
 

J. Cent. South Univ. (2016) 23: 3273−3283 
DOI: 10.1007/s11771-016-3393-5

 

Calculation of maximum surface settlement induced by 
EPB shield tunnelling and introducing most effective parameter 

 
Sayed Rahim Moeinossadat1, Kaveh Ahangari1, Kourosh Shahriar2 

 
1. Department of Mining Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran; 
2. Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran, Iran 

 
© Central South University Press and Springer-Verlag Berlin Heidelberg 2016 

                                                                                                  
 

Abstract: This study aims to predict ground surface settlement due to shallow tunneling and introduce the most affecting parameters 
on this phenomenon. Based on data collected from Shanghai LRT Line 2 project undertaken by TBM-EPB method, this research has 
considered the tunnel’s geometric, strength, and operational factors as the dependent variables. At first, multiple regression (MR) 
method was used to propose equations based on various parameters. The results indicated the dependency of surface settlement on 
many parameters so that the interactions among different parameters make it impossible to use MR method as it leads to equations of 
poor accuracy. As such, adaptive neuro-fuzzy inference system (ANFIS), was used to evaluate its capabilities in terms of predicting 
surface settlement. Among generated ANFIS models, the model with all input parameters considered produced the best prediction, so 
as its associated R2 in the test phase was obtained to be 0.957. The equations and models in which operational factors were taken into 
consideration gave better prediction results indicating larger relative effect of such factors. For sensitivity analysis of ANFIS model, 
cosine amplitude method (CAM) was employed; among other dependent variables, fill factor of grouting (n) and grouting pressure (P) 
were identified as the most affecting parameters. 
 
Key words: surface settlement; shallow tunnel; tunnel boring machine (TBM); multiple regression (MR); adaptive neuro-fuzzy 
inference system (ANFIS); cosine amplitude method (CAM) 
                                                                                                             
 

 
1 Introduction 
 

Tunnel construction in urban areas is not as easy as 
it is in non-residential areas. Most of tunnels built along 
railways, roads, and particularly subways are constructed 
in shallow depths of soft grounds found within urban 
areas (subsurface structures’ foundations or beside 
important urban facilities). Deformations (specially the 
settlement) are a common phenomenon in the course of 
tunneling process [1]. On the other hand, in most of such 
projects, it is not possible to make a change in the 
tunnel’s path to reach a reliable ground. Therefore, it is 
necessary to protect underground structures and facilities 
against possible damages resulted from tunneling process. 
As such, the tunnel should be constructed in such a way 
to induce minimum deformation on the ground surface, 
so as to minimize the damages experienced by surface 
structures. The mentioned points reveal the importance 
of proper analysis, support, compatibility of construction 
method and instrumentation [2]. 

In order to be able to control the settlement, one 
should be able to predict it, based on which one may 
consider required preventions and protections. 
Settlement prevention and control methods are 

completely dependent on the settlement prediction 
method, further indicating the importance of settlement 
prediction. Accordingly, a tunnel engineer needs to be 
able to make reliable prediction of ground deformations 
induced by tunneling. 

The selection of appropriate method depends on the 
complexity of the problems [3]. To predict settlement 
and other tunnel deformations, many methods were 
proposed (such as analytical, empirical, numerical, etc.) 
each with its strengths, contributing to the problem 
expression in one way or another, and weaknesses as 
well. The most important weakness of the proposed 
methods is that they fail to consider all parameters 
contributing to the settlement. Although some 
advancements have been realized in the ability to 
propose ground movement during recent years, but the 
most advanced method has several pitfalls. PECK [4] 
addressed the issues associated with soft ground 
tunneling, and proposed an empirical relation based on 
field observations of several tunneling projects. The 
empirical relation has become a classical framework 
widely used for predicting tunneling-induced ground 
movement. However, at the time of PECK’s work, 
tunneling was mainly accomplished using either hand 
mining methods or open faced shield methods, including 
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several under compressed air. As a result, ground 
movements caused by the tunneling methods used at that 
time depended more on geological conditions than on the 
tunneling operational parameters. Empirical methods 
relating geological conditions to surface settlements were 
developed on this basis. However, at present, EPB (earth 
pressure balance) shield has been used in most of recent 
soft ground tunneling projects around the world. In this 
tunneling method, there are many factors including 
ground condition, operational parameters, and tunnel 
geometry affecting the magnitude of surface settlement. 
Therefore, it is difficult to predict the settlement only by 
the classical method. Although analytical relations exist 
between shield tunnel characteristics and surface 
settlements; also numerical methods (FEM and …) have 
been applied to tunneling problems but all affecting 
parameters still cannot be included in the solutions [5]. 

To overcome these limitations, intelligent methods 
can be used to develop a more accurate and reliable 
predictive method. In the recent decade, intelligent 
approaches have found a special position within the 
efforts toward estimating the settlement as well as other 
tunnel deformations. Various researchers have used such 
methods as artificial neural network (ANN), fuzzy logic 
(FL), support vector machine (SVM), gene expression 
programming (GEP) to present models to predict 
settlement and other tunnel deformations; the results 
indicate high relative accuracy of these methods [3, 
6−12]. In this investigation, first, MR method was used 
to present a set of equations to predict the maximum 
surface settlement. Then, as an intelligent method, 
ANFIS was used to enhance the accuracy of the results. 
ANFIS enjoys the advantages of both neural and fuzzy 
systems. It is particularly the alternative of choice in 
cases where the number of available datasets to be used 
for modeling is low. Most geoscience-related problems 
do not come with a large deal of available data; the 
present research, as well, suffers from such issue. For 
example, this method is selected to be used to predict 
surface settlement in this research. 

In spite of numerous advantages provided by 
intelligent methods, a large deal of researches conducted 
on such methods have referred to their pitfalls. The main 
disadvantage associated with these methods is that they 
model the settlement without considering the main 
affecting factors. As an example, many researches have 
ignored tunnel support parameter. It is clear that a tunnel 
with no support will induce as large deformations as the 
tunnel is likely to be unstable. Therefore, such main 
factors as operational factors should be considered when 
modeling and predicting surface settlement. 

Made up of numerous inputs, yet intelligent 
methods provide enhanced accuracy, they can be used for 
upcoming sections of the corresponding tunnel or similar 

tunnels only when all inputs are available, namely, lack 
of even a single input parameter makes it impossible to 
employ the generated model. In the present investigation, 
we have tried to build different models based on different 
sets of input parameters, so as to not only evaluate their 
efficiency, but also to study the effect of their presence or 
absence on the surface settlement prediction. 
Accordingly, several intelligent models and equations 
were generated based on different sets of input 
parameters (in terms of type and number), so as the 
engineers working within this field can employ the 
model in which all input parameters required are taken 
into consideration. 

Among few studies already dealt with settlement 
prediction using ANFIS method one may refer to the 
works by HOU et al [13] and AHANGARI et al [12]. 
HOU et al [13] used such dependent parameters as 
surface settlement (at 5 points) behind the tunnel face 
and one operational parameter (working cycles per day) 
to predict surface settlement 5 m ahead of the shield face. 
As such, no geometric, strength, or alike factors was 
considered in their investigations. AHANGARI et al [12] 
paid particular attention to geometric and strength factors; 
however, they ignored operational factors such as tunnel 
support parameters. Furthermore, the settlement 
parameter used in their investigation was not the actual 
settlement (measured), but the one resulted from 
numerical modeling (FLAC2D). 

The novelty of the employed intelligent method, 
elimination of existing pitfalls within previous researches, 
and higher accuracy of the models developed in the 
present study compared to those in Ref. [14] indicate 
higher reliability of the results obtained in the present 
research. Finally, for sensitivity analysis of ANFIS 
model and determination of the effect amount of input 
parameters, CAM method was undertaken. Various 
researchers have already proved the performance of 
CAM method which is related to the dot product for the 
cosine function [15]. 
 
2 Case study 
 

The study scope of this research is Shanghai LRT 
Line 2 project. All required information was gathered 
from a specific research [14]. The tunneling project 
between Pudong South Road Station and Nanpu Bridge 
Station was an important component of this project as 
well as a major project in Shanghai. The tunnel was 
started from the end well west to Pudong South Road 
Station to the end well east to Nanpu Bridge Station, 
with the full length of up line 1997.148 m and down line 
1981.960 m. Also, the soil type of the project area was 
mainly silty clay and the tunnel was constructed using 
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TBM-EPB approach. The other properties of this project 
are summarized in Table 1. 
 
Table 1 Some of technical characteristics of shield in project of 

Shanghai LRT Line 2 

Parameter Value 

External diameter/m 6.2 

Internal diameter/m 5.5 

Shield external diameter/m 6.34 

Width of lining ring/m 1.0 

Shield advancing speed/(m·h−1) 2.0 

Total thrust of jack/m 14 

Shield tail’s grouting pressure/MPa 0.3 

Shield tail’s grouting volume/(m3·m−1) 2.0 

 

3 Factors affecting surface settlement 
 

Based upon case history reviews [8, 11], the factors 
causing settlements can be grouped into three major 
categories. These parameters summarized in Table 2 are 
used as input data for predicting the maximum surface 
settlement. Figure 1 shows the maximum surface 
settlement versus nine affecting parameters in Shanghai 
LRT Line 2 Project. It is clear that there are further 
parameters contributing into the tunnel settlement; 
however, they are ignored as many of them (such as 
segment thickness and length, TBM length) were 
constant in the course of tunneling project. 
 
Table 2 Summary of factors affecting maximum surface 

settlement (Smax) 

Category Parameter 

Tunnel geometry factor 
Depth (H) 

Diameter (D) 

Soil strength factor 

Cohesion force (C) 

Internal friction angle ( φ ) 

Modulus of elasticity (Es) 

Shield operational factor 

Penetration rate (V) 

Thrust force (F) 

Grouting pressure (P) 

Fill factor of grouting (n) 

 
3.1 Tunnel geometry factors 

Factors addressed in this section are two geometric 
factors, namely the tunnel depth (H) and diameter (D). 
Here, tunnel diameter is the same as drilling diameter 
which is determined by the shield’s outer diameter. This 
parameter plays a major role in the development of 
ground settlement. As the diameter increases, the roof 
length is immediately increased and so is the area of the 

surface to be self-supported. As the maximum 
convergence rate occurs within a region around the face 
covering an area of a diameter equal to that of the tunnel, 
by increasing the tunnel diameter, the affected region 
around the face extends makes it more difficult to control 
the convergence. Furthermore, by increasing the tunnel 
diameter, effective incorporation of temporary support 
system is reduced, so that tunneling in such loose 
grounds will require extended provisions and particular 
considerations. Tunnel depth is another effective 
parameter on the settlement development within the 
ground above the tunnel. Obviously, the tunnel provided 
is deep enough, roof falls resulted effects will be petered 
out before reaching the surface [16]. Nevertheless, the 
effect of tunnel depth on the settlement should always be 
considered along with those of tunnel diameter. 
Accordingly, one may use depth to diameter ratio (H/D) 
to simultaneously investigate their effects. Referring to 
Figs. 1(a) and (b), an approximately suitable relation 
exists between the tunnel depth (H) and surface 
settlement (Smax). This is why tunnel diameter changes 
within a limited range with the corresponding figure not 
showing any significant trend. 
 
3.2 Soil strength factors 

Tunneling into soft ground requires a greater deal of 
safety provisions compared to those provided under hard 
rock conditions. Shallow tunnels are usually drilled into 
soft grounds necessitating particular considerations in 
terms of tunnel’s temporary support system. Failure to 
incorporate an effective supporting system of high 
efficiency, poor ground properties will boost tunnel roof 
fall probability. Therefore, it will be very useful to 
incorporate TBM-EPB drilling approach under such 
conditions. According to the mentioned issues, the higher 
the strength of the tunnel encompassing mass is, the 
easier the tunneling process leading to lower settlement 
will be. In order to predict the maximum surface 
settlement in this research, three parameters were 
considered: cohesion force (C), internal friction angle (), 
and modulus of elasticity (Es). Figures 1(c) to (e) 
illustrate the value of these parameters versus the 
resulted settlement. According to these figures, the three 
parameters have similar effect on the settlement. Denoted 
part of the figures demonstrates a situation where similar 
parameters have produced different settlement values. 
This is an indication of other parameters (either 
geometric or operational) affecting the settlement. 
Therefore, it seems clear that other affecting factors than 
strength ones should be considered. 
 
3.3 Shield operational factors 

Four operational factors are considered. The 
penetration rate measures how fast the shield can move  
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Fig. 1 Effective parameters versus maximum 
surface settlement 
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forward. In practice, to achieve an EPB mode, shield 
operators should control the rate of spoil extraction to 
correspond to the penetration rate. If the extraction rate is 
too high compared to the penetration rate, it means that 
the shield excavates too much volume of soil relative to 
the volume replaced by the advancing shield. As a result, 
the excavated volume of the soil becomes unbalanced 
with the volume of soil that is occupied by the shield 
advance so that ground loss would be expected. On the 
other hand, if the extraction rate is too low compared to 
the penetration rate, it means that the volume of 
excavation is less than the volume replaced by the shield 
advance. As a result, the shield may generate too high a 
face pressure. The most important factor affecting the 
penetration rate is the capacity or speed of the soil 
removal system [8]. As shown Fig. 1(f), it is still difficult 
to establish a clear relationship between the penetration 
rate and the maximum surface settlement. Relatively 
similar issues are seen for the relation between the thrust 
force and surface settlement. The thrust force is the force 
which drives the shield forward against frictional forces 
as well as required supporting pressure (if any). This 
operational parameter is largely related to the penetration 
rate. The penetration rate increases as the thrust force is 
raised up to an optimum level beyond which an inverse 
effect is resulted, so that the discs will be likely to stuck 
and reduce the penetration rate. Accordingly, just like 
what was expressed regarding the relation between the 
penetration rate and settlement, generally it can say that a 
rise in thrust force causes an increase in the tunnel face 
pressure, while a decrease in the thrust force makes the 
ground subside resulting in surface settlement. Although, 
according to Fig. 1(g), a relatively clear relationship 
exists between the thrust force and the maximum surface 
settlement, but it is not yet possible to make an accurate 
judgment on this case. 

Quality of tail void grouting also contributes to the 
extent of the ground settlement. As the shield is jacked 
forward, a tail void around the outside of the lining is 
built as shown in Fig. 2(a). Tail void grouting is 
necessary in order to prevent ground from moving 
towards the void. In general practice, grouting pressure  

(P) should be high enough to guarantee the flow of grout 
material and to resist the ground moving into the void as 
shown in  Fig. 2(b). Another criterion to check the 
grouting performance is percent grout filling (n) that has 
to be maintained at a level higher than the theoretical 
void as also shown in Fig. 2(b). Tunneling operations 
with high P and n can considerably reduce settlements 
developed after the shield passing [8]. As can be seen 
from Figs. 1(h), (i), both of the grouting pressure and 
grouting fill factor approximately are constant, but the 
maximum surface settlements were found to vary 
significantly. A clear relationship cannot be established 
from the plot. This may be caused by the fact that surface 
settlements can be also affected by other parameters. 

According to Fig. 1, there are no strong trends in the 
relationship between each parameter and the maximum 
surface settlement. Only in the plots of the tunnel depth 
versus the maximum surface settlements, small trends 
were observed. This indicates that more than one 
parameter influences the magnitude of surface 
settlements. In practice, it is impossible to hold the other 
parameters constant while varying a parameter for 
investigating the effect of the parameter on surface 
settlements. Furthermore, even though large amounts of 
data were recorded, sensitivity analysis can provide only 
limited results due to the complex behavior of EPB 
shield tunneling. 
 
4 Multiple regression (MR) method 

Multiple regression (MR) method is used to study 
or determine the relationships between different variables, 
including independent and dependent ones and might be 
used to analyze data or to generate a model. Many 
researchers have applied this particular method in 
various fields of geotechnical science [17−18]. Aimed at 
presenting an applied relation to predict the maximum 
surface settlement and investigate the effect of dependent 
variables, in this research SPSS software (Ver. 16.0) is 
used to propose several of multiple linear regression 
equations. According to Table 3, firstly, effects of 
geometric parameters of the tunnel were investigated and 

 

 
Fig. 2 Schematic diagram: (a) Tail void between tunnel lining and liner; (b) Grouting pressure and grout filling [8] 
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Table 3 Proposed MR equations for prediction of maximum surface settlement 

No. Equation 
Mode Sig. 

level 
Sig. level 

<0.05 

(1) Smax=– 2.802H+11.431D 0.000 H, D 

(2) Smax=−0.399C+1.839φ+1.704Es 0.000 C, ϕ 

(3) Smax=0.771V−1.621F+98.420P+0.072n 0.000 F, V 

(4) Smax=11.108H/D−0.256C+0.998φ+0.505Es 0.000 — 

(5) Smax=0.842H/D+0.764V−1.654F+95.542P+0.073n 0.000 F, V 

(6) Smax=0.031C+0.643φ−0.465Es+0.830V−2.026F+84.957P+0.085n 0.000 F, V 

(7) Smax=0.111H/D+0.031C+0.643φ−0.469Es+0.828V−2.028F+84.699P+0.085n 0.000 F, V 

(8) Smax=−0.252C+2.329φ 0.000 C, ϕ 

(9) Smax=1.296V−0.644F 0.000 V 

Smax is the maximum surface settlement (mm); H and D are tunnel depth and diameter (m), respectively; C is the cohesion force (kPa); φ is the internal friction 
angle (°); Es is the modulus of elasticity (MPa); V is the penetration rate (mm/min); F is the thrust force (MN); P is the grouting pressure (MPa); and n is the fill 
factor of grouting (%). 

 
based on Eq. (1), the tunnel depth (H) and diameter (D) 
were selected as the dependent variables. As can be seen, 
the equation’s significance level is equal to zero, 
indicating the reliability of the model. 

The general levels of significance are 10% (0.1), 
5% (0.05), 1% (0.01), 0.5% (0.005), and 0.1% (0.001). 
The choice of significance level is somewhat arbitrary, 
but for many applications a level of 5% is chosen 
conventionally [18]. The significance level in Table 3 is 
zero; therefore, the presented MR model is valid since 
the maximum significance level is 0.05. 

It is worth mentioning that the significance levels of 
both dependent variables within Eq. (1) are below 0.05, 
confirming their effective role within the respective 
equation. What investigated in Eq. (2) is the effect of 
strength parameters associated with the environment 
within which the tunnel is encompassed. According to 
Table 3, in spite of the fact that the significance level of 
the model is generally confirmed, the significance level 
for the parameter Es is above 0.05, indicating the this 
parameter possesses the lower significance. Similarly, Eq. 
(3) was proposed to address the third class of effective 
parameters (operational factors) on the settlement; 
among 4 dependent parameters in this class, only F and 
V were of significance levels below 5%. 

Continuing with the application of MR, effective 
parameters were combined to compose new equations. 
Accordingly, Eq. (4) is composed of geometric and 
strength parameters; Eq. (5) is composed of geometric 
and operational parameters; Eq. (6) is composed of 
strength and operational parameters; and Eq. (7) includes 
all parameters. Considering limited variation range of 
tunnel diameter data in this research, one can enhance 
the model accuracy by reducing the number of dependent 
parameters. Therefore, tunnel depth to diameter ratio 
(H/D) was used in the combined equations to somehow 

reduce the problem complexity by quantitatively 
reducing the number of dependent parameters. None of 
dependent parameters incorporated into Eq. (4) satisfied 
the significance constraint. Similarly in Eqs. (5) to (7), 
parameters F and V enjoyed significance levels below 
5% while other parameters were associated significance. 

Knowing that the significance value of ES in Eq. (2) 
and also those of P and n in Eq. (3) were above 5%, it 
was tried to propose new equations with these 
parameters eliminated so as to promote the accuracy.  
Accordingly, Eq. (8) was modeled with only two strength 
parameters and Eq. (9) was modeled with the two 
remaining operational parameters. The model and the 
two dependent variables in Eq. (8) satisfied the 
significance level criteria; however, in Eq. (9), the only 
parameter with a significance level below 5% was the 
parameter V. 

In this work, several statistical evaluation criteria 
were used to assess the performance of the applied 
methods. These criteria are mean absolute error (MAE), 
root mean square error (RMSE) and coefficient of 
determination (R2) respectively, given by Eqs. (10)−(12) 
[19]. 
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where a is the actual value of the maximum surface 
settlement; p is the predicted value of the maximum 
surface settlement; a  and p  are the means of actual and 
predicted values of the maximum surface settlement 
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respectively; n is the number of data sets. 
In order to compare and evaluate the accuracy of the 

predictions provided by the presented equations, R2, 
RMSE, and MAE criteria were employed, as shown in 
Fig. 3. According to this figure, completely similar 
variations were seen for RMSE and MAE criteria. That 
was why Eqs. (7), (6), (5), and (3) were associated with 
the least errors, respectively, and Eqs. (6), (7), (3), and (5) 
produced the highest determination coefficients, 
respectively. 
 

 
Fig. 3 Comparing values of R2, RMSE and MAE for predicting 

maximum surface settlement using MR equations 

 

The priority of error and correlation criteria to select 
an equation to be used is a discussion which needs 
further deliberations. Since the values of R2 do not 
change by changing the model values equally and the 
function, ie RMSE, or MAE and etc., only shows the 
error and no correlation. The multi-objective error (MOE) 
function that is a combination of these metrics is most 
suitable criterion for evaluation of the performance of the 
models, given by Eq. 14 [20]. In this equation, RRMSE 
and R are calculated by Eqs. (14) and (15). 

In Fig. 4, all MR equations are compared using 
MOE criterion. As indicted, Eqs. (5), (3), (7), and (6) 
were associated with the lowest MOEs with their  
 

 
Fig. 4 Comparing MOE value for predicting maximum surface 

settlement using MR equations 

predicting performance far superior over other equations. 
The common aspect of these four equations was the 
presence of operational factors. As such, one may 
suggest higher relative effect of operational factors 
compared to that of other factors. Furthermore, the 
accuracy provided by Eq. (1) was greater than that of  
Eq. (2), indicating larger effect of geometric factors 
compared to strength factors. 

Another notable point is the poor performance of 
Eqs. (8) and (9) when compared to Eqs. (2) and (3). 
Elimination of those parameters failing to satisfy the 
significance constraint, not only had not improved the 
results, but also had boosted the value of relative error. 
Therefore, although the significance level criteria 
extracted from the MR model had found the parameters 
Es, P, and n as being insignificant, but their presence had 
contributed into higher accuracy of the equations. 
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5 Adaptive neuro-fuzzy inference system 

(ANFIS) 
 

As observed in the previous section, surface 
settlement depends on many parameters with their 
interactions making the accuracy of the MR models very 
low. Under such circumstances, intelligent methods can 
be useful tools among which ANFIS method was used to 
predict the maximum surface settlement in the present 
investigations. 

ANFIS is the integration of fuzzy logic (FL) and 
artificial neural network (ANN) introduced [21]. Fuzzy 
systems and ANNs include various advantages and 
disadvantages. A fuzzy system can model the qualitative 
aspects of human knowledge and reasoning processes, 
whereas it does not feature any earning capabilities. In 
other words, a fuzzy system cannot be trained. 
Nevertheless, neural networks are able to do self-training 
using datasets. Meanwhile, neural networks are implicit 
and they are unable to use human language [22]. To 
overcome these deficiencies, ANFIS has been proposed. 
ANFIS has the advantages of both fuzzy and neural 
systems [23]. According to Fig. 5, ANFIS process acts in 
five steps: Layer 1 is an input layer; Layer 2 is an input 
member functions layer (for fuzzification of inputs); 
Layer 3 is a rule layer; Layer 4 is an output member 
functions layer (for defuzzification of outputs) and layer 
5 is an output layer [12]. In this system, training means 
that with the use of training dataset, the non-linear 



J. Cent. South Univ. (2016) 23: 3273−3283 

 

3280

 

 

 
Fig. 5 ANFIS structure [25] 
 

parameters related to the fuzzy membership functions at 
the first level and the linear parameters of the forth layer 
are determined in a way by which for each desired input, 
a favorable output is obtained. During this neuro-fuzzy 
process, membership function parameters are regulated 
through the back propagation (BP) algorithm or in 
combination with the least squares (LS) method [24−25]. 

Using various methods of identification, different 
techniques to construct ANFIS model are available such 
as grid partitioning (GP), subtractive clustering method 
(SCM), fuzzy C-means clustering (FCM) [26]. In this 
study, to identify premise membership functions, all 
three aforementioned methods were used and the FCM 
generated the best result. So, this method is briefly 
described in the following. 
 
5.1 Fuzzy C-means clustering (FCM) 

The FCM is the most common method of fuzzy 
clustering. This method will place the data in related 
groups, based on their degree of membership. This 
method was introduced by BEZDEK [27] and, in fact, it 
is an optimized method of clustering such as the 
K-means method [12]. 

In this method, the numbers of clusters are divided 
as c numbers. Firstly, the cluster centers ci (i=1, 2, …, c) 
randomly from the n points {x1, x2, x3, … , xn} are 
selected. Second, the membership matrix u, using the 
following equation, is computed [26]:  
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where dij is the Euclidean distance between the ith cluster 
center and the jth data point; u and m are the fuzziness 
index. Third, compute the cost function according to the 
next equation shown below. 
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With the following condition: 
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final step, compute new fuzzy cluster centers ci (i=1, 
2, …, c) using the following equation: 
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5.2 Estimation of maximum surface settlement by 

ANFIS 
In this research, MATLAB software (Ver.: R2014a 

(8.3.0.532)) has been used for ANFIS modeling. As 
indicated in Table 4, to predict maximum surface 
settlement seven ANFIS models were proposed with 
their input parameters similar to MR Eqs. (1) to (7) (see 
Table 3). In order to build these models, it began with 
normalizing all data into [−1 1] interval, so as to get the 
variation ranges of the parameters closer to each other 
boosting the model ability to generalize and learn the 
relations among the parameters. Next, among total 41 
available datasets, 12 datasets (about 30%) were 
considered for testing the models, while the remaining 29 
datasets (about 70%) were utilized to build ANFIS 
models. Dataset division was performed in a random 
fashion and it was unchanged for all 7 models, so as to 
make their comparisons significant. 

The best ANFIS structure was selected by using 
trial-and-error method. The type and number of 
membership functions, optimization algorithm, epochs, 
etc. were all optimized via trial-and-error approach. The 
built models were evaluated and compared based on 
RMSE values obtained for training and testing phases.  

 
Table 4 Different models types and their parameters used for prediction of maximum surface settlement by ANFIS model 

Model No. Input parameter 
No. of 
MFs 

No. of 
nodes 

No. of linear 
parameters 

No. of nonlinear 
parameters 

No. of 
parameters 

No. of 
fuzzy roles

1 H, D 4 29 12 16 28 4 

2 C, φ, Es 4 38 16 24 40 4 

3 V, F, P, n 12 127 60 96 156 12 

4 H/D, C, φ, Es 6 67 30 48 78 6 

5 H/D, V, F, P, n 12 152 72 120 192 12 

6 C, φ, Es, V, F, P, n 9 154 72 126 198 9 

7 H/D, C, φ, Es, V, F, P, n 9 173 81 144 225 9 
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The membership function and optimization method for 
all models were Gaussian and hybrid, respectively. Other 
features of the built models are demonstrated in Table 4. 
Figure 6 depicts the structure of the 7th built ANFIS 
model (M7) including all input parameters. The model 
contains 5 layers with nine IF-THEN rules connected to 
each other via “and” operators. 
 

 
Fig. 6 ANFIS structure built to predict maximum surface 

settlement based on eight input parameters (M7) 

 
The predicting results of the models in the training 

and testing phases based on R2, RMSE, and MAE criteria 
are listed in Table 5. As indicated in Fig. 7, in order to 
better compare the results, one may express that M7 and 
M4 provided the best and the worst prediction, 
respectively. It is worth mentioning that like what 
suggested with regards to MR equations, the models 
containing operational factors (M5−M7) were of higher 
relative accuracy. Low value of MOE in the training and 
testing phases was in an indication of the adequacy of the 
corresponding model, so that it can be generalized. Such 
model enjoys a good level of accuracy respect to raw 
data (test data). 
 
Table 5 ANFIS models results to predict maximum surface 

settlement 

Model Phase R2 RMSE MAE 

M1 
Train 0.599 13.695 9.564 

Test 0.400 19.906 15.662 

M2 
Train 0.663 12.554 7.901 

Test 0.590 18.718 12.977 

M3 
Train 0.988 2.383 0.899 

Test 0.658 14.541 10.019 

M4 
Train 0.804 9.582 4.996 

Test 0.368 38.446 31.231 

M5 
Train 1.000 0.105 0.028 

Test 0.915 7.327 5.543 

M6 
Train 1.000 0.047 0.017 

Test 0.882 8.284 6.342 

M7 
Train 1.000 0.064 0.021 

Test 0.957 5.046 4.468 

 

 
Fig. 7 Comparing MOE value for predicting maximum surface 

settlement using ANFIS models 

 

5.3 Sensitivity analysis by cosine amplitude method 
(CAM) 

In this work, the cosine amplitude method (CAM) is 
used to analyze sensitivity of the ANFIS model. By all 
the following methods, this similarity metric makes use 
of a collection of data samples, n data samples in 
particular. If these data samples are collected, they will 
form a data array, X [28], 
 

},,,{ 21 nxxxX                            (20) 
 

Each of the elements, xi, in the data array X is itself 
a vector of length m, that is, 
 

},,,{ 21 imiii xxxx                           (21) 
 

Hence, each of the data samples can be thought as a 
point in m-dimensional space, where each point needs m 
coordinates for a complete description. Each element of a 
relation, rij, results from a pairwise comparison of two 
data samples, xi and xj, where the strength of the 
relationship between data sample xi and data sample xj is 
given by the below membership strength: 
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(22)  
Close inspection of Eq. (22) reveals that this method 

is related to the dot product for the cosine function. 
When two vectors are collinear, their dot product is unity; 
when the two vectors are at right angles to one another, 
their dot product is zero [28]. 

In order to express the relation between the 
maximum surface settlement and the input parameters (in 
test phase), [1×12] sized matrices were obtained. The 
matrices obtained were correlated by means of the   
Eqs. (20) to (22), and the relation strengths (rij values) 
are shown in Fig. 8. According to this figure, the 
operational parameters n and P were associated with the 
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Fig. 8 Strength of relation (rij) between maximum surface 

settlement and input parameters 

 

largest effective, while strength parameters of C and Es 
provided the smallest effective into the maximum surface 
settlement. The figure is illustrating the effect of other 
parameters as well, larger effective of geometric factor 
(H/D) rather than strength parameters. 
 

6 Comparing performance of methods 
 

This research investigated the ability of two 
methods, namely MR and ANFIS, to predict the 
maximum surface settlement. As observed in Figs. 4 and 
7, ANFIS was associated with much more accurate and 
reliable results compared to those of MR. For example, 
the value of MOE criterion for ANFIS model (M7) was 
much lower than the 7th MR equation (Eq. (7)) [0.126 
versus 0.656], indicating considerable superiority of 
ANFIS model. As in contrast to MR method, ANFIS 
models the problem in two phases, they are of somehow 
different conditions when a comparison is concerned. As 
such, in order to perform a significant comparison,    
Eq. (23) was proposed, based on 29 datasets used in the 
training phase of ANFIS, to evaluate the performance of 
the two methods in terms of predicting 12 raw datasets. 
The significance level of newly proposed equation   
(Eq. (23)) was zero and the only dependent variable of 
less than 5% significance level being F. 

Figure 9 demonstrates the predicted values by    
Eq. (23) and M7 along with the actual maximum surface 
settlement values. According to the figure, the predicted 
values by ANFIS model, in contrast to those of MR 
method, are close to actual values of the maximum 
surface settlement. The adjacency or overlapping of the 
two curves demonstrates that the predictions obtained by 
this intelligent method are in good agreement with the 
actual values, so that ANFIS has produced acceptable 
predicts across all settlement ranges.  

 smax 126.1632.0112.0/198.5 ECDHS   

nPFV 098.0628.105825.1816.0       (23) 

 

 
Fig. 9 Comparing actual of maximum surface settlement and 

predicted MR equation (Eq. (23)) and ANFIS model (M7) 

 

7 Conclusions 
 

Based on the results obtained in this research, it was 
clear that, due to the limited number of variables to be 
considered, MR method cannot be a suitable tool to 
predict the maximum surface settlement, whereas ANFIS 
model, in this context, was not limited in any sense. This 
intelligent method could reveal the relation between 
input parameters and their effects on output, and have the 
ability to intelligently generalize the new data. 

In order to predict the maximum surface settlement 
based on various parameters, a total of nine MR 
equations and seven ANFIS models were proposed. 
Among other MR equations, Eqs. (8) and (9) were of 
lower accuracy when compared to similar equations  
(Eqs. (2) and (3)). Eliminating those parameters failing 
to satisfy the significance criteria, not only did not 
improve the results, but also gave rise to relative error 
value. Therefore, although the significance level criterion 
extracted from the MR model had found the parameters 
Es, P, and n as insignificant, their presence had 
contributed into higher accuracy of the equations. 
Regarding the ANFIS models, the one with all inputs 
considered (M7) was of the highest level of accuracy. 

Those models and equations including operational 
factors (models M5, M6, and M7; Eqs. (7), (6), (5), and 
(3)) were of relatively results indicating larger effect of 
these factors on the settlement. Scrutinizing the effects of 
dependent variables, M7 (including all input parameters) 
was subjected to analyze sensitivity via CAM method. 
The results indicated that the largest effect on settlement 
variations come from operational factors followed by 
geometric and then strength factors. Among other 
variables, P and n were associated with the most intense 
effect, so that the settlement could be largely controlled 
via a proper high quality grouting operation. It is worth 
mentioning that these were introduced as the most 
effective variables whilst they were once recognized as 
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the least affecting parameters via simple mathematical 
analysis shown in Fig. 1; this demonstrates the 
complexity involved in settlement predicting problems; 
no simple mathematical method is effective in this regard. 
CAM method recognized strength parameters of C and 
Es as the least affecting parameters; this shows the 
advantage of TBM-EPB tunneling method into loose 
grounds. High flexibility of this method within loose 
grounds clearly contributes to stability of the 
environment around the digging space largely reducing 
the settlement. 

In order to control surface settlement, designing 
deeper tunnels may largely reduce the effects of roof 
falls before they reach ground surface. In most projects, 
however, due to various reasons, it is impossible to either 
change the tunnel path or increase its depth. Under such 
circumstances, the only relatively controllable factors are 
operational ones. As fill factor of grouting and grouting 
pressure were introduced as the most effective 
parameters in this research, one may largely reduce the 
settlement, particularly in shallow tunnels, by 
undertaking the grouting operation in as optimum 
fashion as possible. 
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