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Abstract: Temporal-spatial cross-correlation analysis of non-stationary wind speed time series plays a crucial role in wind field 
reconstruction as well as in wind pattern recognition. Firstly, the near-surface wind speed time series recorded at different locations 
are studied using the detrended fluctuation analysis (DFA), and the corresponding scaling exponents are larger than 1. This indicates 
that all these wind speed time series have non-stationary characteristics. Secondly, concerning this special feature（ i.e., 
non-stationarity）of wind signals, a cross-correlation analysis method, namely detrended cross-correlation analysis (DCCA) 
coefficient, is employed to evaluate the temporal-spatial cross-correlations between non-stationary time series of different 
anemometer pairs. Finally, experiments on ten wind speed data synchronously collected by the ten anemometers with equidistant 
arrangement illustrate that the method of DCCA cross-correlation coefficient can accurately analyze full-scale temporal-spatial 
cross-correlation between non-stationary time series and also can easily identify the seasonal component, while three traditional 
cross-correlation techniques (i.e., Pearson coefficient, cross-correlation function, and DCCA method) cannot give us these 
information directly. 
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1 Introduction 
 

Since near-surface wind is governed by a variety of 
physical processes and complex surface topography, 
wind signals are extremely inhomogeneous both in 
temporal and spatial scales. Therefore, studying the 
temporal-spatial characteristics of near surface wind is an 
interesting and challenging task. 

Numerous studies have focused on the temporal 
correlation (i.e., long term correlation) of wind speed 
records over the last decade [1−8]. Compared with 
temporal research works, few studies addressed on 
temporal-spatial cross-correlation in terms of fractal 
theory. Accurate measurement of the temporal-spatial 
cross-correlation of near-surface wind will be benefit for 
numerous applications. For the application of wind field 
reconstruction [9], reconstruction accuracy strongly 
depends on the accurate temporal-spatial cross- 
correlation between wind data collected at different 
locations. For the application of wind pattern recognition 
[10], temporal-spatial cross-correlation between wind 
data provides important clues for measuring the level of 

similarity between the testing pattern and the predefined 
pattern. 

Pearson coefficient and cross-correlation function 
are two popular methods to investigate the 
cross-correlation between time series. However, these 
two techniques have certain limitations. In terms of 
Pearson coefficient, it is a global metric, and for 
non-zero correlations it is a biased estimator and the bias 
increases with increasing strength of non-stationarity 
[11]. As for cross-correlation function, recent studies  
[12] state that it can be employed to reveal the time 
dynamic causality, but it is also not suited for 
non-stationary signals. In the real world, many data are 
highly non-stationary. To address the non-stationary 
problem, the method of detrended cross-correlation 
analysis (DCCA) [13] was proposed. This method can 
quantify long-range power-law cross-correlations, while 
it cannot quantify the level of cross-correlations. In order 
to overcome the shortcoming of DCCA, a new method, 
called DCCA cross-correlation coefficient [14], was 
proposed. This technique not only quantifies the level of 
cross-correlation between non-stationary time series but 
also identifies seasonal components. Therefore, we prefer 
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to use DCCA cross-correlation coefficient to analyze the 
temporal-spatial cross-correlation between non- 
stationary near-surface wind speed time series. To 
demonstrate the effectiveness of DCCA cross-correlation 
coefficient, Pearson coefficient and cross-correlation 
function as well as DCCA are utilized for comparisons. 
In experimental sets, ten high precision 2D ultrasonic 
anemometers (UAs) are deployed in line with 1 m 
interval (see Fig. 1). Note that this arrangement of 
sensors can easily check the accuracy and robustness of 
different cross-correlation estimators. 
 

 
Fig. 1 Deployment of ten 2D ultrasonic anemometers 
 
2 Methodology 
 

Detrended cross-correlation coefficient [14] is a 
newly developed method to quantify the cross- 
correlation between two non-stationary time series. It is a 
combination of DCCA [13] and detrended fluctuation 
analysis (DFA) [15], and it has been successfully applied 
to various fields including economics, geography, 
meteorology, as well as engineering [8, 16−20]. A 
detailed description of DCCA cross-correlation 
coefficient algorithm can be found in Refs. [11, 14, 21]. 
Here, the procedure is briefly described as follows. 

Considering two time series {xi} and {yi} with equal 
length N, we construct the “profile” of each series by  

integrating these time series, obtaining Xk= 
k
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If the two series are long-range cross-correlated, 
then cross-correlations decay as a power law, the 
corresponding detrended covariance is either always 
positive or always negative, and DCCA covariance 
function grows with time scale s as  

ssF ~)(DCCA                                (2) 
 

The exponent λ, which describes the power-law 
relationship between two series, is obtained as the slope 
of the least square line fitting of )](lg[ DCCA sF  versus 
lg[s]. Supposing {xi}={yi}, the detrended covariance 

)(2
DCCA sF  reduces to the detrended variance )(2

DFA sF  

used in the DFA method. In this case, the exponent is 
equivalent to the well-known Hurst exponent H, which 
takes values between 0 and 1 for stationary processes, 
while takes 1<H<1.5 for non-stationary processes [22]. 
Finally, based on DFA fluctuation function and DCCA 
covariance function, we can calculate the cross- 
correlation coefficient by  
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The primary advantage of the DCCA cross- 

correlation coefficient is that it’s capable of measuring 
the true correlation levels between two non-stationary 
time series at different time scales [14, 21]. PODOBNIK 
et al [21] showed that ρDCCA bounded between −1 and 1, 
and ρDCCA=1 for perfectly correlated series, ρDCCA=0 for 
uncorrelated series, ρDCCA=−1 for perfectly 
anti-correlated processes. 
 
3 Experimental settings 
 

The wind data are collected at an open space in 
Tianjin University, located at N39.06°, E117.09°. Ten 
high-precision 2D UAs (WindSonic, Gill Instruments 
Ltd.) are deployed in line with interval of 1 m and are 
elevated 0.6 m above the ground. Sampling rate is 4 Hz 
and recording duration is 1 h. Therefore, the data for 
each sensor are 14400 points. For simplicity, we use 
U1−U10 to represent 10 UAs, respectively. 
 
4 Experimental results and discussion 
 
4.1 Verification of wind data having fractal and non- 

stationary characteristics 
The measurement results of ten 2D UAs are shown 

in Fig. 2, indicating that all wind speed time series look 
similar, whereas each one fluctuates in an irregular and 
complex manner. Firstly, DFA method is adopted to 
verify whether wind speed data show temporal fractal 
behavior at high-resolution temporal (second) scales. The 
log-log plots of the DFA fluctuation functions versus 
time scale s are illustrated in Fig. 3(a), demonstrating 
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Fig. 2 Measurements of ten 2D ultrasonic anemometers (The wind time series are simultaneously recorded with 4 Hz sampling rate 

during a period of 1 h and each series contains 14400 points) 

 
that all fluctuation functions scale as a power law for a 
broad range of time scales (8<s<2880, i.e., range from  
2 s to 360 s). All corresponding scaling exponents are 
greater than 1 (H≈1.2, see Fig. 3(b)), which indicates that 
the dynamic of the wind speed shows persistence 
properties at second scales and all wind speed time series 

have non-stationary features [22]. 
In order to further test the scaling behavior of non- 

stationary time series, surrogate time series are generated 
by shuffling the original wind speed records [2, 3, 23]. 
The test results show that those new surrogate data 
preserve the distribution of the original ones, while the 
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Fig. 3 Results of DFA analysis: (a) All fluctuation functions of 

original data and shuffled data showing similar power law 

behaviors; (b) Statistic results of Hurst exponents for original 

data (H≈1.2) and shuffled data (H=0.5) (Different gradient 

colors represent different UAs. The DFA fluctuation functions 

for original data are vertically shifted for clarity) 

 
corresponding long range correlations are destroyed, as 
shown in Fig. 3(a). Statistical results in Fig. 3(b) 
illustrate that the shuffling signals exhibit uncorrelated 
behavior (H=0.5, i.e., white noise). Abovementioned 
analysis confirms that the scaling behavior of 
near-surface wind speed is due to the temporal 
correlations, rather than the distribution. 
 
4.2 Temporal-spatial cross-correlation analysis using 

conventional techniques 
The wind speed time series are measured 

simultaneously from the ten 2D UAs deployed in line 
with 1 m interval as shown in Fig. 2. We set U1 as the 
reference location. Next, three conventional methods, i.e., 
Pearson coefficient, cross-correlation function and 
DCCA are implemented to evaluate the spatial 
cross-correlation between the U1 and other Ux (U1×Ux, x = 
2, 3, …, 10). 
4.2.1 Analysis results by Pearson coefficient 

The spatial cross-correlation levels between the U1 

and other nine Ux (i.e., U1×Ux , x=2, 3, …, 10) using the 
method of Pearson coefficient are 0.9191, 0.8797, 0.8467, 

0.8077, 0.7956, 0.7771, 0.7568, 0.7319, 0.7117, 
respectively (see Fig. 4). In this figure we can identify 
that there indeed exist strong spatial cross-correlations 
between the referenced U1 and other Ux, and the 
corresponding intensity value increases with a decrease 
in the intervals. Due to the intrinsic limitation of the 
Pearson coefficient, this method only provides the global 
measurement of the level of the spatial cross-correlation. 
In other words, this analysis cannot reflect the cross- 
correlation variance as a function of the time scales. 
 

 
Fig. 4 Test results using Pearson coefficient 
 
4.2.2 Test results by cross-correlation function 

Next, cross-correlation function is adopted to 
evaluate the spatial variability of wind speed data. The 
highlight of this method is that it is capable of measuring 
the distinction between two time series as a function of 
the lag time. This technique can be implemented as the 
convolution of two series {xi} and {yi}, and the cross-  

correlation function is calculated as 





  ii yxC )(  

(i=1, 2, …, N), where 

ix  denotes the complex conjugate 

of xi, and τ is the lag parameter. 
Compared with the standard Pearson coefficient, the 

superiority of the cross-correlation function is that it 
concerns about the time lag problem. When τ=0 (no 
delay), the cross-correlation results agree well with the 
deployment of UAs. Besides, the cross-correlation levels 
C(τ) decay with the time lag τ. However, except for τ=0, 
there is no stable relationship between the intensities of 
C(τ) and the deployment of UAs, and in most cases, the 
values of C(τ) for different Ux (x=2, 3, …, 10) vary 
slightly at the same τ, as shown in Fig. 5. 
4.2.3 Analysis results by DCCA method 

Concerning about the non-stationary features of the 
signals, a new strategy, called detrended cross- 
correlation analysis method (DCCA)  was developed to 
study cross-correlation between time series. Taking into 
account the fractal and non-stationary characteristics in 
wind speed data (see Section 4.1), we therefore apply 
DCCA method to investigate cross-correlations between 
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Fig. 5 Test results using cross-correlation function (Except for 

τ=0, there is no stable relationship between the intensities of 

C(τ) and deployment of UAs, and in most cases (τ ≠ 0), there is 

little difference in C(τ) for different UAs, such as τ=−10000, 

−5000, 5000, 10000) 

 
the U1 and other Ux. 

Figure 6 exhibits DCCA results in log-log scale. 
Cross-correlations between the U1 and other UAs are all 
very well fitted by power laws (Fig. 6(a)) with λi=1.1853, 
1.1942, 1.2014, 1.1971, 1.2134, 1.2179, 1.2204, 1.2208, 
 

 
Fig. 6 Cross-correlation results between U1 and other Ux using 

DCCA technique: (a) Fluctuation functions of DCCA very well 

fitted by power-laws; (b) Cross-correlation λ exponents similar 

for different sensor pairs 

1.2306 for U1×Ux (x=2, 3, … , 10), respectively (see  
Fig. 6(b)). This figure informs us that if we analyze the 
cross-correlation between the U1 and other Ux utilizing 
the DCCA method, we have the similar behaviors with 
little difference. It is obvious that the DCCA method can 
quantify long-range power-law cross-correlations, while 
it cannot quantify the level of cross-correlations in 
function of time scale s. 
 
4.3 Test results by DCCA cross- correlation coefficient 

In order to overcome the limitation of DCCA, 
ZEBENDE [14] proposed a novel modified method, i.e., 
DCCA cross-correlation coefficient which is defined as 
the ratio between the detrended covariance function and 
the detrended variance function. The main advantages of 
this proposed method, compared with the DCCA strategy, 
is that it can quantify the level of cross-correlation as a 
function of time scales as well as can easily identify the 
seasonal components. 

Next, the DCCA cross-correlation coefficients are 
calculated between the U1 and other Ux (see ρDCCA in  
Fig. 7). The corresponding cross-correlations are always 
 

 
Fig. 7 Results using DCCA cross-correlation coefficient:     

(a) Cross-correlations between U1 and other Ux exhibit different 

behaviors in terms of time scale s and corresponding offsets of 

cross-correlation are in agreement with spatial relationship 

between U1 and other Ux; (b) Analysis results of Pearson 

coefficient similar to results of ρDCCA at s=204 (52 s) 
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positive and not perfect until s≈1000 (250 s). In most 
cases, starting from lower levels of cross correlation 
(ρDCCA≤0.3) at the small time scales (s≤12, i.e., 3 s), they 
will transfer to perfect cross-correlation (ρDCCA≈1) at 
large time scales (s≥1000, i.e., 250 s). That is why we 
cannot use only the DCCA method to quantify the level 
of cross-correlation. 

In contrast to the results of DCCA, the cross- 
correlations between the U1 and other Ux exhibit different 
behaviors in terms of time scale s and in most cases the 
offsets of cross-correlation for different sensor pairs are 
in agreement with the spatial arrangement of Ux shown 
in Fig. 1. In other words, the smaller the distance to U1 is, 
the larger the cross-correlation there will be at a certain 
time scale (see Fig. 7(a)). This figure also informs us an 
important fact that the spatial cross-correlations between 
the U1 and other UAs change according to the time scale 
s. These results may have far-reaching consequences for 
wind field reconstruction and wind forecasting. 
Moreover, in Fig. 7(a) we can identify the seasonal 
components, i.e., s=12 (3 s) divides ρDCCA into weak 
cross-correlation (s<12) or not (s>12), and s=1000 (250 s) 
divides ρDCCA into perfect cross-correlation (s>1000) or 
not (s<1000). Finally, compared with the measurement of 
Pearson coefficient (see Fig. 7(b)), similar results are 
found at certain time scale (s=204, i.e., 52 s) in Fig. 7(a). 
 
5 Conclusions 
 

1) The temporal-spatial cross-correlation between 
the time series recorded at different locations has many 
potential applications. However, tests on ten wind-speed 
data of anemometers with regular arrangement show that 
the conventional methods of cross-correlation, such as 
Pearson coefficient, cross-correlation function and 
DCCA, are unsuitable to measure the temporal-spatial 
cross-correlation between the wind speed time series. 
Pearson coefficient and DCCA are single metric 
techniques, thus for the cases in which the temporal- 
spatial cross-correlation changes as the time scale 
changes, these two methods failed. The cross- correlation 
results using cross-correlation function are fluctuated in 
many cases, which are not well matched with the regular 
arrangement of UAs. 

2) Taking into account the non- stationary features 
of wind speed time series, a state-of- art method, called 
DCCA cross-correlation coefficient, was applied to 
analyze the cross-correlation between the different sensor 
pairs. The experimental results show that this method can 
accurately quantify the level of cross- correlation 
between non-stationary wind speed time series and also 
successfully identify the seasonal component. Next, we 
plan to use this robust method to do the works of the 
wind field reconstruction based on real measurement and 
wind pattern recognition. 
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