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Abstract: The cloud storage service cannot be completely trusted because of the separation of data management and ownership, 
leading to the difficulty of data privacy protection. In order to protect the privacy of data on untrusted servers of cloud storage, a 
novel multi-authority access control scheme without a trustworthy central authority has been proposed based on CP-ABE for cloud 
storage systems, called non-centered multi-authority proxy re-encryption based on the cipher-text policy attribute-based encryption 
(NC-MACPABE). NC-MACPABE optimizes the weighted access structure (WAS) allowing different levels of operation on the same 
file in cloud storage system. The concept of identity dyeing is introduced to improve the users’ information privacy further. The 
re-encryption algorithm is improved in the scheme so that the data owner can revoke user’s access right in a more flexible way. The 
scheme is proved to be secure. And the experimental results also show that removing the central authority can resolve the existing 
performance bottleneck in the multi-authority architecture with a central authority, which significantly improves user experience 
when a large number of users apply for accesses to the cloud storage system at the same time. 
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1 Introduction 
 

Cloud computing technology is proposed to 
aggregate all the hardware and software resources such 
as computing, storage and other information in WAN and 
LAN to solve the requirements of large-scale computing 
and mass data processing [1]. Cloud storage focuses on 
integrating different types of storage devices together to 
provide a large-scale storage resource pool, which has 
become a cost-effective solution for many users with the 
demand of data storage [2]. 

At present, data security protection mechanisms 
provided by cloud storage systems are not strong enough 
to protect users’ data privacy or security [3−7]. 
Salesforce’s cloud service system was attacked in 2007, 
which made a lot of users’ private data leaked; in 2009, 
Microsoft, Amazon and some other companies’ cloud 
service systems all encountered major failures, resulting 
in tens of thousands of users’ stored data lost and 
information services affected; in 2010, two Google 
employees invaded into Gtalk, Google Voice and other 
Google’s systems, causing users’ data leaked; AWS’s 
user agreement in 2010 announced clearly that AWS 

could not guarantee the safety of users’ data; in 2011, the 
Chinese software develop net (CSDN) had more than 
600 million users’ data stolen and disclosed by hackers; 
in 2014, users’ private digital photos were leaked out 
from Apple’s iCloud. 

The separation of data management and ownership 
is the root of the security problem of cloud storage [5]. 
When a user uploads his data to a cloud storage system, 
he will lose the substantial control ability to his data, and 
be unable to make sure that the storage, processing and 
transmission of his data are protected effectively. Instead, 
the cloud storage service provider obtains the data’s 
substantial control power. Therefore, if there are internal 
staff derelictions, hacker attacks or system faults, the 
cloud storage service provider cannot provide sufficient 
evidences to assure that the user’s data are stored and 
processed correctly without being extracted and analyzed, 
or sold to others, and can be completely destroyed in 
accordance with user requirement, etc. 

According to the white paper released by the Cloud 
Security Alliance [8], the protection ability of data 
security in cloud storage system can be improved in two 
ways, the efficient encryption algorithms and the suitable 
access control mechanisms. Traditional encryption  
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methods have three defects [9], which makes them 
unsuitable for protecting data in cloud storage system 
directly. First, when the cloud storage system encrypts a 
user’s data, it must obtain the user’s public key. Second, 
the cloud storage system takes up extra system and 
network resources in the process of receiving each user's 
public key to encrypt information and sending ciphertext 
back to users. Third, the cloud storage service provider 
needs to get the list of users before providing services, 
while the identity information of users is difficult to 
obtain in one time under the distributed, large-scale 
cloud environment and user’s privacy can be violated 
easily by illegally applications. The traditional access 
control models are not suitable for cloud environment, 
either. The trusted third party is introduced to protect the 
safety and integrity of data and realize the fine-grained 
access control to data and the data security independent 
on the security of the underlying file system, especially 
for untrusted network environments [10]. Depot, a cloud 
storage system that minimizes trust assumptions is 
designed and implemented, which ensures that the 
updates observed by correct nodes are consistently 
ordered under Fork-Join-Causal (FJC) consistency, and 
implements protocols that use this consistent ordering of 
updates to provide other desirable consistency, staleness, 
durability, and recovery properties [11]. Venus, a service 
for securing user interaction with untrusted cloud storage 
is presented, which guarantees integrity and consistency 
for applications accessing a key-based object store 
service, without requiring trusted components or changes 
to the storage provider [12]. Venus completes all 
operations optimistically, guaranteeing data integrity. It 
then verifies operation consistency and notifies the 
application. Airavat, a MapReduce-based system is 
presented, which provides strong security and privacy 
guarantees for distributed computations on sensitive data, 
and is a novel integration of mandatory access control 
and differential privacy [13]. Data providers control the 
security policy for their sensitive data, including a 
mathematical bound on potential privacy violations. The 
federated identity management is combined together 
with the hierarchical identity-based cryptography (HIBC), 
not only the key distribution but also the mutual 
authentication can be simplified in the cloud [14]. The 
trusted third party audit institutions to the basic cloud 
computing model are introduced, identifiing the 
difficulties and potential security problems of direct 
extensions with fully dynamic data updates from prior 
works, an elegant verification scheme for seamless 
integration of these two salient features is constructed, 
and the proof of retrievability model by manipulating the 
classic Merkle hash tree (MHT) construction for block 
tag authentication to achieve efficient data dynamics was 
improved [15]. The privacy, an approach by which 

confidential data is stored in a highly distributed 
database, partly located on the center of cloud and partly 
on the clients is presented [16]. Data sharing is based on 
the simple grant-and-revoke permission of shared data 
and the row-level data encryption for fine-grained data 
access control. Existing schemes mostly focus on user 
data protection rather than personally identifiable 
information protection. An implicit data partitioning 
scheme based on confusion for user data protection is 
presented [17]. For identifiable information protection, a 
cloud storage architecture based on the trust server 
concept is also presented, which isolates the data storage 
and the personal information management. The cloud 
server decides whether customers have the right to store 
personal data according to the storage authentication 
code provided by the trust server. Storage of the 
customers’ identifiable information onto trust servers 
effectively protects the private information. A 
computable encryption scheme based on vector and 
matrix calculations (CESVMC) is proposed [18], which 
realizes the encryption of data, and supports fuzzy string 
search and basic arithmetic calculations (addition, 
subtraction, multiplication and division on encrypted 
data. 

In order to realize low-cost data privacy protection 
mechanism for cloud storage, we proposed NC- 
MACPABE, the non-centered multi-authority proxy 
re-encryption based on CP-ABE for cloud storage 
systems. NC-MACPABE optimizes the weighted access 
structure, makes different users have different 
permissions to access the same files, and introduces the 
concept of identity dyeing to improve the protection 
ability of data privacy. The proxy re-encryption 
algorithm is improved in the scheme so that the data 
owner can revoke user’s access right in a more flexible 
way. 
 
2 Related works 
 

SHAMIR [19] proposed an identity-based 
encryption (IBE), which enables any pair of users to 
communicate securely and to verify each other’s 
signatures without exchanging private or public keys, 
without keeping key directories, and without using the 
services of a third party. Soon after, BONEH et al [20] 
realized IBE for the first time. Fuzzy IBE was presented 
which can be applied to enable encryption using 
biometric inputs as identities [21]. The error-tolerance 
property of a fuzzy IBE scheme is precisely what allows 
for the use of biometric identities, which inherently will 
have some noise each time when they are sampled. On 
the basis of Fuzzy IBE [22]. A new cryptosystem for 
fine-grained sharing of encrypted data called key-policy 
attribute- based encryption (KP-ABE) is developed [23]. 
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In KP-ABE, ciphertexts are labeled with sets of attributes 
and private keys are associated with access structures 
that control which ciphertext a user is able to decrypt. A 
system for realizing complex access control on encrypted 
data called ciphertext-policy attribute-based encryption 
(CP- ABE) is presented, the encrypted data can be kept 
confidential even if the storage server is untrusted. 
Moreover, CP-ABE is secure against collusion attacks. 
Previous ABE systems use attributes to describe the 
encrypted data and build policies into user’s keys, while 
CP-ABE attributes are used to describe a user’s 
credentials, and a party encrypting data determines a 
policy for who can decrypt. Thus, CP-ABE is 
conceptually closer to traditional access control methods 
such as role-based access control (RBAC). 

Both KP-ABE and CP-ABE mechanisms can be 
applied to express more flexible access control policy. 
However, ABE-based mechanisms themselves have 
some important issues to be solved. First, the authority 
generates and distributes private keys for users, and 
user’s private key is only related to property, not related 
to user’s private information (such as user’s ID). If a 
private key is leaked out, it would be impossible to 
determine whether the authorized institution or the users 
should take the responsibility. Second, for users’ private 
keys are associated with their attributes, the dynamically 
revocations of users’ permissions will bring the huge 
overhead of system. In addition, since the encryption 
policy in CP-ABE is set by the data owner, complex 
strategies may make the public key system quite 
complex, limiting the flexibility of the access strategy. 

However, CP-ABE does not require the fully 
credibility of authority, which is more suitable for 
distributed, multi-tenants, not fully trustworthy cloud 
storage systems. But if the management of attributes is 
done by one single authority, the authority will be 
overloaded, which is easy to be the performance 
bottleneck of the whole system, and to face the risk of 
security. In multi-authority-based ABE, when a user 
applies for accessing a file, he/she needs to request the 
decryption key from each authority, which decides 
whether or not to grant the user the decryption key by 
verifying whether the user has the attributes to access the 
file. Multi-authority-based ABE divides the entire set of 
attributes into different attribute domains so that the 
security risks caused by the invasion into single authority 
can be shared by multiple authorities. 

The architecture of multi-authority-based ABE can 
be centralized or decentralized: 

1) Centralized architecture 
The global identifier (GID) and the pseudorandom 

function (PRF) are utilized, and a multi-authority-based 
ABE with the central trustworthy authority is presented 
[24]. Each authority generates and provides decryption 

key independently for users only by interacting with the 
central trustworthy authority, preventing the conspiracy 
of users if the number of users does not exceed m. The 
central trustworthy authority only participates in the 
grant of users’ private keys, rather than the management 
of system or the validation of users’ attributes. 

The centralized architecture for ABE requires that 
the central authority has to be completely trusted, for it 
can get the users’ private keys to decrypt cipher text. A 
scheme that allows the central authority to be “honest but 
curious” is proposed, which means that the credible 
institutions can honestly execute tasks according to the 
agreement, but maybe try to decrypt stored ciphertext 
curiously at the same time [25]. 

2) Decentralized architecture 
In order to avoid the potential safety risks from the 

central authority, a threshold multi-authority fuzzy 
identity based encryption scheme (MA-FIBE) without a 
central authority is presented [26]. An encrypter can 
encrypt a message such that a user could only decrypt if 
he/she has at least dk of the given attributes about the 
message for at least t + 1, t ≤ n/2 honest authorities of all 
the n attribute authorities in this proposed scheme. The 
security proof is based on the secrecy of the underlying 
joint random secret sharing protocol and joint zero secret 
sharing protocol and the standard decisional bilinear 
Diffie-Hellman (DBDH) assumption. The proposed 
MA-FIBE could be extended to the threshold 
multi-authority attribute based encryption scheme 
(MA-ABE) and further extended to a proactive MA-ABE 
scheme. 

However, the decentralized multi-authority-based 
ABE still suffers some shortcomings. For example, since 
the trusted central authority in the system has been 
removed, each authority needs to interact one another to 
ensure that users get complete and correct decryption 
private keys; authorities might collude with each other to 
get the complete set of a user’s attributes and then do 
harm to the user’s private information. 

Proxy re-encryption was presented by BLAZE et al 
[27] at the 1998 European cryptography annual meeting. 
The half-credible proxy, which obtains certain additional 
information, such as re-encryption keys, uses one user’s 
public key to encrypt the plaintext, and then gets the 
ciphertext re-encrypted with another user’s public key. In 
this process, except the re-encryption key, the proxy does 
not get any information about the plaintext. Ateniese 
presents the proxy re-encryption specifications at the 
2005 Network and Distributed System Security 
Symposium and the 2007 ACM Conference on Computer 
and Communications Security, solving the problem that 
the previous schemes can only resist the chosen plaintext 
attacks (CPA), which is able to resist the chosen 
ciphertext attacks (CCA) [28]. ABE associates attributes 
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with private keys, which means that the change of user’s 
permission will change the conditions of access control, 
and the re-encryption will bring the significant overhead. 
 
3 System model 
 
3.1 Components 

NC-MACPABE proposed in this work gets rid of 
the central authority, which includes three kinds of cloud 
storage entity, as shown in Fig. 1. 

1) Attribute authority. The whole attribute set is 
divided into k disjoint sets managed k attribute 
authorities respectively. Each attribute authority needs to 
calculate its own master key independently during the 
initialization phase, and generates the attribute private 
key components for all users during the following data 
sharing phase, then sends the re-encrypted results to 
users. 

2) Cloud-side data processing module. The 
cloud-side data processing module is based on the 
powerful cloud-side clusters with powerful processing 
and storing capacities, responsible for data storage, proxy 
re-encryption, authentication of signature, etc. 
Meanwhile, the cloud-side data processing module saves 
the operation validation set for each file in order to 
realize the fine-grained management of user’s access 
right. 

3) User. Users of a cloud storage system include 

data owners and data consumers. Any user can be a data 
owner and data consumer at the same time. A data 
owners can obtain the public key from any attribute 
authority and use it to encrypt the data ready to be 
uploaded to the cloud-side system. When a data 
consumer wants to access a file, he/she has to obtain the 
private key components from all attribute authorities to 
generate the private key at the client side. 
 
3.2 Workflow 

As mentioned above, NC-MACPABE is based on 
the decentralized architecture to solve the problems of 
security and performance bottleneck because the central 
authority, which is more suitable for the public cloud 
storage systems serving a large-scale users. 

NC-MACPABE utilizes the identity dyeing 
technology to realize the interaction between users and 
attribute authorities with dyed names instead of with 
GIDs, which can prevent multi-attribute authorities 
conspire to steal users’ identity information. The 
workflow of NC-MACPABE is composed of seven 
phases, including initialization, data segmentation, 
identity dyeing, key generation, data encryption, data 
decryption and revocation of access right. 

1) Setup: Setup PK,  MKk  
All attribute authorities have to execute the setup 

algorithm to calculate the public key Y of the whole 
system together, release the public parameter (PK), and 

 

 
Fig. 1 System architecture 
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then calculate their own master key (MKk) respectively. 

2) Data Segmentation:   sPart , lF F F  
A user executes the segmentation algorithm to 

partition file F into a small block (Fs) and a large block 
(Fl). 

3) Identity dyeing:    ,Dye GID coloru u k  

User u inputs his/her own GIDu, executes the dyeing 
algorithm for many times, and then outputs the different 
dyed name color(u,k). 

4) Key generation: KeyGen(PK, MKk ,  Au , 

color(u,k))→
   1 2{ } ,k u
i ii A A

D D    

Each attribute authority executes the key generation 
algorithm and outputs u’s attribute private key 

component cluster  1{ } k ui i A A
D    and the authority 

component 
 2
iD  according to color(u,k), the user attribute 

set Au, the system public parameter PK and MKk, and Ak 
which is the part of attribute set according to F managed 
by authority k and related to u’s private key SKu and 
GIDu. 

5) Data encryption:  sEncrypt PK, , WASLF   
 ,OVkC  

Before the user uploads F, Fs is used as a symmetric 
key to encrypt Fl. PK, Fs and the weighted access 
structure list (WASL) are able to differentiate operation 
rights, and then the ciphertext Ck and the operational 
validation set (OV) are outputted. 

6) Data decryption:    1 2Decrypt(PK,( ), ,
i iD D  

s OV) ( , )kC F p  

For any encrypted files stored in the cloud storage 
system, all users can download it. However, only the 
users who reach the specific access right defined by the 
weighted access tree (WAT) can decrypt the symmetric 
key and then use it to decrypt the ciphertext. The data 
decryption algorithm can be divided into two steps. 

Step 1: Generate user private key. After u obtains all 
 1

i
D  and  2 ,iD  SKu can be generated. 

Step 2: Decrypt and verify the access righter. u 
inputs PK, Ck and SKu, and then outputs Fs and the root 
node secret parameter pOV. When a user wants to access 
F, he/she needs to get the threshold number 
corresponding to operating level OV from the cloud-side 
data processing module. 

7) Revocation of access right 
There are two modes of access right revocation, the 

direct access right revocation mode and the indirect 
access right revocation mode, which can be applied in 
one system. 

Direct access right revocation mode. If a data owner 
wants to revoke access rights of specific users, the direct 
access right revocation mode is suitable. The GIDru of a 
user whose access right will be revoked needs to be 
identity-dyed, and then sent to each attribute authority. 

Indirect access right revocation mode. If a data 
owner wants to change certain attributes related users’ 
access rights, the indirect r access right revocation  
mode is suitable. ReEncrypt()PK, , WAT,kC SKu   
( , ),kC OV  the indirect access right revocation is 
implemented with the proxy re-encryption. First, the 
re-encryption key cluster  i irk  is generated, then the 
ciphertext of key is re-encrypted, and finally, users’ 
(whose access rights haven’t been revoked) private key 
component cluster       , ,

n li i
rk

k i k iD D    is updated. 
 
4 Algorithm 
 
4.1 Assumptions about security 

NC-MACPABE is based on the following three 
assumptions about security: 

1) Trustworthy users. 
Data owners partition and encrypt files locally 

before uploading them, while data consumers generate 
their private key after receiving all necessary attribute 
key components. So users need to be trustworthy, whose 
private information will be kept safe. 

2) Honest but curious attribute-authorities. 
The attribute-authorities are allowed to be “honest 

but curious”, which means they are semi-trustworthy. We 
assume that they generate users’ private attribute key 
components according to the rules set by the system, but 
maybe curiously try to get as much users’ information as 
possible at the same time. 

3) Honest but curious cloud-side data processing 
module. 

Users’ data uploaded to cloud storage system may 
be segmented and then stored in different cloud servers. 
Storage servers are managed by system administrators 
instead of users. So these storage servers cannot be 
trusted completely. However, completely untrustworthy 
servers cannot be used to execute the task of 
re-encryption. The data processing module is assumed to 
execute operations as expected, and the low possibility of 
ciphertext being disclosed in cloud can also be tolerated. 
That is why the data processing module is also described 
as semi-trustworthy, i.e. honest but curious. 
 
4.2 Initialization 

All attribute authorities in the system should 
complete the phase of initialization. 

Step 1) An attribute authority (e.g. Am) chooses one 
p-order double-linear group G0. g1 and g2 are generators 
of G0. 

Step 2) Am selects ,pm Zv  and sent 

mv
m ggeY ),( 21 to other authorities. Each authority 

calculates  



},,1{

21 ),(
km
mm vggeYY


independently. 
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Step 3) Am and An, other authorities, share the seed 
pair ( , )mn p nm ps Z s Z  )( nmmn ss   between Am and 

An only belonging to them. After Am receives the seed 
pairs }\{},,1{),( mknnmmn ss   shared with other k−1 

authorities respectively, Am calculates the authority’s 

parameter 
 

 {m}\},,2,1{
)(

kn
nmmn ss

m gx  . 

Step 4) For each attribute },,,1{ mni   Am 

selects pim Zt , randomly, computes ,,

2,
jmt

im gT  and 

stores .}{,},{, },,1{,}\{},,1{ mniimmknnmmnm tssx    

Step 5) Am’s master key is }.,{MK mmm xv The 

system releases the public key PK= 

   
   

,
0 1 2 , 2

1, , , 1, ,
ˆ, , , m im

m

tv
m i

i n m k
G Y e g g T g

 

  
… …

 

 
4.3 Data segmentation 

The data segmentation module will partition a file 
into two data blocks, a large one and a small one. There 
are two plans of data segmentation, one is the fixed-size 
segmentation and the other is the non-fixed-size 
segmentation. The flowchart of the fixed-size 
segmentation is shown in Fig. 2. 

Step 1) Before the data owner upload file F, the 
client-side system generates a random sequence of 0−N 
(N is the size of file with bit number). The length of the 
sequence is equal to the size of the small block, e.g. 168 
bits. 

Step 2) The client-side system sorts the sequence 
ascending to get the positions of the bytes to be extracted 
from F. 

Step 3) The client-side system extracts bytes from F 
sequentially with order. 

Step 4) The client-side composes the extracted 
bytes to be the small block Fs, and takes the rest of the 
file as the large block Fl. 

After the segmentation of the file, the client-side 
 

 
Fig. 2 Flowchart of fixed-size segmentation 

system will use Fs as the symmetrical encryption key to 
encrypt Fl to get the ciphertext CF. The advantage of the 
fixed-size segmentation is that the size of the small block 
is fixed, which is easy for the client-side management. 
However, the random number generated may be 
unevenly distributed, which leads to a large section of 
continuous data in the large block. 
 
4.4 Identity dyeing 

When a user (e.g. u) joins the system, the system 
will generate GIDu, the global identity of u, and then 
execute the dyeing algorithm for several times to output 
the different colored names, which is used to interact 
with different attribute authorities in order to prevent 
conspiracies by multi-authorities. 

The process of identity dyeing is shown in Fig. 3, 
including the following steps: 

Step 1) A one-way anti-collision hash function 
**

1 }1,0{: qZH   is selected to generate GIDu for u. 

Step 2) A random number sequence {c1, c2, …, 
cy, …, ck} is generated, where k is the number of the 
attribute authorities, and cy ( [1, ])y k  is the colour 
factor corresponding to u. 

Step 3) c1, c2, …, cy, …, ck are attached to GIDu 

respectively to get    1,2,
GID || ,u y y k

c
 …,

 where || is 

the operation of attachment. 

Step 4)    *
2 : 0,1 0,1

n
H  acts on 

   1,2,
GID ||u y y k

c
 …,

respectively to output k colored 

names     ,
1,2, ,

color ,u y
y k …

 where n is the length of 

colored name. 
 

 
Fig. 3 Process of identity dyeing 

 
4.5 Key generation 

Suppose that u’s attribute set is Au. When u first 
joins the system, he/she will request the private key 
components from k attributes authorities with k colored 
names respectively to get the private key that matches Au. 
The key generation process of each attribute authority 
composes of the following steps: 

Step 1) An attribute authority (e.g. Am) initiates k−1 
independent anonymous key distribution protocols with 
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other attributes authorities. Am randomly selects 
,m pR Z and exports the attribute authority’s private 

key component  1
1 .mR

m mD g x  

Step 2) Am calculates 
   1, , \

.m m m
n k m

p v R


  
…

 

For the users’ each attribute ,uj A  select the attribute 
u

mj A A  , then query the storage list to get tm,j, and 

finally generates the private key component cluster  
  ,/2

, 1 .m m j

u
m

p t
m j

j A A
D g

 
  The colored names and the 

corresponding private key components are stored in the 
file’s attribute re-encryption key list, and the initial value 
of the attribute version is set as 1. 

Step 3) Am sends the attribute private key 

component cluster     21
, ,SK ,

u
m

u m m m j
j A A

D D
 

  

generated by Am to u. 
 
4.6 Data encryption 

The inputs of the data encryption algorithm include 
the public key PK, Fs and WAT. The outputs of the data 
encryption algorithm include Fs’s ciphertext Ck and the 
operation validation (OV) set. 

The process of data encryption composes of the 
following steps: 

Step 1) Fs is used as the symmetric key to encrypt 
Fl to get the ciphertext CF. 

Step 2) The system generates WAT that can 
distinguish different levels of operations for different 
users with different attribute structures, as shown in  
Fig. 4. 
 

 
Fig. 4 WAT for distinguishing different operating levels 

 
During the construction of WAT, all nodes are 

numbered, and the No. of root is 0. For each leaf node, 

pj Zs   is randomly selected as its secret value. That is 
to say, for each leaf node j,   .jq j s  For non-leaf 
nodes y,    

 
a

chriden

,
y

q y q x V  where chriden(y) are 

all child nodes of y, and Va is the threshold. The secret 
value of root node is s=q(0). 

Step 3) OV is generated, which is only stored in the 
cloud-side data processing module, and cannot be 
downloaded by users, who can only request for the 

corresponding secret parameters of verification for 

obtaining the access right.  OLOL OL 31 2OV , , ,
ss s

Y Y Y  

where OL0 means not allowed to access the file, OL1 
means having the right to reading the file, OL2 means 
having the right to modify the file, OL3 means means 
having the right to delete the file, and 

321 OLOLOL   and  ,  , sss are the secret parameters of the 
root node of WAT. 

Step 4) The key ciphertext  0 ,s
k sC E F Y    

    0 0
1 ,2 ,

, 1, ,
, , WASL

k

q q
k i k i

y u k k
E g E T

 


  

…
is 

generated. 
Step 5) The data owner specifies the unique ID for 

the ciphertext and uploads CF, Ck and to the cloud-side 
system. 
 
4.7 Data decryption 

Any user is allowed to query and download the file. 
However, only those users with OL1 can decrypt the 
corresponding Ck and then use it to decrypt CF. The 
process of data decryption composes of the following 
steps: 

Step 1) After u receives all the attribute private key 

component cluster     21
, ,SK ,

u
m

u m m m j
j A A

D D
 

 sent 

from attribute authorities, calculate 

 

 
 

        , 1, , 1, , \1, ,

1 1
1, ,

mn nmm
m n k k mm k

s sR

u m
m k

D D g g  






    … ……

…

  1, ,

1

m
m k

R

g 

… according to  1

1 .mR
m mD g x  

,0)(
})}\{,,1({},,1{),(





mkknm

nmmn ss


 and u’s private key has 

nothing to do with u’s colored names. So, there is no 
need to execute the identity discoloration to recover the 
users’ GIDu before decryption, ensuring that the 
decryption ability only depends on the user attributes. 

Let 
 1, ,

,u m
m k

R R


 
…

 and get 1 .uR
uD g  

Step 2) Calculate the flowing formula: 
 
         02

, , 1 1 2, , , m mq v R
m j m j ue D E e D E e g g

    

    0 0
1 2,u q qRe g g Y  

 
Step 3) Each leaf node’s value is used to calculate 

recursively to get its parent node’s threshold value, 

 
a

chriden

.x
x

q q V  When the recursive procedure reaches 

the root node with OL1, if the threshold value is 1, 
 ' 0 .s q The secre t  va lue  of  the  roo t  node , 

    ', ,ms v se g g Y
   is sent to the cloud-side data 

processing module, and compared with the 
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corresponding value in OV. If they are equal, the user has 
the right to reading the file, and can decrypt Ck with 
Fs=Ck/Y

s and use Fs to decrypt CF to get Fl. 
 
4.8 Revocation of access right 

A data owner can revoke another user’s access right 
to his data with the user’s name directly, or indirectly 
revoke all those users’ access right associated with 
particular attributes. 

1) In order to revoke the access right of a certain 
user (e.g. u), the system needs to search the user identity 
list to get his/her GIDu. Then the identity is dyed to get 
the colored names {clour(u,k)} corresponding to each 
attribute authority. Suppose that the revoked user list is 
Rk={clourr(u,k)}, where r(u, k) is the colored name 
corresponding to a certain attribute authority. Rk is sent 
respectively to each attribute authority. 

2) In order to revoke all those users’ access right 
associated with particular attributes, the version of 
attribute set RA should be updated. For each RA,i  

pi Zx  is selected randomly, and then calculate 

;/'' xxrk ii   For RA,i let ,1' iirk put 'iirk   

into the re-encryption key set, output  ' ,
i i

rk  and 

finally add the version number with 1. 
3) If the data owner wants to update the users’ 

operation level of the file, WAT needs to be reconstructed, 
which means that 

321 OLOLOL   and    , sss need to be 
calculated again to generate the new operation validation 
set OV′. 

4) Ck,  'i i
rk  and uF in the weighted access 

control structure corresponding to Ck are inputted. First, 
check whether the version number of }{ 'iirk  is the 

same with Ck. If so, for each RA,i calculate 

  '

, ,
i i

rk
k i k iE E    to get the new key cipher kC ; if not, 

do nothing. 
5) “Lazy updating” principle is adopted in this work, 

which means not immediately updating the private key 
component clusters of users whose access rights have not 
been revoked. When u applies to access the file, each 
attribute authority checks whether clour(u,k) provided by 
u exists in the revoked user list  ,{clour }k r u kR  . If not, 

this access application will be rejected directly. 
6) If    , ,clour {clour }u k r u k , the system will check 

whether the version of each attribute contained in current 
Ck is the same with the version of attribute private key 
component. If so, it means that Ck has not been 
re-encrypted or the attribute private key components 
distributed to u has been updated to the latest version, 
there will be no output. If n<l, the system will calculate 

         1 ,n l n n li i i i i
rk rk rk rk

  …  where n is the version 
number of private key component, l is the version of 

each attribute contained in current Ck. Finally, each 
authority outputs the updated attribute private key 

component cluster       , , .n li i
rk

k i k iD D    

 
5 Security of scheme 
 
5.1 Security model 

Theorem1: NC-MACPABE is semantically secure 
enough, if none probabilistic polynomial-time 
adversaries have disregarded advantages in the game of 
random toss. 

Proof: NC-MACPABE removes the central 
authority. It is convenient to expand WAT with OL0 to 
the multi-level WAT. Assume that the access level of 
WAT corresponding to Ck is only OL1, which does not 
affect the security of the system. NC-MACPABE is 
secure enough against the chosen plaintext attacks (CPA) 
or not if all probabilistic polynomial-time adversaries 
have negligible advantages in this game. 

Setup：An adversary presents the access control 
structure T, corresponding to the attribute set uk managed 
by each attribute-authority and the weighted access 
structure list (WASL), when he/she is waiting for 
challenge. The adversary also declares the attacked 
attribute-authorities. The challenger runs the setup 
algorithm to generate the public key and other 
parameters, and then sends them to the adversary. 

Phase 1：The adversary asks each attribute authority 
separately for all attribute private key components 
corresponding to T. The challenger calculates the private 
key components firstly. To any GID, if at least one 
attribute of an attribute authority cannot be satisfied by T, 
the private key components cannot be used directly to 
decrypt the ciphertext. 

Challenge: The adversary randomly outputs two 
plaintext messages M0 and M1 with the same length and 
GID. The challenger randomly tosses b  ( 0,1 )b , get 
the corresponding ciphertext C according to the attribute 
set and T, and then sends C to the adversary. 

Phase 2: The procedure of Phase 1 is executed 
repeatedly. The adversary continues to ask other related 
attribute private key components. The demanded 
ciphertext and the corresponding GID* are required not 
to be exactly the same with C. In other words, GID* can 
not be equal to GID of any private key that has been 
asked, which means the adversary cannot query the same 
user twice or more. 

Guess: The adversary guesses which message has 
been encrypted by the challenger. The adversary outputs 
the guess b′. b′=b indicates that the guess of the 
adversary is successful. The adversary’s advantage is  

  1
Pr .

2
b b    

Theorem 2: In the above game, if all the 
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polynomial enemies have non-negligible advantage, the 
scheme will be able to withstand CPA. 

Theorem 3: If in a game, an adversary can damage 
the scheme based on the above security model, there will 
be at least one probabilistic polynomial time algorithm 
that can break the DBDH problem with considerable 
advantages. 

Proof: Suppose there is a probabilistic polynomial 
time adversary who can break the scheme at the 
advantage of ε. We can prove that the following DBDH 
game can be solved by the advantage of ε/2. 

In the bilinear mapping 0 0 T: ,e G G G  G0 is a p 

order prime cyclic group, and g is its generator. Suppose 
that A=ga, B=Bb and C=Cc. In the DBDH game, the 
challenger tosses a coin  : 0,1 .   If μ=0, 

 , ,
abc

Z e g g otherwise,  , ,Z e g g
 where 

, , , pa b c Z  is selected randomly. In the following 

DBDH game, simulator β plays the role of challenger. 
Initialization: The adversary generates the access 

control tree *
0 .T The nodes of *

0T  are all determined by 
the adversary. And then *

0T  is changed into the 
weighted access structure list WASL*. 

Setup: β generates the version 1 public key 
parameter for the adversary, sets  ,Y e A B   

 ,
ab

e g g (supposing
 1, ,

),m
m k

v ab



…

 and then sends it 

to the adversary. 
Phase 1: The adversary asks for private keys as 

many as possible. These private keys correspond to the 

attribute set 1{ , , }.u
qA A A … However, none of them 

can satisfy *
0 .T  After β receives the request for key 

querying, it calculates these attribute private key 
components to reply the adversary. β randomly selects 

.m pR Z Each attribute authority (e.g. Am) starts k−1 

independent anonymous key distribution protocols to 
interact with other attribute authorities to output 

institutional private key components  1
1 ,mR

m mD g x  
saves its attribute version number as the initial value 1, 
and then for the property tm,j managed by itself calculates 
the attribute private key cluster 

  ,/2
, 1 .m m j

u
m

p t
m j

j A A
D g

 
  β sends the generated private 

key component cluster to the adversary. 
Challenge: The adversary submits m0 and m1 to the 

challenger. The challenger randomly tosses 

  0,1    and then sends the ciphertext *
KC  to the 

adversary,   0*
0 1 ,2, ,  qs

k s k iC E F Y E g E      

 0 *
,

, 1, ,
,  WASL .

k

q
k i

y u k k
T

 



…

If μ=0,  , .
abc

Z e g g  

Suppose ab=y0, and c=s0,     , =
cab c

Z e g g Y   

0 ,sY  and *
KC  is the determined ciphertext of message 

mγ. If μ=1,  , ,Z e g g
 and  , ,E m e g g


   

where pZ  is a random value. So, E0 is the random 

value of GT to the adversary, and *
KC  does not contain 

any information about mγ. 
Phase 2: The adversary submits the request for the 

version l private key to β. Suppose that after the l round 
re-encryption, the adversary is not included in the list of 
revoked users. β executes in accordance with the 
procedure of phase 1. For the attribute RA,i where 
RA is the attribute set to be updated, according to the 
adversary’s attribute set’s version n(n<l), β generates the 
attribute re-encryption key i irk   for it , and replies the 
requests for generating l−n proxy re-encryption keys. β  
randomly selects ,pi Zx  calculates 

    , 1, , , ,
/yi y n n y l

rk x x
 


… …

and then returns the version 

l re-encryption key          1 .n l n n li i i i i
rk rk rk rk

  …  

Finally, β executes the attribute private key re-encryption 

algorithm and calculates         

, ,
.

n li i
l n

rk

k i k i
t t   

Guess: The adversary submits the guess  0,1   

about γ. If γ′=γ, β will output μ′=0, and  , ,
abc

Z e g g  

which means that a definite DBDH tuple is presented, 
and the adversary will get the confirmed ciphertext mγ 
with the considerable advantage ε. Otherwise, β will 

output μ′=1, and  , ,Z e g g
  which means that a 

random DBDH tuple is provided, so that the possibility 
that the adversary guesses correct is not higher than 1/2. 
In this DBDH game, the advantage of distinguishing Z 

successfully is
1 1 1 1 1

.
2 2 2 2 2 2

       
 

 To sum up, 

when a polynomial time adversary breaks this scheme 
with the advantages of ε, the adversary’ advantages of ε/2 
for solving the DBDH problem cannot be ignored, which 
proves that the scheme can achieve the semantic security 
under DBDH. 
 
5.2 Security analysis 

With NC-MACPABE, each attribute authority 
manages a part of the global attributes set, which protects 
the user’s identity effectively. Besides, there is no central 
authority, and there is no list to record the information of 
users and their GIDs. Each user uses different dyed 
names to interact with different attribute authorities in 
order to prevent the conspiracy of multiple attribute 
authorities. 

An attribute authority (e.g. Am) randomly generates 
the secret parameter set {smj} to share with other attribute 
authorities. Even if there are k−2 attribute authorities 
colluding, there will be at least 1 parameter unable to be 
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gotten. As long as at least two of the k attribute 
authorities are honest, the security of multi-attribute 
authority without the central authority with 
NC-MCPABE can be guaranteed. 
 
6 Experiments and performance analysis 
 
6.1 Experimental environment 

We constructed the experimental platform base on a 
computer with 2.5 GHz Intel Core CPU, 4 GB memory, 
VMware Workstation and Ubuntu10.10, the development 
language C++, and the Cpabe-0.11 library, symmetric 
encryption uses a 168 bit 3DES encryption algorithm. 
The original code adopts the cpabe-0.11 library. 

We used the 168 bit 3DES as the symmetric 
encryption algorithm, and used Cloudsim to create a 
simulated cloud data center. We created different number 
of virtual machines to simulate different number of 
attribute authorities, created different number of cloud 
tasks and bind them to the virtual machines to simulate 
the different number of attributes in the system. The 
proxy re-encryption algorithm is based on the JHU- 
MIT’s Proxy Re-cryptography Library (PRL). 
 
6.2 Experiments 

We compared NC-MACPABE proposed in this 
work with the centralized multi-authority proxy 
reencryption mechanism based on ciphertext-policy 
attribute-based encryption (MPRE-CPABE) and the 
typical CP-ABE. For the initialization module does not 
involve attribute management operations, the 
performance of system has nothing to do with the 
number of the attribute, but only associated with the 
number of attribute authorities during the phase of 
initialization. 

Figure 5 shows the time costs of NC-MACPABE 
and MPRE-CPABE with different numbers of attribute 
 

 
Fig. 5 Time costs of NC-MACPABE and MPRE-CPABE with 

different numbers of attribute authority 

authority. For both NC-MACPABE and MPRE-CPABE, 
The larger number of attribute authority, the higher time 
costs. The time complexity of MPRE-CPABE is O(k), for 
each attribute authority needs to interact with the central 
authority. The time complexity of NC-MACPABE is 
O(k2), for each attribute authority needs to interact with 
each other. Therefore, the time cost of NC-MACPABE is 
higher than the time cost of MPRE-CPABE during the 
phase of initialization. However, as the initialization 
algorithm is implemented only once when the system 
starts, the extra time cost of NC-MACPABE can be 
tolerated. 

Table 1 shows the time costs of data segmentation. 
We select the data with different sizes, including 1 MB,  
5 MB, 50 MB, 200 MB and 1 GB. It is easy to find that 
the time costs of data segmentation are acceptable, since 
most data uploaded to the cloud system are usually 
smaller than 1 GB. 
 
Table 1 Time costs of data segmentation 

Size of data/MB Time/ms 

1 32 

5 47 

50 109 

500 702 

1024 3051 

 
Figure 6 shows the key generation times of 

NC-MACPABE, MPRE-CPABE and CP-ABE with 
different numbers of attribute and different numbers of 
attribute authority.The time costs of NC-MACPABE and 
MPRE-CPABE with 5 attribute authorities are lower than 
the time costs of NC-MACPABE and MPRE-CPABE 
with 2 attribute authorities, and the time costs of 
NC-MACPABE and MPRE-CPABE are lower than the 
time costs of CP-ABE. To sum up, NC-MACPABE has 
 

 
Fig. 6 Key generation time of NC-MACPABE, MPRE- CPABE 

and CP-ABE 
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the best performance of the key generation, for there is 
no central authority as the performance bottleneck in 
NC-MACPABE. 

The performance of the symmetric key encryption 
has nothing to do with the number of attribute authority. 
Figure 7 shows the symmetric key encryption times of 
NC-MACPABE, MPRE-CPABE and CP-ABE with 
different numbers of attribute. The symmetric key 
encryption times of all NC-MACPABE, MPRE- CPABE 
and CP-ABE increase with the number of attribute 
increasing. The time costs of NC-MACPABE and 
MPRE-CPABE are similar and a little bit lower than the 
time cost of CP-ABE. 
 

  
Fig. 7 Symmetric key encryption time of NC-MACPABE, 

MPRE-CPABE and CP-ABE 

 
The performance of the symmetric key decryption 

also has nothing to do with the number of attribute 
authority. Figure 8 shows the symmetric key decryption 
times of NC-MACPABE, MPRE-CPABE and CP-ABE 
with different numbers of attribute. The symmetric key 
decryption times of all NC-MACPABE, MPRE- CPABE 
and CP-ABE increase with the number of attribute 
increasing. The time cost of NC-MACPABE is a little bit 
higher than the time costs of MPRE-CPABE and 
CP-ABE. The reason is that without the central authority, 
NC-MACPABE needs to combine the attribute private 
key components received from attribute authorities to get 
the private key, which is relatively complicated. 

Finally, we compared the access right revocation 
times of NC-MACPABE and MPRE-CPABE with and 
without proxy re-encryption. The number of attribute 
authority is set 5. Figure 9 shows the experimental 
results. As shown in Fig. 9, the proxy reencryption can 
greatly reduce the time costs of the access right 
revocation. Furthermore, the time cost of NC- 
MACPABE is a little higher than the time cost of MPRE- 
CPABE. However, the time cost variability of NC- 
MACPABE is more stable than MPRE-CPABE. 

 

 
Fig. 8 Symmetric key decryption time of NC-MACPABE, 

MPRE-CPABE and CP-ABE 

 

 
Fig. 9 Access right revocation time of NC-MACPABE and 

MPRE-CPABE 

 

7 Conclusions 
 

Cloud storage extends the concept of cloud 
computing, which has been rapidly used in various fields. 
The character of data management and ownership 
separation, which means the cloud storage service 
provider is not completely trusted, leads to the 
difficulties of data security and privacy protection. 
According to the data privacy based on data partition and 
classification, this work proposes NC-MACPABE, a 
novel multi-authority access control scheme without a 
central authority based on CP-ABE. An optimization of 
WAS allows different levels of operation for the same 
data in cloud storage system. The concept of identity 
dyeing is introduced to improve the users’ information 
privacy further. The re-encryption algorithm is improved 
in the scheme so that the data owner can revoke user’s 
access in a more flexible way. The scheme is proved to 
be secure, efficient and suitable for public cloud storage 
systems. However, the time cost of NC-MACPABE is a 
little higher than the time cost of MPRE-CPABE during 
symmetric key decryption and access right revocation, 
which is our focus of future research. 
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