

J. Cent. South Univ. (2017) 24: 807−818
DOI: 10.1007/s11771-017-3483-z

NC-MACPABE: Non-centered multi-authority proxy re-encryption
based on CP-ABE for cloud storage systems

XU Xiao-long(徐小龙)1, 2, ZHANG Qi-tong(张栖桐)1, ZHOU Jing-lan(周静岚)2

1. College of Computer, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2. State Key Laboratory for Novel Software Technology (Nanjing University), Nanjing 210046, China

© Central South University Press and Springer-Verlag Berlin Heidelberg 2017

Abstract: The cloud storage service cannot be completely trusted because of the separation of data management and ownership,
leading to the difficulty of data privacy protection. In order to protect the privacy of data on untrusted servers of cloud storage, a
novel multi-authority access control scheme without a trustworthy central authority has been proposed based on CP-ABE for cloud
storage systems, called non-centered multi-authority proxy re-encryption based on the cipher-text policy attribute-based encryption
(NC-MACPABE). NC-MACPABE optimizes the weighted access structure (WAS) allowing different levels of operation on the same
file in cloud storage system. The concept of identity dyeing is introduced to improve the users’ information privacy further. The
re-encryption algorithm is improved in the scheme so that the data owner can revoke user’s access right in a more flexible way. The
scheme is proved to be secure. And the experimental results also show that removing the central authority can resolve the existing
performance bottleneck in the multi-authority architecture with a central authority, which significantly improves user experience
when a large number of users apply for accesses to the cloud storage system at the same time.

Key words: cloud storage; data privacy; proxy re-encryption; multi-authority

1 Introduction

Cloud computing technology is proposed to
aggregate all the hardware and software resources such
as computing, storage and other information in WAN and
LAN to solve the requirements of large-scale computing
and mass data processing [1]. Cloud storage focuses on
integrating different types of storage devices together to
provide a large-scale storage resource pool, which has
become a cost-effective solution for many users with the
demand of data storage [2].

At present, data security protection mechanisms
provided by cloud storage systems are not strong enough
to protect users’ data privacy or security [3−7].
Salesforce’s cloud service system was attacked in 2007,
which made a lot of users’ private data leaked; in 2009,
Microsoft, Amazon and some other companies’ cloud
service systems all encountered major failures, resulting
in tens of thousands of users’ stored data lost and
information services affected; in 2010, two Google
employees invaded into Gtalk, Google Voice and other
Google’s systems, causing users’ data leaked; AWS’s
user agreement in 2010 announced clearly that AWS

could not guarantee the safety of users’ data; in 2011, the
Chinese software develop net (CSDN) had more than
600 million users’ data stolen and disclosed by hackers;
in 2014, users’ private digital photos were leaked out
from Apple’s iCloud.

The separation of data management and ownership
is the root of the security problem of cloud storage [5].
When a user uploads his data to a cloud storage system,
he will lose the substantial control ability to his data, and
be unable to make sure that the storage, processing and
transmission of his data are protected effectively. Instead,
the cloud storage service provider obtains the data’s
substantial control power. Therefore, if there are internal
staff derelictions, hacker attacks or system faults, the
cloud storage service provider cannot provide sufficient
evidences to assure that the user’s data are stored and
processed correctly without being extracted and analyzed,
or sold to others, and can be completely destroyed in
accordance with user requirement, etc.

According to the white paper released by the Cloud
Security Alliance [8], the protection ability of data
security in cloud storage system can be improved in two
ways, the efficient encryption algorithms and the suitable
access control mechanisms. Traditional encryption

Foundation item: Projects(61472192, 61202004) supported by the National Natural Science Foundation of China; Project(14KJB520014) supported by the

Natural Science Fund of Higher Education of Jiangsu Province, China
Received date: 2015−09−07; Accepted date: 2016−03−22
Corresponding author: XU Xiao-long, PhD; Tel: +86−13813885172; E-mail: xuxl@njupt.edu.cn

J. Cent. South Univ. (2017) 24: 807−818

808

methods have three defects [9], which makes them
unsuitable for protecting data in cloud storage system
directly. First, when the cloud storage system encrypts a
user’s data, it must obtain the user’s public key. Second,
the cloud storage system takes up extra system and
network resources in the process of receiving each user's
public key to encrypt information and sending ciphertext
back to users. Third, the cloud storage service provider
needs to get the list of users before providing services,
while the identity information of users is difficult to
obtain in one time under the distributed, large-scale
cloud environment and user’s privacy can be violated
easily by illegally applications. The traditional access
control models are not suitable for cloud environment,
either. The trusted third party is introduced to protect the
safety and integrity of data and realize the fine-grained
access control to data and the data security independent
on the security of the underlying file system, especially
for untrusted network environments [10]. Depot, a cloud
storage system that minimizes trust assumptions is
designed and implemented, which ensures that the
updates observed by correct nodes are consistently
ordered under Fork-Join-Causal (FJC) consistency, and
implements protocols that use this consistent ordering of
updates to provide other desirable consistency, staleness,
durability, and recovery properties [11]. Venus, a service
for securing user interaction with untrusted cloud storage
is presented, which guarantees integrity and consistency
for applications accessing a key-based object store
service, without requiring trusted components or changes
to the storage provider [12]. Venus completes all
operations optimistically, guaranteeing data integrity. It
then verifies operation consistency and notifies the
application. Airavat, a MapReduce-based system is
presented, which provides strong security and privacy
guarantees for distributed computations on sensitive data,
and is a novel integration of mandatory access control
and differential privacy [13]. Data providers control the
security policy for their sensitive data, including a
mathematical bound on potential privacy violations. The
federated identity management is combined together
with the hierarchical identity-based cryptography (HIBC),
not only the key distribution but also the mutual
authentication can be simplified in the cloud [14]. The
trusted third party audit institutions to the basic cloud
computing model are introduced, identifiing the
difficulties and potential security problems of direct
extensions with fully dynamic data updates from prior
works, an elegant verification scheme for seamless
integration of these two salient features is constructed,
and the proof of retrievability model by manipulating the
classic Merkle hash tree (MHT) construction for block
tag authentication to achieve efficient data dynamics was
improved [15]. The privacy, an approach by which

confidential data is stored in a highly distributed
database, partly located on the center of cloud and partly
on the clients is presented [16]. Data sharing is based on
the simple grant-and-revoke permission of shared data
and the row-level data encryption for fine-grained data
access control. Existing schemes mostly focus on user
data protection rather than personally identifiable
information protection. An implicit data partitioning
scheme based on confusion for user data protection is
presented [17]. For identifiable information protection, a
cloud storage architecture based on the trust server
concept is also presented, which isolates the data storage
and the personal information management. The cloud
server decides whether customers have the right to store
personal data according to the storage authentication
code provided by the trust server. Storage of the
customers’ identifiable information onto trust servers
effectively protects the private information. A
computable encryption scheme based on vector and
matrix calculations (CESVMC) is proposed [18], which
realizes the encryption of data, and supports fuzzy string
search and basic arithmetic calculations (addition,
subtraction, multiplication and division on encrypted
data.

In order to realize low-cost data privacy protection
mechanism for cloud storage, we proposed NC-
MACPABE, the non-centered multi-authority proxy
re-encryption based on CP-ABE for cloud storage
systems. NC-MACPABE optimizes the weighted access
structure, makes different users have different
permissions to access the same files, and introduces the
concept of identity dyeing to improve the protection
ability of data privacy. The proxy re-encryption
algorithm is improved in the scheme so that the data
owner can revoke user’s access right in a more flexible
way.

2 Related works

SHAMIR [19] proposed an identity-based
encryption (IBE), which enables any pair of users to
communicate securely and to verify each other’s
signatures without exchanging private or public keys,
without keeping key directories, and without using the
services of a third party. Soon after, BONEH et al [20]
realized IBE for the first time. Fuzzy IBE was presented
which can be applied to enable encryption using
biometric inputs as identities [21]. The error-tolerance
property of a fuzzy IBE scheme is precisely what allows
for the use of biometric identities, which inherently will
have some noise each time when they are sampled. On
the basis of Fuzzy IBE [22]. A new cryptosystem for
fine-grained sharing of encrypted data called key-policy
attribute- based encryption (KP-ABE) is developed [23].

J. Cent. South Univ. (2017) 24: 807−818

809

In KP-ABE, ciphertexts are labeled with sets of attributes
and private keys are associated with access structures
that control which ciphertext a user is able to decrypt. A
system for realizing complex access control on encrypted
data called ciphertext-policy attribute-based encryption
(CP- ABE) is presented, the encrypted data can be kept
confidential even if the storage server is untrusted.
Moreover, CP-ABE is secure against collusion attacks.
Previous ABE systems use attributes to describe the
encrypted data and build policies into user’s keys, while
CP-ABE attributes are used to describe a user’s
credentials, and a party encrypting data determines a
policy for who can decrypt. Thus, CP-ABE is
conceptually closer to traditional access control methods
such as role-based access control (RBAC).

Both KP-ABE and CP-ABE mechanisms can be
applied to express more flexible access control policy.
However, ABE-based mechanisms themselves have
some important issues to be solved. First, the authority
generates and distributes private keys for users, and
user’s private key is only related to property, not related
to user’s private information (such as user’s ID). If a
private key is leaked out, it would be impossible to
determine whether the authorized institution or the users
should take the responsibility. Second, for users’ private
keys are associated with their attributes, the dynamically
revocations of users’ permissions will bring the huge
overhead of system. In addition, since the encryption
policy in CP-ABE is set by the data owner, complex
strategies may make the public key system quite
complex, limiting the flexibility of the access strategy.

However, CP-ABE does not require the fully
credibility of authority, which is more suitable for
distributed, multi-tenants, not fully trustworthy cloud
storage systems. But if the management of attributes is
done by one single authority, the authority will be
overloaded, which is easy to be the performance
bottleneck of the whole system, and to face the risk of
security. In multi-authority-based ABE, when a user
applies for accessing a file, he/she needs to request the
decryption key from each authority, which decides
whether or not to grant the user the decryption key by
verifying whether the user has the attributes to access the
file. Multi-authority-based ABE divides the entire set of
attributes into different attribute domains so that the
security risks caused by the invasion into single authority
can be shared by multiple authorities.

The architecture of multi-authority-based ABE can
be centralized or decentralized:

1) Centralized architecture
The global identifier (GID) and the pseudorandom

function (PRF) are utilized, and a multi-authority-based
ABE with the central trustworthy authority is presented
[24]. Each authority generates and provides decryption

key independently for users only by interacting with the
central trustworthy authority, preventing the conspiracy
of users if the number of users does not exceed m. The
central trustworthy authority only participates in the
grant of users’ private keys, rather than the management
of system or the validation of users’ attributes.

The centralized architecture for ABE requires that
the central authority has to be completely trusted, for it
can get the users’ private keys to decrypt cipher text. A
scheme that allows the central authority to be “honest but
curious” is proposed, which means that the credible
institutions can honestly execute tasks according to the
agreement, but maybe try to decrypt stored ciphertext
curiously at the same time [25].

2) Decentralized architecture
In order to avoid the potential safety risks from the

central authority, a threshold multi-authority fuzzy
identity based encryption scheme (MA-FIBE) without a
central authority is presented [26]. An encrypter can
encrypt a message such that a user could only decrypt if
he/she has at least dk of the given attributes about the
message for at least t + 1, t ≤ n/2 honest authorities of all
the n attribute authorities in this proposed scheme. The
security proof is based on the secrecy of the underlying
joint random secret sharing protocol and joint zero secret
sharing protocol and the standard decisional bilinear
Diffie-Hellman (DBDH) assumption. The proposed
MA-FIBE could be extended to the threshold
multi-authority attribute based encryption scheme
(MA-ABE) and further extended to a proactive MA-ABE
scheme.

However, the decentralized multi-authority-based
ABE still suffers some shortcomings. For example, since
the trusted central authority in the system has been
removed, each authority needs to interact one another to
ensure that users get complete and correct decryption
private keys; authorities might collude with each other to
get the complete set of a user’s attributes and then do
harm to the user’s private information.

Proxy re-encryption was presented by BLAZE et al
[27] at the 1998 European cryptography annual meeting.
The half-credible proxy, which obtains certain additional
information, such as re-encryption keys, uses one user’s
public key to encrypt the plaintext, and then gets the
ciphertext re-encrypted with another user’s public key. In
this process, except the re-encryption key, the proxy does
not get any information about the plaintext. Ateniese
presents the proxy re-encryption specifications at the
2005 Network and Distributed System Security
Symposium and the 2007 ACM Conference on Computer
and Communications Security, solving the problem that
the previous schemes can only resist the chosen plaintext
attacks (CPA), which is able to resist the chosen
ciphertext attacks (CCA) [28]. ABE associates attributes

J. Cent. South Univ. (2017) 24: 807−818

810

with private keys, which means that the change of user’s
permission will change the conditions of access control,
and the re-encryption will bring the significant overhead.

3 System model

3.1 Components

NC-MACPABE proposed in this work gets rid of
the central authority, which includes three kinds of cloud
storage entity, as shown in Fig. 1.

1) Attribute authority. The whole attribute set is
divided into k disjoint sets managed k attribute
authorities respectively. Each attribute authority needs to
calculate its own master key independently during the
initialization phase, and generates the attribute private
key components for all users during the following data
sharing phase, then sends the re-encrypted results to
users.

2) Cloud-side data processing module. The
cloud-side data processing module is based on the
powerful cloud-side clusters with powerful processing
and storing capacities, responsible for data storage, proxy
re-encryption, authentication of signature, etc.
Meanwhile, the cloud-side data processing module saves
the operation validation set for each file in order to
realize the fine-grained management of user’s access
right.

3) User. Users of a cloud storage system include

data owners and data consumers. Any user can be a data
owner and data consumer at the same time. A data
owners can obtain the public key from any attribute
authority and use it to encrypt the data ready to be
uploaded to the cloud-side system. When a data
consumer wants to access a file, he/she has to obtain the
private key components from all attribute authorities to
generate the private key at the client side.

3.2 Workflow

As mentioned above, NC-MACPABE is based on
the decentralized architecture to solve the problems of
security and performance bottleneck because the central
authority, which is more suitable for the public cloud
storage systems serving a large-scale users.

NC-MACPABE utilizes the identity dyeing
technology to realize the interaction between users and
attribute authorities with dyed names instead of with
GIDs, which can prevent multi-attribute authorities
conspire to steal users’ identity information. The
workflow of NC-MACPABE is composed of seven
phases, including initialization, data segmentation,
identity dyeing, key generation, data encryption, data
decryption and revocation of access right.

1) Setup: Setup PK, MKk
All attribute authorities have to execute the setup

algorithm to calculate the public key Y of the whole
system together, release the public parameter (PK), and

Fig. 1 System architecture

J. Cent. South Univ. (2017) 24: 807−818

811

then calculate their own master key (MKk) respectively.

2) Data Segmentation:   sPart , lF F F
A user executes the segmentation algorithm to

partition file F into a small block (Fs) and a large block
(Fl).

3) Identity dyeing:    ,Dye GID coloru u k

User u inputs his/her own GIDu, executes the dyeing
algorithm for many times, and then outputs the different
dyed name color(u,k).

4) Key generation: KeyGen(PK, MKk , Au ,

color(u,k))→
   1 2{ } ,k u
i ii A A

D D 

Each attribute authority executes the key generation
algorithm and outputs u’s attribute private key

component cluster  1{ } k ui i A A
D   and the authority

component
 2
iD according to color(u,k), the user attribute

set Au, the system public parameter PK and MKk, and Ak
which is the part of attribute set according to F managed
by authority k and related to u’s private key SKu and
GIDu.

5) Data encryption:  sEncrypt PK, , WASLF 
 ,OVkC

Before the user uploads F, Fs is used as a symmetric
key to encrypt Fl. PK, Fs and the weighted access
structure list (WASL) are able to differentiate operation
rights, and then the ciphertext Ck and the operational
validation set (OV) are outputted.

6) Data decryption:    1 2Decrypt(PK,(), ,
i iD D

s OV) (,)kC F p

For any encrypted files stored in the cloud storage
system, all users can download it. However, only the
users who reach the specific access right defined by the
weighted access tree (WAT) can decrypt the symmetric
key and then use it to decrypt the ciphertext. The data
decryption algorithm can be divided into two steps.

Step 1: Generate user private key. After u obtains all
 1

i
D and  2 ,iD SKu can be generated.

Step 2: Decrypt and verify the access righter. u
inputs PK, Ck and SKu, and then outputs Fs and the root
node secret parameter pOV. When a user wants to access
F, he/she needs to get the threshold number
corresponding to operating level OV from the cloud-side
data processing module.

7) Revocation of access right
There are two modes of access right revocation, the

direct access right revocation mode and the indirect
access right revocation mode, which can be applied in
one system.

Direct access right revocation mode. If a data owner
wants to revoke access rights of specific users, the direct
access right revocation mode is suitable. The GIDru of a
user whose access right will be revoked needs to be
identity-dyed, and then sent to each attribute authority.

Indirect access right revocation mode. If a data
owner wants to change certain attributes related users’
access rights, the indirect r access right revocation
mode is suitable. ReEncrypt()PK, , WAT,kC SKu 
(,),kC OV  the indirect access right revocation is
implemented with the proxy re-encryption. First, the
re-encryption key cluster  i irk  is generated, then the
ciphertext of key is re-encrypted, and finally, users’
(whose access rights haven’t been revoked) private key
component cluster       , ,

n li i
rk

k i k iD D   is updated.

4 Algorithm

4.1 Assumptions about security

NC-MACPABE is based on the following three
assumptions about security:

1) Trustworthy users.
Data owners partition and encrypt files locally

before uploading them, while data consumers generate
their private key after receiving all necessary attribute
key components. So users need to be trustworthy, whose
private information will be kept safe.

2) Honest but curious attribute-authorities.
The attribute-authorities are allowed to be “honest

but curious”, which means they are semi-trustworthy. We
assume that they generate users’ private attribute key
components according to the rules set by the system, but
maybe curiously try to get as much users’ information as
possible at the same time.

3) Honest but curious cloud-side data processing
module.

Users’ data uploaded to cloud storage system may
be segmented and then stored in different cloud servers.
Storage servers are managed by system administrators
instead of users. So these storage servers cannot be
trusted completely. However, completely untrustworthy
servers cannot be used to execute the task of
re-encryption. The data processing module is assumed to
execute operations as expected, and the low possibility of
ciphertext being disclosed in cloud can also be tolerated.
That is why the data processing module is also described
as semi-trustworthy, i.e. honest but curious.

4.2 Initialization

All attribute authorities in the system should
complete the phase of initialization.

Step 1) An attribute authority (e.g. Am) chooses one
p-order double-linear group G0. g1 and g2 are generators
of G0.

Step 2) Am selects ,pm Zv  and sent

mv
m ggeY),(21 to other authorities. Each authority

calculates  



},,1{

21),(
km
mm vggeYY


independently.

J. Cent. South Univ. (2017) 24: 807−818

812

Step 3) Am and An, other authorities, share the seed
pair (,)mn p nm ps Z s Z )(nmmn ss  between Am and

An only belonging to them. After Am receives the seed
pairs }\{},,1{),(mknnmmn ss  shared with other k−1

authorities respectively, Am calculates the authority’s

parameter
 

 {m}\},,2,1{
)(

kn
nmmn ss

m gx  .

Step 4) For each attribute },,,1{ mni  Am

selects pim Zt , randomly, computes ,,

2,
jmt

im gT  and

stores .}{,},{, },,1{,}\{},,1{ mniimmknnmmnm tssx  

Step 5) Am’s master key is }.,{MK mmm xv The

system releases the public key PK=

   
   

,
0 1 2 , 2

1, , , 1, ,
ˆ, , , m im

m

tv
m i

i n m k
G Y e g g T g

 

  
… …

4.3 Data segmentation

The data segmentation module will partition a file
into two data blocks, a large one and a small one. There
are two plans of data segmentation, one is the fixed-size
segmentation and the other is the non-fixed-size
segmentation. The flowchart of the fixed-size
segmentation is shown in Fig. 2.

Step 1) Before the data owner upload file F, the
client-side system generates a random sequence of 0−N
(N is the size of file with bit number). The length of the
sequence is equal to the size of the small block, e.g. 168
bits.

Step 2) The client-side system sorts the sequence
ascending to get the positions of the bytes to be extracted
from F.

Step 3) The client-side system extracts bytes from F
sequentially with order.

Step 4) The client-side composes the extracted
bytes to be the small block Fs, and takes the rest of the
file as the large block Fl.

After the segmentation of the file, the client-side

Fig. 2 Flowchart of fixed-size segmentation

system will use Fs as the symmetrical encryption key to
encrypt Fl to get the ciphertext CF. The advantage of the
fixed-size segmentation is that the size of the small block
is fixed, which is easy for the client-side management.
However, the random number generated may be
unevenly distributed, which leads to a large section of
continuous data in the large block.

4.4 Identity dyeing

When a user (e.g. u) joins the system, the system
will generate GIDu, the global identity of u, and then
execute the dyeing algorithm for several times to output
the different colored names, which is used to interact
with different attribute authorities in order to prevent
conspiracies by multi-authorities.

The process of identity dyeing is shown in Fig. 3,
including the following steps:

Step 1) A one-way anti-collision hash function
**

1 }1,0{: qZH  is selected to generate GIDu for u.

Step 2) A random number sequence {c1, c2, …,
cy, …, ck} is generated, where k is the number of the
attribute authorities, and cy ([1,])y k is the colour
factor corresponding to u.

Step 3) c1, c2, …, cy, …, ck are attached to GIDu

respectively to get    1,2,
GID || ,u y y k

c
 …,

 where || is

the operation of attachment.

Step 4)    *
2 : 0,1 0,1

n
H  acts on

   1,2,
GID ||u y y k

c
 …,

respectively to output k colored

names     ,
1,2, ,

color ,u y
y k …

 where n is the length of

colored name.

Fig. 3 Process of identity dyeing

4.5 Key generation

Suppose that u’s attribute set is Au. When u first
joins the system, he/she will request the private key
components from k attributes authorities with k colored
names respectively to get the private key that matches Au.
The key generation process of each attribute authority
composes of the following steps:

Step 1) An attribute authority (e.g. Am) initiates k−1
independent anonymous key distribution protocols with

J. Cent. South Univ. (2017) 24: 807−818

813

other attributes authorities. Am randomly selects
,m pR Z and exports the attribute authority’s private

key component  1
1 .mR

m mD g x

Step 2) Am calculates
   1, , \

.m m m
n k m

p v R


  
…

For the users’ each attribute ,uj A select the attribute
u

mj A A  , then query the storage list to get tm,j, and

finally generates the private key component cluster
  ,/2

, 1 .m m j

u
m

p t
m j

j A A
D g

 
 The colored names and the

corresponding private key components are stored in the
file’s attribute re-encryption key list, and the initial value
of the attribute version is set as 1.

Step 3) Am sends the attribute private key

component cluster     21
, ,SK ,

u
m

u m m m j
j A A

D D
 



generated by Am to u.

4.6 Data encryption

The inputs of the data encryption algorithm include
the public key PK, Fs and WAT. The outputs of the data
encryption algorithm include Fs’s ciphertext Ck and the
operation validation (OV) set.

The process of data encryption composes of the
following steps:

Step 1) Fs is used as the symmetric key to encrypt
Fl to get the ciphertext CF.

Step 2) The system generates WAT that can
distinguish different levels of operations for different
users with different attribute structures, as shown in
Fig. 4.

Fig. 4 WAT for distinguishing different operating levels

During the construction of WAT, all nodes are

numbered, and the No. of root is 0. For each leaf node,

pj Zs  is randomly selected as its secret value. That is
to say, for each leaf node j,   .jq j s For non-leaf
nodes y,    

 
a

chriden

,
y

q y q x V  where chriden(y) are

all child nodes of y, and Va is the threshold. The secret
value of root node is s=q(0).

Step 3) OV is generated, which is only stored in the
cloud-side data processing module, and cannot be
downloaded by users, who can only request for the

corresponding secret parameters of verification for

obtaining the access right.  OLOL OL 31 2OV , , ,
ss s

Y Y Y

where OL0 means not allowed to access the file, OL1
means having the right to reading the file, OL2 means
having the right to modify the file, OL3 means means
having the right to delete the file, and

321 OLOLOL and , , sss are the secret parameters of the
root node of WAT.

Step 4) The key ciphertext  0 ,s
k sC E F Y  

    0 0
1 ,2 ,

, 1, ,
, , WASL

k

q q
k i k i

y u k k
E g E T

 


  

…
is

generated.
Step 5) The data owner specifies the unique ID for

the ciphertext and uploads CF, Ck and to the cloud-side
system.

4.7 Data decryption

Any user is allowed to query and download the file.
However, only those users with OL1 can decrypt the
corresponding Ck and then use it to decrypt CF. The
process of data decryption composes of the following
steps:

Step 1) After u receives all the attribute private key

component cluster     21
, ,SK ,

u
m

u m m m j
j A A

D D
 

 sent

from attribute authorities, calculate

 

 
 

        , 1, , 1, , \1, ,

1 1
1, ,

mn nmm
m n k k mm k

s sR

u m
m k

D D g g  






    … ……

…

  1, ,

1

m
m k

R

g 

… according to  1

1 .mR
m mD g x

,0)(
})}\{,,1({},,1{),(





mkknm

nmmn ss


 and u’s private key has

nothing to do with u’s colored names. So, there is no
need to execute the identity discoloration to recover the
users’ GIDu before decryption, ensuring that the
decryption ability only depends on the user attributes.

Let
 1, ,

,u m
m k

R R


 
…

 and get 1 .uR
uD g

Step 2) Calculate the flowing formula:

         02

, , 1 1 2, , , m mq v R
m j m j ue D E e D E e g g

  

    0 0
1 2,u q qRe g g Y

Step 3) Each leaf node’s value is used to calculate

recursively to get its parent node’s threshold value,

 
a

chriden

.x
x

q q V  When the recursive procedure reaches

the root node with OL1, if the threshold value is 1,
 ' 0 .s q The secre t va lue of the roo t node ,

    ', ,ms v se g g Y
   is sent to the cloud-side data

processing module, and compared with the

J. Cent. South Univ. (2017) 24: 807−818

814

corresponding value in OV. If they are equal, the user has
the right to reading the file, and can decrypt Ck with
Fs=Ck/Y

s and use Fs to decrypt CF to get Fl.

4.8 Revocation of access right

A data owner can revoke another user’s access right
to his data with the user’s name directly, or indirectly
revoke all those users’ access right associated with
particular attributes.

1) In order to revoke the access right of a certain
user (e.g. u), the system needs to search the user identity
list to get his/her GIDu. Then the identity is dyed to get
the colored names {clour(u,k)} corresponding to each
attribute authority. Suppose that the revoked user list is
Rk={clourr(u,k)}, where r(u, k) is the colored name
corresponding to a certain attribute authority. Rk is sent
respectively to each attribute authority.

2) In order to revoke all those users’ access right
associated with particular attributes, the version of
attribute set RA should be updated. For each RA,i

pi Zx  is selected randomly, and then calculate

;/'' xxrk ii  For RA,i let ,1' iirk put 'iirk 

into the re-encryption key set, output  ' ,
i i

rk  and

finally add the version number with 1.
3) If the data owner wants to update the users’

operation level of the file, WAT needs to be reconstructed,
which means that

321 OLOLOL and , sss need to be
calculated again to generate the new operation validation
set OV′.

4) Ck,  'i i
rk  and uF in the weighted access

control structure corresponding to Ck are inputted. First,
check whether the version number of }{ 'iirk  is the

same with Ck. If so, for each RA,i calculate

  '

, ,
i i

rk
k i k iE E   to get the new key cipher kC ; if not,

do nothing.
5) “Lazy updating” principle is adopted in this work,

which means not immediately updating the private key
component clusters of users whose access rights have not
been revoked. When u applies to access the file, each
attribute authority checks whether clour(u,k) provided by
u exists in the revoked user list  ,{clour }k r u kR  . If not,

this access application will be rejected directly.
6) If    , ,clour {clour }u k r u k , the system will check

whether the version of each attribute contained in current
Ck is the same with the version of attribute private key
component. If so, it means that Ck has not been
re-encrypted or the attribute private key components
distributed to u has been updated to the latest version,
there will be no output. If n<l, the system will calculate

         1 ,n l n n li i i i i
rk rk rk rk

  … where n is the version
number of private key component, l is the version of

each attribute contained in current Ck. Finally, each
authority outputs the updated attribute private key

component cluster       , , .n li i
rk

k i k iD D  

5 Security of scheme

5.1 Security model

Theorem1: NC-MACPABE is semantically secure
enough, if none probabilistic polynomial-time
adversaries have disregarded advantages in the game of
random toss.

Proof: NC-MACPABE removes the central
authority. It is convenient to expand WAT with OL0 to
the multi-level WAT. Assume that the access level of
WAT corresponding to Ck is only OL1, which does not
affect the security of the system. NC-MACPABE is
secure enough against the chosen plaintext attacks (CPA)
or not if all probabilistic polynomial-time adversaries
have negligible advantages in this game.

Setup：An adversary presents the access control
structure T, corresponding to the attribute set uk managed
by each attribute-authority and the weighted access
structure list (WASL), when he/she is waiting for
challenge. The adversary also declares the attacked
attribute-authorities. The challenger runs the setup
algorithm to generate the public key and other
parameters, and then sends them to the adversary.

Phase 1：The adversary asks each attribute authority
separately for all attribute private key components
corresponding to T. The challenger calculates the private
key components firstly. To any GID, if at least one
attribute of an attribute authority cannot be satisfied by T,
the private key components cannot be used directly to
decrypt the ciphertext.

Challenge: The adversary randomly outputs two
plaintext messages M0 and M1 with the same length and
GID. The challenger randomly tosses b  (0,1)b , get
the corresponding ciphertext C according to the attribute
set and T, and then sends C to the adversary.

Phase 2: The procedure of Phase 1 is executed
repeatedly. The adversary continues to ask other related
attribute private key components. The demanded
ciphertext and the corresponding GID* are required not
to be exactly the same with C. In other words, GID* can
not be equal to GID of any private key that has been
asked, which means the adversary cannot query the same
user twice or more.

Guess: The adversary guesses which message has
been encrypted by the challenger. The adversary outputs
the guess b′. b′=b indicates that the guess of the
adversary is successful. The adversary’s advantage is

  1
Pr .

2
b b  

Theorem 2: In the above game, if all the

J. Cent. South Univ. (2017) 24: 807−818

815

polynomial enemies have non-negligible advantage, the
scheme will be able to withstand CPA.

Theorem 3: If in a game, an adversary can damage
the scheme based on the above security model, there will
be at least one probabilistic polynomial time algorithm
that can break the DBDH problem with considerable
advantages.

Proof: Suppose there is a probabilistic polynomial
time adversary who can break the scheme at the
advantage of ε. We can prove that the following DBDH
game can be solved by the advantage of ε/2.

In the bilinear mapping 0 0 T: ,e G G G  G0 is a p

order prime cyclic group, and g is its generator. Suppose
that A=ga, B=Bb and C=Cc. In the DBDH game, the
challenger tosses a coin  : 0,1 .   If μ=0,

 , ,
abc

Z e g g otherwise,  , ,Z e g g
 where

, , , pa b c Z  is selected randomly. In the following

DBDH game, simulator β plays the role of challenger.
Initialization: The adversary generates the access

control tree *
0 .T The nodes of *

0T are all determined by
the adversary. And then *

0T is changed into the
weighted access structure list WASL*.

Setup: β generates the version 1 public key
parameter for the adversary, sets  ,Y e A B 

 ,
ab

e g g (supposing
 1, ,

),m
m k

v ab



…

 and then sends it

to the adversary.
Phase 1: The adversary asks for private keys as

many as possible. These private keys correspond to the

attribute set 1{ , , }.u
qA A A … However, none of them

can satisfy *
0 .T After β receives the request for key

querying, it calculates these attribute private key
components to reply the adversary. β randomly selects

.m pR Z Each attribute authority (e.g. Am) starts k−1

independent anonymous key distribution protocols to
interact with other attribute authorities to output

institutional private key components  1
1 ,mR

m mD g x
saves its attribute version number as the initial value 1,
and then for the property tm,j managed by itself calculates
the attribute private key cluster

  ,/2
, 1 .m m j

u
m

p t
m j

j A A
D g

 
 β sends the generated private

key component cluster to the adversary.
Challenge: The adversary submits m0 and m1 to the

challenger. The challenger randomly tosses

  0,1   and then sends the ciphertext *
KC to the

adversary,   0*
0 1 ,2, , qs

k s k iC E F Y E g E    

 0 *
,

, 1, ,
, WASL .

k

q
k i

y u k k
T

 



…

If μ=0,  , .
abc

Z e g g

Suppose ab=y0, and c=s0,     , =
cab c

Z e g g Y 

0 ,sY and *
KC is the determined ciphertext of message

mγ. If μ=1,  , ,Z e g g
 and  , ,E m e g g


 

where pZ  is a random value. So, E0 is the random

value of GT to the adversary, and *
KC does not contain

any information about mγ.
Phase 2: The adversary submits the request for the

version l private key to β. Suppose that after the l round
re-encryption, the adversary is not included in the list of
revoked users. β executes in accordance with the
procedure of phase 1. For the attribute RA,i where
RA is the attribute set to be updated, according to the
adversary’s attribute set’s version n(n<l), β generates the
attribute re-encryption key i irk  for it , and replies the
requests for generating l−n proxy re-encryption keys. β
randomly selects ,pi Zx  calculates

    , 1, , , ,
/yi y n n y l

rk x x
 


… …

and then returns the version

l re-encryption key          1 .n l n n li i i i i
rk rk rk rk

  …

Finally, β executes the attribute private key re-encryption

algorithm and calculates         

, ,
.

n li i
l n

rk

k i k i
t t 

Guess: The adversary submits the guess  0,1 

about γ. If γ′=γ, β will output μ′=0, and  , ,
abc

Z e g g

which means that a definite DBDH tuple is presented,
and the adversary will get the confirmed ciphertext mγ
with the considerable advantage ε. Otherwise, β will

output μ′=1, and  , ,Z e g g
 which means that a

random DBDH tuple is provided, so that the possibility
that the adversary guesses correct is not higher than 1/2.
In this DBDH game, the advantage of distinguishing Z

successfully is
1 1 1 1 1

.
2 2 2 2 2 2

       
 

 To sum up,

when a polynomial time adversary breaks this scheme
with the advantages of ε, the adversary’ advantages of ε/2
for solving the DBDH problem cannot be ignored, which
proves that the scheme can achieve the semantic security
under DBDH.

5.2 Security analysis

With NC-MACPABE, each attribute authority
manages a part of the global attributes set, which protects
the user’s identity effectively. Besides, there is no central
authority, and there is no list to record the information of
users and their GIDs. Each user uses different dyed
names to interact with different attribute authorities in
order to prevent the conspiracy of multiple attribute
authorities.

An attribute authority (e.g. Am) randomly generates
the secret parameter set {smj} to share with other attribute
authorities. Even if there are k−2 attribute authorities
colluding, there will be at least 1 parameter unable to be

J. Cent. South Univ. (2017) 24: 807−818

816

gotten. As long as at least two of the k attribute
authorities are honest, the security of multi-attribute
authority without the central authority with
NC-MCPABE can be guaranteed.

6 Experiments and performance analysis

6.1 Experimental environment

We constructed the experimental platform base on a
computer with 2.5 GHz Intel Core CPU, 4 GB memory,
VMware Workstation and Ubuntu10.10, the development
language C++, and the Cpabe-0.11 library, symmetric
encryption uses a 168 bit 3DES encryption algorithm.
The original code adopts the cpabe-0.11 library.

We used the 168 bit 3DES as the symmetric
encryption algorithm, and used Cloudsim to create a
simulated cloud data center. We created different number
of virtual machines to simulate different number of
attribute authorities, created different number of cloud
tasks and bind them to the virtual machines to simulate
the different number of attributes in the system. The
proxy re-encryption algorithm is based on the JHU-
MIT’s Proxy Re-cryptography Library (PRL).

6.2 Experiments

We compared NC-MACPABE proposed in this
work with the centralized multi-authority proxy
reencryption mechanism based on ciphertext-policy
attribute-based encryption (MPRE-CPABE) and the
typical CP-ABE. For the initialization module does not
involve attribute management operations, the
performance of system has nothing to do with the
number of the attribute, but only associated with the
number of attribute authorities during the phase of
initialization.

Figure 5 shows the time costs of NC-MACPABE
and MPRE-CPABE with different numbers of attribute

Fig. 5 Time costs of NC-MACPABE and MPRE-CPABE with

different numbers of attribute authority

authority. For both NC-MACPABE and MPRE-CPABE,
The larger number of attribute authority, the higher time
costs. The time complexity of MPRE-CPABE is O(k), for
each attribute authority needs to interact with the central
authority. The time complexity of NC-MACPABE is
O(k2), for each attribute authority needs to interact with
each other. Therefore, the time cost of NC-MACPABE is
higher than the time cost of MPRE-CPABE during the
phase of initialization. However, as the initialization
algorithm is implemented only once when the system
starts, the extra time cost of NC-MACPABE can be
tolerated.

Table 1 shows the time costs of data segmentation.
We select the data with different sizes, including 1 MB,
5 MB, 50 MB, 200 MB and 1 GB. It is easy to find that
the time costs of data segmentation are acceptable, since
most data uploaded to the cloud system are usually
smaller than 1 GB.

Table 1 Time costs of data segmentation

Size of data/MB Time/ms

1 32

5 47

50 109

500 702

1024 3051

Figure 6 shows the key generation times of

NC-MACPABE, MPRE-CPABE and CP-ABE with
different numbers of attribute and different numbers of
attribute authority.The time costs of NC-MACPABE and
MPRE-CPABE with 5 attribute authorities are lower than
the time costs of NC-MACPABE and MPRE-CPABE
with 2 attribute authorities, and the time costs of
NC-MACPABE and MPRE-CPABE are lower than the
time costs of CP-ABE. To sum up, NC-MACPABE has

Fig. 6 Key generation time of NC-MACPABE, MPRE- CPABE

and CP-ABE

J. Cent. South Univ. (2017) 24: 807−818

817

the best performance of the key generation, for there is
no central authority as the performance bottleneck in
NC-MACPABE.

The performance of the symmetric key encryption
has nothing to do with the number of attribute authority.
Figure 7 shows the symmetric key encryption times of
NC-MACPABE, MPRE-CPABE and CP-ABE with
different numbers of attribute. The symmetric key
encryption times of all NC-MACPABE, MPRE- CPABE
and CP-ABE increase with the number of attribute
increasing. The time costs of NC-MACPABE and
MPRE-CPABE are similar and a little bit lower than the
time cost of CP-ABE.

Fig. 7 Symmetric key encryption time of NC-MACPABE,

MPRE-CPABE and CP-ABE

The performance of the symmetric key decryption

also has nothing to do with the number of attribute
authority. Figure 8 shows the symmetric key decryption
times of NC-MACPABE, MPRE-CPABE and CP-ABE
with different numbers of attribute. The symmetric key
decryption times of all NC-MACPABE, MPRE- CPABE
and CP-ABE increase with the number of attribute
increasing. The time cost of NC-MACPABE is a little bit
higher than the time costs of MPRE-CPABE and
CP-ABE. The reason is that without the central authority,
NC-MACPABE needs to combine the attribute private
key components received from attribute authorities to get
the private key, which is relatively complicated.

Finally, we compared the access right revocation
times of NC-MACPABE and MPRE-CPABE with and
without proxy re-encryption. The number of attribute
authority is set 5. Figure 9 shows the experimental
results. As shown in Fig. 9, the proxy reencryption can
greatly reduce the time costs of the access right
revocation. Furthermore, the time cost of NC-
MACPABE is a little higher than the time cost of MPRE-
CPABE. However, the time cost variability of NC-
MACPABE is more stable than MPRE-CPABE.

Fig. 8 Symmetric key decryption time of NC-MACPABE,

MPRE-CPABE and CP-ABE

Fig. 9 Access right revocation time of NC-MACPABE and

MPRE-CPABE

7 Conclusions

Cloud storage extends the concept of cloud
computing, which has been rapidly used in various fields.
The character of data management and ownership
separation, which means the cloud storage service
provider is not completely trusted, leads to the
difficulties of data security and privacy protection.
According to the data privacy based on data partition and
classification, this work proposes NC-MACPABE, a
novel multi-authority access control scheme without a
central authority based on CP-ABE. An optimization of
WAS allows different levels of operation for the same
data in cloud storage system. The concept of identity
dyeing is introduced to improve the users’ information
privacy further. The re-encryption algorithm is improved
in the scheme so that the data owner can revoke user’s
access in a more flexible way. The scheme is proved to
be secure, efficient and suitable for public cloud storage
systems. However, the time cost of NC-MACPABE is a
little higher than the time cost of MPRE-CPABE during
symmetric key decryption and access right revocation,
which is our focus of future research.

J. Cent. South Univ. (2017) 24: 807−818

818

References

[1] XU Xiao-long, TU Qun, NIK B, YANG Geng, WANG Xin-heng.

SATVPC: Secure-agent-based trustworthy virtual private cloud

model in open computing environments [J]. Journal of Central South

University, 2014, 21(8): 3186−3196.

[2] ZHANG Jiang, ZHANG Zhen-feng. Secure and efficient data-

sharing in clouds [J]. Concurrency and Computation: Practice and

Experience, 2015, 27(8): 2125−2143.

[3] FENG Deng-guo, ZHANG Min, ZHANG Yan, XU Zhen. Study on

cloud computing security [J]. Journal of Software, 2011, 22(1):

71−83. (in Chinese)

[4] ZOU De-qing, JIN hai, QIANG Wei-zhong, XU Peng. Challenge and

practice of cloud computing Security [J]. Communications of the

China Computer Federation, 2011, 7(12): 55−61. (in Chinese)

[5] YU Neng-hai, HAO Zhuo, XU Jia-jia. Review of cloud computing

security [J]. Chinese Journal of Electronics, 2013, 41(2): 371−381.

(in Chinese)

[6] HU Fei, QIU Mei-kang, LI Jia-yin, GRANT T, TAYLOR D,

MCCALEB S, BUTLER L, HAMNER R. A review on cloud

computing: Design challenges in architecture and security [J].

Journal of Computing and Information Technology, 2011, 19(1):

25–55.

[7] RISHI I. Apple to Strengthen Security After iCloud Nude Celebrity

Photos Leak [EB/OL]. [2014−09−02]. http://time.com/3271667/

apple-jennifer- lawrence-icloud-leak-security.

[8] Cloud Security Alliance. Security guidance for critical areas of focus

in cloud computing v2.1 [EB/OL]. [2013−03−26]. http://www.

cloudsecurityalliance. org/guidance/csaguide.v2.1.pdf.

[9] SU Jin-shu, CAO Dan, WANG Xiao-feng, SUN Yi-pin, HU Qiao-lin.

Attribute-based encryption schemes [J]. Journal of Software, 2011,

22(6): 1299−1315. (in Chinese)

[10] XUE Wei, SHU Ji-wu, LIU Yang, XUE Mao. Corslet: A shared

storage system keeping your data private [J]. Science China

Information Sciences, 2011, 54(6): 1119−1128.

[11] MAHAJAN P, SETTY S, LEE S, CLEMENT A, ALVISI L,

DAHLIN M, WALFISH M. Depot: Cloud storage with minimal trust

[J]. ACM Transactions on Computer Systems, 2011, 29(4): 1−38.

[12] SHRAER A, CACHIN C, CIDON A, KEIDAR I, MICHALEVSKY

Y, SHAKET D. Venus: Verification for untrusted cloud storage [C]//

Proceedings of the 2010 ACM Workshop on Cloud Computing

Security Workshop. New York: ACM, 2010: 19−30.

[13] ROY I, SETTY S T V, KILZER A, SHMATIKOV V, WITCHEL E.

Airavat: Security and privacy for mapreduce [C]// Proceedings of the

7th USENIX Conference on Networked Systems Design and

Implementation. San Jose: DBLP, 2010, 10: 297−312.

[14] YAN Liang, RONG Chun-ming, ZHAO Gan-sen. Strengthen cloud

computing security with federal identity management using

hierarchical identity-based cryptography [C]// Proceedings of 1st

International Conference. Berlin: Springer, 2009: 167−177.

[15] WANG Qian, WANG Cong, LI Jin, REN Kui, LOU Wen-jing.

Enabling public verifiability and data dynamics for storage security

in cloud computing [C]// Proceedings of Computer Security–

ESORICS 2009. Berlin: Springer, 2009: 355−370.

[16] DAMIANI E, PAGANO F, PAGANO D. iPrivacy: A distributed

approach to privacy on the cloud [J]. International Journal on

Advances in Security , 2011, 4(3): 185−197.

[17] MAO Jian, LI Kun, XU Xian-dong. Privacy protection scheme for

cloud computing [J]. Journal of Tsinghua University(Science and

Technology), 2011, 51(10): 1357−1362. (in Chinese)

[18] HUANG Ru-wei, GUI Xiao-lin, YU Si, YU Wei. Privacy-preserving

computable encryption scheme of cloud computing [J]. Chinese

Journal of Computers, 2011, 34(12): 2391−2402. (in Chinese)

[19] SHAMIR A. Identity-based cryptosystems and signature schemes [J].

Lecture Notes in Computer Science, 1984, 21(2): 47−53.

[20] BONEH D, FRANKLIN M. Identity-based encryption from the Weil

pairing [C]// Proceedings of the 10th Cryptology Conference on

Advances in Cryptology. Berlin: Springer, 2001: 213−229.

[21] SAHAI A, WATERS B. Fuzzy identity-based encryption [C]//

Proceedings of the 2005 Annual Eurocrypt Conference. Berlin:

Springer, 2005: 457−473.

[22] GOYAL V, PANDEY O, SAHAI A, WATERS B. Attribute-based

encryption for fine-grained access control of encrypted data [C]//

Proceedings of the 13th ACM Conference on Computer and

Communications Security. New York: ACM, 2006: 89−98.

[23] BETHENCOURT J, SAHAI A, WATERS B. Ciphertext-policy

attribute-based encryption [C]// Proceedings of the 2007 IEEE

Symposium on Security and Privacy. Washington: IEEE Computer

Society, 2007: 321−334.

[24] CHASE M. Multi-authority attribute based encryption [C]//

Proceedings of Theory of Cryptography Conference. Berlin: Springer,

2007: 515−534.

[25] BOZOVIC V, SOCEK D, STEINWANDT R, VILLANYI V I.

Multi-authority attribute-based encryption with honest-but-curious

central authority [J]. International Journal of Computer Mathematics,

2012, 89(3): 268−283.

[26] LIN Huang, CAO Zhen-fu, LIANG Xiao-hui, SHAO Jun. Secure

threshold multi authority attribute based encryption without a central

authority [J]. Information Sciences, 2010, 180(13): 2618−2632.

[27] BLAZE M, BLEUMER G, STRAUSS M. Divertible protocols and

atomic proxy cryptography [C]// Proceedings of the 1998

International Conference on the Theory and Application of

Cryptographic Techniques Espoo. Berlin: Springer, 1998: 127−144.

[28] ATENIESE G, FU K, GREEN M, HOHENBERGER S. Improved

proxy re-encryption schemes with applications to secure distributed

storage [J]. ACM Transactions on Information and System Security,

2006, 9(1): 1−30

(Edited by FANG Jing-hua)

Cite this article as: XU Xiao-long, ZHANG Qi-tong, ZHOU Jing-lan. NC-MACPABE: Non-centered multi-authority
proxy re-encryption based on CP-ABE for cloud storage systems [J]. Journal of Central South University, 2017, 24(4):
807−818. DOI: 10.1007/s11771-017-3483-z.

