.5000   
99.1000 

133.2000 
166.8000 
193.3000 
225.0000 

3.1281×10 
6.1339×10-1 

32.9020 
65.1084 
95.6527 
127.4247 
154.6755 
188.5151 
220.7071 

3.1717×10 
7.8053×10-2 

30.1000 
64.3000 
95.2000 
130.0000 
160.0000 
190.9000 
224.0000 

9 

3.7800×10 
2.8796×10-2 

23.2000 
48.3000 
73.6000 
98.9000 

124.1000 
149.5000 
175.6000 
199.6000 
226.5000 

3.7186×10 
1.6618×10-1 

23.6000 
47.2000 
73.6000 

100.9000 
130.6000 
158.6000 
183.2000 
205.6000 
227.4000 

3.7813×10 
1.0068×10-2 

22.6000 
47.9000 
73.6000 
99.2000 

124.2000 
149.8000 
175.3000 
199.6000 
227.0000 

3.6777×10 
6.3294×10-1 

28.3305 
51.6743 
74.6889 
100.4492 
124.5811 
155.0974 
179.1257 
201.2723 
228.0872 

3.7191×10 
1.4968×10-1 

24.4000 
48.7000 
73.4000 
99.6000 
126.3000 
144.4000 
171.9000 
198.9000 
224.0000  
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promising region with high fitness, while enhance 
information sharing between excellent bees to 
improve the exploration when the individual finds 
difficulties during exploitation. 

Finally, the MABC algorithm is applied in the 
real-world image segmentation problems. The 
correlative results obtained by MABC-based 
method on each image indicate a significant 
improvement compared to several other popular 
population-based methods. As an effective 
population-based method, the MABC algorithm can 
be incorporated to other popular threshold 
segmentation methods based on optimizing the 
fitness function. 
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中文导读 
 

增强性人工蜂群算法及在多阀值图像分割中的应用 
 
摘要：提出了一种改进的人工蜂群算法来处理图像分割问题，具体采用一系列群体优化觅食策略来平

衡开发和探测寻优模式。该算法的主要思想是将局部搜索策略和基于多维粒子群方程的复杂学习策略

相结合，可丰富人工蜂群觅食行为模式。通过全局学习，蜂群把全局最优信息整合到搜索方程中以提

高探测搜索能力，同时局部搜索使蜂群能更深层探索优势区域，最终取得开发和探索平衡。通过比较

该改进蜂群算法和进化算法、群智能算法在一系列基准函数上的实验结果，表明本文所提出的算法的

有效性。将改进蜂群算法应用于处理图像分割问题，实验结果也证明了该算法的有效性 
 

关键词：人工蜂群算法；局部搜索；群体智能；图像分割 

 

 
 
 
 
 


