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Abstract: Collapse shape of tunnel floor in Hoek-Brown rock media is investigated with the functional catastrophe theory. The 
stability of rock system in tunnel floor, which is determined by thickness, half collapse width, half length of cave and detaching curve, 
has great secure and economic significance in practical engineering. To investigate the failure mechanisms and the outline of 
detaching block, a reliable damage model is presumed by making reference to the limit analysis theory. The analytical solutions of 
detaching curve, half collapse width on tunnel floor and the critical and maximum values of collapse thickness are derived based on 
Hoek-Brown criterion and functional catastrophe theory. The result shows that 0.5 is a most probable condition for instability, and 
the shape of detaching curve is a part of parabola. It is reasonable by comparing with previous theory and analogous experiments. 
The effects of major factors on thickness and half collapse width are further discussed. Numerical calculations and parametric 
analysis are carried out to illustrate the effects of different parameters on the mechanism, which is significant to the stability analysis 
of tunnel floor in rock media. 
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1 Introduction 
 

The stability analysis of tunnel floor is an important 
topic, and has been investigated by several scholars. The 
development and utilization of underground space, 
including metros, underwater tunnels, underground 
caverns and mines, have led to a further study of 
geotechnical engineering. There are many new leading 
sciences derived from practical engineering along with 
the in-depth research. Although there have been many 
theoretical and practical explorations, underground 
engineering always suffers from a lot of problems. In fact, 
numerous damages caused by rockburst, water inrush 
and karst have been a serious problem to the quality of 
construction and the safety of people. The frequency and 
the level of rock stratum instability, including tunnel roof 
or floor collapse and water inrush have showed a 
growing tendency. 

The strength envelops are nonlinear in the normal 
and shear stress space. The instability of rock system has 
been investigated by many scholars, while it still remains 
an hard issue in theoretical study and engineering 
practice due to the characteristics of sudden and 
complexity. The embryonic stage of sudden instability 
study is quasi-static, therefore the strength theory is 
adopted by scholars to analyze the stability and safety 

thickness of rock system. Actually, the occurrence of 
collapse or instability is dynamic, and the entire process 
will release a great deal of elastic energy gathered in the 
rock system. It is a kind of complex behavior under 
highly nonlinear state. 

In general, on the basis of results obtained by 
GUGLIELMETTI et al [1], the collapse of tunnel can be 
categorized in terms of factors as follows: daylight 
collapse, underground collapse, rock burst, inrush of 
water, and portal collapse. The methods and theories 
employed in all kinds of issues are diverse. The 
traditional way to ensure enough safety usually depends 
on the analogies of engineering experience. This method 
is convenient but the value of thickness might be 
over-conservative. Besides, some crucial factors also 
may not be considered, such as rock type, quality of rock 
system, etc. This method is only applicable to the 
preliminary estimate. Therefore, in view of those 
problems, some other theories and methods have been 
adopted by researchers, and lots of achievements are 
gained. PESENDORFER and LOEW [2] obtained the 
change rule of transient pressure from deep tunnel in 
fracture and karstified limestones according to 
experimental observations. YAN et al [3] conducted 
some further researches and obtained the influence of 
vibration. JIANG et al [4] analyzed the stability of 
subgrade cave roofs in karst region with catastrophe  
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theory and obtained the relevant function formulas. But 
these methods are not based on the strict stress-strain 
relation of geomaterials. 

This work proposes a tangent method for nonlinear 
failure criterion, and makes deep studies in tunnel side 
slope and foundation. The limit analysis method has a 
wide range of applications in geotechnical engineering. 
Based on the several established models, FRALDI and 
GUARRACINO [5, 6] analyzed and calculated upper 
bound solutions of collapse press at tunnel roof and 
tunnel face in detail. Functional catastrophe theory is 
employed in this study to explain catastrophic failure, 
and it has unique advantages in solving complicated 
problems. 
 
2 Summary of catastrophe theory 
 
2.1 Elementary catastrophe theory 

This kind of theory is put forward, and developed 
some researchers. The aim of catastrophe theory is to 
study discontinue change phenomenon in nature world. 
Usually, the sudden changes result from a slow, smooth, 
and small change under several control variables. The 
implicit function theorem, Morse lemma, and Thorn 
splitting lemma are the fundamental of catastrophe 
theory [7, 8]. 

According to the current theoretical research, there 
has been seven kinds of catastrophe type [9]. As is shown 
in Table 1, the main purpose of the analysis with 
catastrophe theory is to establish the total potential 
energy equation of the whole system. Fold and cusp 
catastrophe models are relatively simpler than others, 
and they are most widely used to determine the bearing 
capacity of rock-socked piles or the safety thickness of 
rock system. The total potential function is set up, which 
is closely related to the state variable and the control 
variable. Then, the derivative and second order 
derivative of potential function are acquired. Finally, the 
equilibrium surface and bifurcation set equations are 
obtained. By solving the above functions and according 
to relevant chart analysis, the necessary and sufficient 
conditions of studied system are available when 

instability happens. 
Compared with traditional research method, 

engineering analogy and calculation method belong to 
half theoretical and semi-empirical structural mechanical 
analysis methods, and they are affected by many factors. 
But catastrophe theory can explain the discontinuous 
phenomena, and it considers this kind of problem from 
another new perspective. 
 
2.2 Functional catastrophe theory 

DU [10] suggested that functional variational theory 
and catastrophe theory could be linked to a certain extent, 
and the relevant formula had been deduced based on 
Thom splitting lemma. Functional catastrophe theory is 
considered to be an advanced catastrophe theory, and it is 
applied to economic field at first. 

The total potential function of studied system 
should be expressed as a definite integral, which is 
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where   3

1 2[ , ],f x C x x and f(x) is the function of 
detaching curve of studied system. By designating the 
first derivative of J[y] to zero and integrating by parts, 
the first variation is obtained as 
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The Euler equation does not meet the variation 

condition of potential function. According to the 
functional catastrophe theory, another control condition 
is derived by designating the second derivation of J[y] to 
zero and integrating by parts: 
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Equations (2) and (3) are the necessary and 

sufficient conditions of functional catastrophe theory. 
The challenge is to deduce the total potential function 
with finite integral, and then get the function of 

    , ,F x f x f x . Functional catastrophe theory firmly 

 
Table 1 Overview of elementary catastrophe theory   

Name Dimension of control variable Dimension of state variable Standard form of potential function 

Fold 1 1 3 / 3x ax  

Cusp 1 1 4 2/ 4 / 2x ax bx   

Swallowtail 3 1 5 3 2/ 5 / 3 / 2x ax bx cx    

Butterfly 4 1 6 4 2/ 6 / 4 / 3 / 2x ax cx bx dx     

Elliptic umbilic 3 2 3 2 2 2 2( )x xy c x y ax bx      

Hyperbolic umbilic 3 2 3 3 2x y cxy ax bx     

Parabolic umbilic 4 2 4 2 2 2x x y cx dy ax by      
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explains the discontinuity of system variation. The next 
step is to obtain the expression of f(x). However, there 
still exist unknown values in f(x), so the boundary 
conditions and geometric conditions of cross section 
could help to deduce the final analysis formula. 
 
3 Stability analysis of tunnel floor in karst 

area 
 

Karst is one of the most common tunnel hazards in 
tunnel engineering. According to the engineering projects 
and the results of ZHANG et al [11], it is known that 
karst caves usually lie in layered limestone areas. The 
system, as shown in Fig. 1, is composed by tunnel floor 
and karst cave roof. It has great important effects on the 
tunnel waterproof and load-bearing. The rock system has 
a certain safety thickness in tunnel engineering. 
 

 
Fig. 1 Geometric boundary of tunnel with underlying cave 

 
3.1 Upper bound theorem 

CHEN [12] had introduced limit analysis method in 
detail which includes upper bound analysis and lower 
bound analysis. The upper bound theorem states that 
when the velocity boundary condition is satisfied, the 
load derived by equating the external rate of work to the 
rate of the energy dissipation in any kinematically 
admissible velocity field is greater than or equal to actual 
collapse load, which is written as follows: 

 

 d d dij i i i iv S v
D V T v S F v V                    (4) 

 
where ( )ijD   indicates the internal energy dissipation 
rate of plastic strain; Ti and Fi are external forces; Ti is 
the surcharge load on the boundary while Fi is the body 
force; vi is the velocity along the velocity discontinuity 
surface; S and V are the surface area and the volume of 
studied system respectively. The studied system can 
remain stable when Eq. (4) is satisfied. The critical state 
is reached when each side of Eq. (4) is equal and it is the 
calculation basis of this method. 

In addition, the theorem requires the following three 

basic assumptions: The material is perfectly plastic 
material, geometric deformation of failure mechanism is 
slight which can be ignored, and the associated flow rule 
is used to calculate the energy dissipation along the 
failure surface [13, 14]. 

In order to analyze the safety thickness of the 
studied system on the basis of the functional catastrophe 
theory and for the sake of simplicity, the influence of 
gravity is considered while the effect of tectonic stress is 
ignored. This treatment is keeping the same with 
previous research methods. 
 
3.2 Hoek-Brown nonlinear failure criterion 

Considering the nonlinear characteristics of rock 
materials, the nonlinear failure criterion is widely 
recognized by scholars, since the H-B yield criterion was 
proposed in 1980. Over the decades, it has been proven 
feasible in practical engineering and it also has been 
deeply investigated in different geotechnical conditions. 
The purpose of this work is aimed at the critical safety 
thickness of tunnel floor which is needed to keep stability. 
The karst cave usually occurs in relative stable rock layer. 
Hence, the H-B criterion is appropriate to analyze the 
studied system. 

Hoek-Brown failure criterion has two forms of 
expression, which are represented by major and minor 
principal stresses, and represented by normal and shear 
stresses, respectively. Due to the fact that the normal 
stress and shear stress parameters of the element are 
needed for the calculation of internal energy dissipation, 
the Hoek-Brown failure criterion is expressed as follows: 
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where τn and σn are the normal stress and the shear stress, 
respectively. Parameters A and B are dimensionless 
material constants which could be obtained by triaxial 
tests. Especially when B=1.0, H-B criterion will 
degenerate into M-C linear yield criterion. σci is the 
uniaxial compressive strength of the intact rock, and σtm 
is the tensile strength of the rock mass (σtm>0). The 
values of σci and σtm can be determined by following 
formulas: 
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where mi is a parameter which can reflect the softness 
and hardness degree of the rock. IGS is geological 
strength index and D is disturbance parameter of 
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jointed rock. 
Through the upper bound analysis with the Hoek- 

Brown criterion, FRALDI and GUARRACINO [15] had 
already built several appropriate mechanical models and 
analyzed the shape of collapsed body both in deep tunnel 
and shallow tunnel. The analysis of functional 
catastrophe theory takes them as references. The obvious 
advantage is that the analytical expression of detach 
curve f(x) could be deduced by upper limit theorem and 
the analytical mathematical method without assuming f(x) 
in advance. But there is a crucial difference compared 
with the previous model. The velocity v is replaced by 
displacement u, because the target of functional 
catastrophe theory is total potential while upper bound 
theorem is at total dissipation. 
 
3.3 Functional catastrophe analysis of studied system 

As shown in Fig. 2, the geometric model of studied 
system is established according to analogous research 
model [16]. L1 is the half collapse width in tunnel floor, 
L2 is the half length of karst cave, and H is the critical 
safety thickness which is necessary to sustain stability. w 
is thickness of the plastic detaching zone when the rock 
system is destroyed. H-B criterion and the model show 
that there will form a symmetrical curve f(x) when the 
broken occurred with displacement w. In order to 
simplify the calculation, half of the failure pattern is 
taken into consideration and a local coordinate system on 
detach curve f(x) is established. Then, some algebraic 
equations can be deduced on the basis of geometrical 
relationship: 
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                          (7) 

 
The total potential includes the strain energy and the 

 

 
Fig. 2 Failure pattern of rock system with critical thickness 

work of each force. In consideration of the geometrical 
perspective, the plastic potential function and 
corresponding normal and tangential plastic strain 
components are obtained as follows: 
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(8)  
where λ is a scalar parameter which is greater than zero. 

The function of normal stress at any point on the 
curve f(x) could be deduced through eliminating λ and w:  
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Then, the function of strain energy on curve f(x) is 
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where ρ is the density of rock system and q is the 
external load applied on tunnel floor. The works of 
gravity and external load are as follows:  
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From the above, the total potential function of 

studied system results  
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where  2d 1 ds f x x   is the elementary length of 
the detaching curve f(x). 

According to the functional catastrophe theory, the 
standard form of total potential function can be obtained 
by ignoring the constant terms which are irrelevant to 
catastrophe:  
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By comparing Eq. (1) and Eq. (13), the objective 
function which includes detaching curve f(x) is obtained: 
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The next critical step is to solve the explicit 

expression of detaching curve f(x) by using boundary 
conditions and the critical conditions of functional 
catastrophe theory. Following functions can be obtained 
by substituting Eq. (14) into necessary and sufficient 
conditions (Eq. (2) and Eq. (3)): 
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Equation (15) is a linear homogeneous second-order 

differential equation with constant coefficients. The 
detaching curve f(x) is obtained by integrating it: 
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where c1 and c2 are integration constants, which can be 
determined by boundary conditions. Substituting Eq. (17) 
into Eq. (16) yields 
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Equation (18) is one of the second order 

catastrophic conditions, and it should be satisfied for any 
value of x. Therefore, the value of B only has to be 0.5. 

In order to make sure the shape of failure rock, it is 
necessary to evaluate c1 and c2. After the tunnel 
excavation, the stress of tunnel floor will be redistributed. 
So, the shear stress should be equal to zero when x=L1. 
The functions of shear stress are written as 

 

 
 

 
 

n

2

2 2

1
sin 2 cos 2

2

1 2
cos 2 ,  sin 2

1 1

xy

f x f x

f x f x

    

 

  

    
   

        (19) 

 
Then, the expression of c1 is obtained by 

designating 1( , 0)xy x L y   to zero: 
 

1 1c L                                    (20) 
 

According to the geometrical relationships 
illustrated in the Fig. 2, following formulas should be 
satisfied: 
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By substituting Eq. (17) into Eq. (21), following 

equation is derived: 
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By substituting Eq. (20), Eq. (22), and the value of 

B into Eq. (17), the explicit function of detaching curve 
f(x) is obtained: 
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On the basis of upper bound theorem and the 

boundary condition, there are 
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By substituting Eq. (24) into Eq. (25), there is 
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There are three unknowns which are more than the 
number of control conditions. The mutual influences can 
not be derived directly because of the lack of control 
requirement. Therefore, in this failure model, the lower 
boundary of collapsed block is exactly the range of karst 
cave. The safety thickness H and the half collapse width 
in tunnel floor L1 are available by solving these two 
simultaneous equations Eq. (23) and Eq. (26). 

When the actual thickness of rock system is thinner 
than H, L1 will increase and the length of f(x) will 
decrease. Through relevant calculation and analysis, it 
can be known that the work of internal energy is less 
than the work of external forces, in other words, the 
studied system cannot keep stable. On the contrary, if the 
requirement of Eq. (4) is satisfied when the actual 
thickness is greater than the theoretical value, this means 
that the rock system can remain stable in this failure 
mode. Therefore, the value of H determined by Eq. (23) 
and Eq. (26) is the critical thickness to sustain the system 
stability. 
 
3.4 Maximum of critical thickness 

The upper collapse width gradually decreases with 
the increase of thickness. When L1 reaches its minimum 
(L1=0), the load on tunnel floor has no effect on 
collapsed block, and the failure mode is shown in Fig. 3.  
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Fig. 3 Failure pattern of rock system with maximum thickness 
 
In this case, Hcr is the maximum of critical thickness to 
keep system stable, and it is also the minimum thickness 
to make tunnel and karst cave independent. The number 
of unknowns is equal to the number of control conditions, 
so the lower length of collapsed block could be derived 
directly. The total potential function of studied system 
results  
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where Lcr is half lower length of collapsed block, and Hcr 
is maximum thickness of studied system. After similar 
analysis and calculation, it can be known that the 
expression of f(x) remains the same. The explicit forms 
of Hcr and Lcr are obtained as  

cr tm ci

tm
cr

3

3

A
L

H

 









 

                         (28) 

 
When the instability occurs, the collapse region 

would not extend to tunnel floor under this situation. The 
tunnel and karst cave are uncorrelated in theory, and the 
tunnel floor is in a special state. The change of tunnel 
parameters will not affect the shape or the thickness of 
studied system. 

Meanwhile, there is still an implicit that the half 
length of karst cave L2 must be greater than or equal to 
Lcr. 
 
4 Comparison and analysis 
 
4.1 Value of parameter B 

Strength function, defined by Eq. (5), is associated 
with Mohr envelope theory. In particular, a similar 

formula could be derived with using Mohr envelope. The 
relevant parameters have new significance. A is the scale 
parameter controlling the magnitude of shear strength. 
σtm/σci is the shift parameter that controlling the location 
of the envelope on the σ axis. B is the control parameter 
of curvature of the envelope. 

The restricted condition of B is 0<B≤1. But it can be 
drawn from the Mohr envelop that the radius curvature 
of τn is less than radius of the tangential Mohr circle [17] 
when B<0.5. Therefore, B should be greater than 0.5. 

When B is equal to 1, the H-B criterion will 
degenerate to the linear M-C criterion. When B is equal 
to 0.5, this relation is exactly a generalization of 
Griffith’s yield criterion [18], which is suitable for rock 
instability. That is to say, B=0.5 is one of most probable 
catastrophic failures combined with the consequence of 
functional catastrophe theory. 
 
4.2 Shape of detaching curve f(x)  

The outline of detaching zone is determined by the 
explicit function of detaching curve f(x). It can be known 
from Eq. (24) that the boundary curve of detaching zone 
is a part of parabola. LI [19] had conducted a series 
experiments to study the deep tunnel collapse 
characteristics with a plane strain model test device, 
while the literatures [20−23] had researched the shape 
and dimensions of collapsed block in tunnel with the 
help of analytical approaches numerical simulations. 

Although their studies are aimed at the vault of 
tunnel, the geological conditions and instability model 
are similar to those in this work. Hence, it can be used 
for comparison and get some illustrations. The nonlinear 
fitted curves of detaching zone are y=1.224x1.976 and 
y=2.15(x−0.94)1.93. According to the above results, the 
shape of detaching curve is an approximate parabola, 
which is consistent with the analytical result (i.e.,     
Eq. (24)) in this work. 
 
5 Discussion of analytical results 
 

The factors discussed in this work include safety 
thickness H and the half collapse width of tunnel floor L1. 
From the above analysis, the relationships between each 
parameter are available through solving simultaneous 
equations Eq. (23) and Eq. (26). Preliminary inference 
can be deduced that, based on the H-B criterion and 
functional catastrophe theory, the critical thickness of 
rock system is mainly influenced by compressive 
strength σci, tensile strength σtm, the external load on 
tunnel floor q, the density of rock system ρ and 
dimensionless parameter A. 

In order to investigate the effects of single 
parameter in karst area, several different data are set, and 
the values of H and L1 are calculated. As given in the 
Table 2, L2 is selected as independent variable. 
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Table 2 Calculating results of safety thickness under different L2 

L2/m σci/MPa σtm/MPa ρ/(kN·m−3) A q/kPa L1/m H/m 

2 40 σci/25 25 0.2 300 0.68 0.27 

2.5 40 σci/25 25 0.2 300 0.83 0.44 

3 40 σci/25 25 0.2 300 0.98 0.64 

3.5 40 σci/25 25 0.2 300 1.11 0.89 

4 40 σci/25 25 0.2 300 1.23 1.20 

4.5 40 σci/25 25 0.2 300 1.32 1.58 

5 40 σci/25 25 0.2 300 1.40 2.03 

5.5 40 σci/25 25 0.2 300 1.44 2.58 

6 40 σci/25 25 0.2 300 1.46 3.22 

6.5 40 σci/25 25 0.2 300 1.43 4.02 

7 40 σci/25 25 0.2 300 1.40 4.99 

 

The selection of relevant parameters in Table 2 is 
based on experiments and engineering data. The results 
show that the value of safety thickness increases with the 
half length of cave span L2. The functional catastrophe 
theory researches one of the most probable failure 
situations with total potential. With value of L2 
increasing, the effected width in tunnel floor extends. 
But it shrinks rather than keeping growing when a certain 
threshold is reached. And it will incline to a constant 
which is the most dangerous region in tunnel floor when 
the instability happens. Therefore, it is necessary to 
consolidate this area with appropriate methods in case of 
the catastrophic failure. 

The rock stratum between tunnel and cave is 
detaching block. The outline of block is primarily 
determined by L1, H and the shape of detaching curve. 
The detaching curve f(x) is a part of parabola according 
to previous analysis. Figure 4 shows the relationship 
between dimensionless parameter A and half collapse 
width L1. Firstly, supposing that the span of tunnel is 
middle (about 8 m), Fig. 4(a) simulates the situation of 
underlying karst cave with small span (L2=3 m) while 
Fig. 4(b) simulates a cave with large span (L2=6 m). 
Other values of relevant parameters are as follows: 
q=300 kPa, ρ=27.5 kN/m3, σtm=σci/20, σci=30 MPa and 
σci=50 MPa. The results indicate that the value of L1 will 
increase with the increase of A. But the growth rate 
gradually becomes slower, and it finally approaches to a 
constant.  The variation trends are the same with respect 
to the two different situations of tunnel and cave. Besides, 
it also can be seen from Fig. 4 that the change of L1 
affected by A is not great. 

Figure 5 shows the variation of H affected by 
parameter σci under different value of A, when σtm=σci/25, 
q=300 kPa, ρ=25 kN/m3 and L2=5 m. The bigger  

 
Fig. 4 Effects of parameter A on L1: (a) L2=3 m; (b) L2=6 m 

 
magnitude of σci means the better stability of rock 
stratum, so the safety thickness also decreases. And A is 
advantageous to the stability of rock system. 

Figure 6 indicates the change of L1 influenced by σci. 
Four different σtm groups are selected to analyze in detail, 
when A=0.2, q=300 kPa, ρ=25 kN/m3 and L2=5 m. It can 
be seen that both of them have considerable effects on L1. 
The value enlarges with the increasing of σtm/σci ratio or 
σci. In other words, the rock stratum is more compact and 
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Fig. 5 Effects of parameter σci on H 

 

 
Fig. 6 Effects of parameter σci on L1 

 
the detaching block will be larger, when the compressive 
strength and tensile strength are larger. 

Figures 7 and 8 respectively illustrate the variation 
of H and L1 with different values of q and ρ, when A=0.2, 
L2=5 m, σci=40 MPa and σtm=σci/25. Similar to previous 
researches, external load q is not conducive to the 
stability of tunnel, and safety thickness H increases with 
q. But on the contrary, the half collapse width L1 shrinks. 
As can be seen, the safety thickness H grows large with ρ, 
 

 
Fig. 7 Effects of parameter q on H 

 

 
Fig. 8 Effects of parameter q on L1 

 
but it shows the opposite trend in L1. Through the 
longitudinal observation and contrast, there is a 
preliminary conclusion that different values of ρ have a 
larger effect on H while it has less effect on L1. In order 
to make certain this rule, further calculation and 
comparison are necessary. 

Next, four groups of ρ are used for the further study 
of the half collapse width L1 under different L2. The 
result is shown in Fig. 9, when A=0.2, q=300 kPa, σci= 
40 MPa and σtm=σci/25. It can be found that the change 
rule of L1 along with L2 is the same as the data in Table 2. 
But the magnitude of L1 will not change with ρ when the 
span of karst cave is relatively small (L2<3 m). In other 
situations, although the affect area gradually decreases, 
the total variation generally maintains within a narrow 
range. That is to say, ρ is not a principal factor which 
influences the value of half collapse width L1. 
 

  
Fig. 9 Effects of parameter ρ on L1 

 
As illustrated in Eq. (28), the major factors 

influencing Lcr include ρ, A, σtm and σci, while the main 
factors affecting Hcr are σtm and ρ. Both of them have 
very concise expressions, and the general effect of each 
parameter can be concluded easily without using any 
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chart. Table 3 is adopted to investigate the effect and 
trend of different parameters. 

It can be seen from the Table 3 that all the relevant 
parameters have obvious effects on Lcr. Similarly, those 
parameters except A also have great influences on Hcr. 
 

Table 3 Calculation results of Lcr and Hcr 

σci/MPa σtm/MPa ρ/(kN·m−3) A Lcr/m Hcr/m

30 σci/50 25 0.2 5.88 7.2 

40 σci/50 25 0.2 7.84 9.6 

50 σci/50 25 0.2 9.80 12 

40 σci/20 25 0.2 12.39 24 

40 σci/60 25 0.2 7.16 8 

40 σci/100 25 0.2 5.54 4.8 

40 σci/50 25 0.1 3.92 9.6 

40 σci/50 25 0.3 11.76 9.6 

40 σci/50 25 0.5 19.60 9.6 

40 σci/50 17.5 0.2 11.20 13.71

40 σci/50 22.5 0.2 8.71 10.67

40 σci/50 27.5 0.2 7.13 8.72 

 
6 Conclusions 
 

1) According to the upper bound theorem, the 
outline of detaching block of tunnel floor with 
underlying cave is presumed. Then the total potential 
function of studied system is established based on the 
Hoek-Brown criterion. The explicit expressions of 
equations which determine the safety thickness H and 
detaching curve f(x) are obtained on the basis of the 
functional catastrophe theory and boundary conditions. 
The maximum safety thickness Hcr is obtained under the 
assumptions that tunnel and karst cave are independent, 
and the actual half length of cave L2 is greater than the 
theoretical solution Lcr. 

2) The shape of detaching block is bounded by 
safety thickness H, L2, half collapse width L1 and 
detaching curve f(x). The results are compared with 
experiment and numerical simulation, and it is convinced 
that the shape of f(x) is a part of parabola. 

3) The principal factors influencing H and L1 are as 
follows: compressive strength σci, tensile strength σtm, 
external load on tunnel floor q, the density of rock ρ and 
dimensionless parameter A. Further calculation and 
analysis are adopted in order to study the influence of 
single variable. The results show that σci, σtm and A are 
conducive to the stability of rock system while q and ρ 
have opposite effects instead. The value of half collapse 
width L1 increases with L2, A, σci and σtm. But the 

influence range of A is quite smaller than others. The 
value of L1 shows a trend of decrease with the increase in 
ρ. It has not obvious change when the span of cave is 
relatively small. 
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