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Abstract: The cumulative prospect theory (CPT) is applied to study travelers’ route choice behavior in a degradable transport 
network. A cumulative prospect theory-based user equilibrium (CPT-UE) model considering stochastic perception error (SPE) within 
travelers’ route choice decision process is developed. The SPE is conditionally dependent on the actual travel time distribution, which 
is different from the deterministic perception error used in the traditional logit-based stochastic user equilibrium. The CPT-UE model 
is formulated as a variational inequality problem and solved by a heuristic solution algorithm. Numerical examples are provided to 
illustrate the application of the proposed model and efficiency of the solution algorithm. The effects of SPE on the reference point 
determination, cumulative prospect value estimation, route choice decision and network performance evaluation are investigated. 
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1 Introduction 
 

Given that the cumulative prospect theory (CPT) 
provides a well-supported descriptive paradigm for 
decision making under risk or uncertainty, many studies 
applied the theory to model travelers’ route choice 
behavior in stochastic transport network and developed 
CPT-based user equilibrium models. AVINERI [1] 
investigated the effect of reference point (RP) value on 
the stochastic network equilibrium based on CPT. 
CONNORS and SUMALEE [2] proposed a general 
CPT-based user equilibrium (CPT-UE) model for 
stochastic networks. SUMALEE et al [3] studied 
CPT-UE model in a network where demand and supply 
uncertainties are considered endogenously. XU et al [4] 
presented a multiclass CPT-UE model with endogenous 
RP for stochastic networks. TIAN et al [5] developed a 
CPT-based dynamic user equilibrium (CPT-DUE) model 
by applying the CPT to formulate the travelers’ risk 
evaluation on arrival time. YANG and JIANG [6] 
employed the cumulative prospect value (CPV) to 
replace the utility value in the logit model and proposed 
a stochastic user equilibrium model based on CPT 
(CPT-SUE). XU et al [7] also used the CPT-SUE 
approach to model road user behavioral changes over 
time. 

An assumption that pervades the literature above is 
that the actual probability distributions of the random 
travel time are assumed to be known exactly to travelers. 
However, due to the imperfect knowledge about the 
network condition, travelers’ perception errors should be 
incorporated into their decision process. The traditional 
SUE model considers the kind of perception error which 
is regarded as “deterministic”, because it is independent 
of the stochastic travel time. However, MIRCHANDANI 
and SOROUSH [8] stated that the deterministic 
perception error may not well reflect travelers’ 
perception on the travel time distribution (TTD). They 
suggested using a stochastic perception error (SPE), 
which is conditional on the actual TTD and different 
from the deterministic perception error used in the 
traditional logit model. In that case, incorporating the 
SPE into the actual TTD forms the perceived TTD. This 
can be illustrated in Fig. 1. Consequently, travelers 
should make route choice decisions based on the 
perceived TTD rather than the actual one [9−10]. 
Therefore, in the CPT-based route choice model, it is 
reasonable to assume that travelers make their decisions 
based on the perceived TTD rather than the actual one. 
Due to the differences between the actual TTD and the 
perceived TTD, the travelers’ route choice decisions 
could be quite different. 

In this work, the traditional CPT-UE model is 
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Fig. 1 Illustration of actual and perceived travel time 

distributions 

 
extended by explicitly modeling the SPE within the 
travelers’ route choice decision processes. Several 
features distinguish this work from those found in the 
literature. First of all, travelers are assumed to determine 
their endogenous reference time points based on the 
perceived TTD rather than the actual one. Then, the 
CPVs of all paths for each O-D pair are calculated by the 
perceived TTD rather than the actual one. Thirdly, the 
effects of SPE in the CPT-UE model on the travelers’ 
route choice behavior (in terms of equilibrium flows and 
CPVs) and network performance (in terms of the total 
TTD) are examined, which seems not to have been 
studied before. Finally, in order to enhance the 
understanding of the effect of SPE and also the 
visualization on perceived TTD, the distribution fitting 
method is used to estimate the probability distribution of 
stochastic travel time. 
 
2 Travel time distribution 
 
2.1 Notations and assumptions 

The notations used in this work are listed in 
Nomenclature. 

To facilitate the presentation of the essential ideas 
without loss of generality, the following basic 
assumptions are made. 

Assumption 1: The link capacity is independent of 
the amount of traffic on it. 

Assumption 2: The link travel time is independent 
from each other. 

Assumption 3: Travelers’ perception errors are 
independent for non-overlapping route segments. 

Assumption 4: Travelers’ perception errors are 
mutually independent over the population of travelers. 
 
2.2 Actual travel time distribution 

To model congestion, let us consider the widely 
adopted Bureau of Public Road (BPR) link travel time 

function: 
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where   and   are the deterministic parameters in 
BPR function. Assuming that the link capacity Ca 
follows a uniform distribution defined by an upper bound 
(the design capacity )ac  and a lower bound (the 
worst-degraded capacity). According to Refs. [11−12], 
the lower bound is assumed to be a fraction a  of the 
design capacity. Then, the nth moment of 1/Ca can be 
derived as 
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Using the binomial expansion, the nth moment of 

the actual link travel timecan be derived as follows [9]: 
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Thus, the actual route travel time variable can be 

expressed by summing the corresponding link travel time 
variables as 
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2.3 Perceived travel time distribution 
Definition 1: The stochastic perception error 

a
a T

 
for link a is conditional on the stochastic link travel time 
Ta and normally distributed as [9−10] 
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According to Eq. (5), the stochastic perception error 

distribution of an individual traveler for a segment of 
road with a unit travel time is 

2( , ), N  where 
2( , ) N  denotes a normal distribution with mean μ and 

variance σ2. The parameters μ and σ2 are predefined and 
deterministic. 

Definition 2: The perceived travel time 
 k
rT  on route 

k between O-D pair r is defined as the sum of the actual 
travel time k

rT  and the SPE 
k

r

k
r T

 which is conditional 
on the stochastic route travel time k

rT , and the following 
equation is satisfied [9−10] as 

 

( ) ,   
 

      
k ar

k k k ka ka
r r r a a r a rTT

a a

T T T T
A A

 

    , ,   ra k rA K R                     (6) 
 
A detailed derivation of the probability distribution 

statistics for the perceived link and route travel time 
variables is provided in Appendix A. 
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2.4 Fitting route travel time distribution by moments 
HILL et al [13] proposed a numerical method that 

makes use of the first four moments of a random variable 
to match any distribution in the Johnson curve system. 
CLARK and WATLING [14] adopted the same method 
to estimate the full distribution of total travel time. In this 
section, a numerical method is described to estimate the 
whole perceived route travel time distribution. Empirical 
study revealed that route travel time distribution is 
typically asymmetric with a long and fat tail. Therefore, 
the lognormal distribution is used to estimate the 
probability distribution of perceived route travel time. 

Consider the following lognormal random variable 
X by  

 ln ,      Z X X                     (7) 
 

where Z is a standard normal variable, i.e. Z~N(0,1), and 
 , ξ, and δ are parameters. Then, the probability density 
function (PDF) of X is as  
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The remaining work is to calculate the values of the 

three parameters. First, the following equation is solved 
to obtain χ  
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The three parameters in Eq. (7) can then be 

calculated as 
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After calibrating the above parameters, the fPDF in 
Eq. (8) is actually known. Then, an estimated distribution 
of the random variable X can be obtained. As a 
consequence, the fPDF of the perceived route travel time 
can be obtained using the distribution fitting method 
discussed above. 

 
3 Cumulative prospect theory 
 

Given that CPT provides a well-supported 
descriptive paradigm for individuals’ decision making 
under risk or uncertainty, the CPTis adopted to describe 
travelers’ route choice behavior in this section. 
 
3.1 Value function 

Considering a trip between O-D pair r with ωr as 
the RP for the drivers. Compared to the RP, travelers may 
consider the outcome of a trip as a gain, if the travel time 

is less than the RP; as a loss if otherwise. The canonical 
example of a value function gr(x) is   
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where x denotes the perceived route travel time; 
parameters α and β measure the degree of diminishing 
sensitivity of value function. Typically, 0 < α, β < 1 and 
thus the value function exhibits risk aversion over gains 
and risk seeking over losses. The parameter η ≥ 1 is 
called “loss-aversion” coefficient, indicating the 
individuals are more sensitive to losses than gains. 
 
3.2 Probability weighting function 

Based on experimental evidence, CPT proposes that 
small probabilities are typically over-weighted, moderate 
and high probabilities are under-weighted. A typical 
inverse S-shaped probability weighting function is 
presented as  

( ) exp( ( ln ) )  w p p                                              (12) 
 

where w(p) and p denote the decision weight and 
probability of an event respectively. The parameter γ 
represents the level of distortion in probability judgment 
in the decision making process and 0<γ<1. 
 
3.3 Reference points 

XU et al [4] assumed that the RP for a traveler is the 
time he or she budgeted to ensure his or her desired 
on-time arrival probability. This time will depend on trip 
purpose and risk attitude. Mathematically, suppose that a 
traveler has a desired on-time arrival probability of ρr, 
the budgeted time for taking path k of O-D pair r, i.e. 

( ) k
r r , can be written as  
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With a continuous travel time distribution, taking 

the inverse of Eq. (13) leads to  
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r  is the inverse function of ( ). k

r  
It is assumed that the RP is the minimum of the 

budgeted times of all paths. that is,  
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3.4 Cumulative prospect value 

The CPV perceived by the drivers on route k 
between O-D pair r can be calculated as [2−4] 
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where 
k
rt  and 

k
rt  are the lower and upper bounds of the 

perceived travel time on path k, respectively. In this work, 
the lower bound of the route travel time is assumed to be 
the free-flow travel time and the upper bound of the 
route travel time is assumed to be the 99.9999 percentile 
of the random travel time. 
 
4 CPT-UE model and solution algorithm 
 
4.1 CPT-UE model 

Definition 3: The CPT-UEis a network state such 
that for each O-D pair, the CPVs of all used routes are 
equal, which are no less than the CPV of any unused 
route. No traveler can thus further increase his or her 
CPV by unilaterally changing routes. At equilibrium, 
travelers will stop adjusting their RPs, which remain 
constant and are consistent with the resulting CPT-UE 
flow pattern and the corresponding perceived TTDs. 

The above descriptive definition can be 
mathematically represented as 
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where πr is the maximum TPV between O-D pair r, i.e. 

 max
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K
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Then, the CPT-UE conditions can be equivalently 
formulated as the following variational inequality (VI) 
problem, which is to find a route flow pattern * f  , 
such that 
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  denotes the constraint set that consists of the 
following equations:  
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The following propositions give the equivalence of 

the VI formulation and the proposed CPT-UE model as 
well as the existence of the equilibrium solutions. 

Proposition 1: The solution of the VI problem   
(Eq. (18)) is equivalent to the equilibrium solution of the 
CPT-UE model with SPE. 

Proof: Equation (18) is equivalent to 
* T * T *( ) ( ) ,U f f U f f  . f   Thus, f * is a solution 

to the VI problem (Eq. (18)) if and only if it is a solution 
to the following linear programming model with the 
same solution vectors (i.e. route flow): 

* Tmax ( )
f

U f f


                                                             (22) 

 
Using the relationship between the primal and dual 

solutions of linear programming (22), it follows that 
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Obviously, Eqs. (23) and (24) ensure that the 
equilibrium route flow pattern satisfies the CPT-UE 
conditions (Eq. (17)). This completes the proof. 

Proposition 2: The CPT-UE model with SPE has at 
least one solution. 

Proof: According to Proposition 1, the equivalent 
VI formulation is only needed to consider. Note that the 
feasible set Ω is nonempty and convex. Furthermore, 
consider the link travel time function, value function and 
CPV function, it is reasonable to know that the mapping 

( )U f  is continuous. Thus, the VI problem (Eq. (18)) 
has at least one solution. This completes the proof. 
However, note that the solution to the VI problem is not 
unique in general. The reason is that the mapping in the 
VI formulation may be not strictly monotone due to the 
complicated function for the CPV. 

 
4.2 Solution algorithm based on method of successive 

average 
The method of successive average (MSA) can be 

adopted to solve the equilibrium assignment defined in 
Eq. (18) [3−4, 15]. The MSA algorithm is briefly 
described as follows. 

Step 1: Initialization. Set l = 1 and specify an initial 
route flow pattern   ( )

,( ) . 
r

l k l
r r kf R Kf  

Step 2: CPV calculation. Calculate the CPV for 
each route, ( ) ( )

,( ) ( ( )) . 
r

l k k l
r r r kU f R KU f  

Step 3: Search direction finding. For each OD pair, 
find the route with the maximum CPV. Define an route 
flow pattern 

 ( )
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Step 4: Check convergence. Evaluate ( )( ) lG f  
( ) T ( ) ( )( ) ( ), l l lU f g f  terminate the algorithm if 

( ) ( ) ( )( ) ( ) / || ||  l l lM Gf f f  or maxl l  where ε is 
the convergence criteria and lmax is the pre-set maximum 
number of iteration. The M(f 

(l)) is a convergence 
indicator measuring how closely a solution of the lth 
iteration satisfies the CPT-UE condition (Eq. (18)). 

Step 5: Route flow updating. Update the route flow 
pattern as ( 1) ( ) ( ) ( ) ( )( ),   l l l l lsf f g f  where step 
size s(l)=1/l. Set l = l + 1, go to Step 2. 
 
5 Numerical examples 
 

To illustrate the proposed CPT-UE model with 
travelers’ SPE and solution algorithm, two networks are 
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adopted in the numerical experiments. First, a small 
network is used to analyze the features of the proposed 
model and its difference compared to CPT-UE model 
without SPE. Then, the well-known Nguyen-Dupuis 
network is employed to demonstrate the applicability of 
the solution algorithm and the effects of the SPE on the 
network performance. 

 
5.1 Small network 

A simple network consists of four nodes, five links 
and three routes as shown in Fig. 2 is adopted. There is 
one OD pair (1,4) with 1000 units of demand. The 
free-flow travel time, design capacity and degradation 
parameter for each link are listed in Table 1. The 
convergence criterion and the maximum iteration number 
are set as ε = 0.25 and lmax=500. 
 

 
Fig. 2 Small network 

 
Table 1 Network characteristics 

Link 
Free-flow 
travel time 

Design 
capacity 

Degradation 
parameter 

1 5 600 0.9 

2 12 400 0.5 

3 7 400 0.7 

4 10 400 0.9 

5 8 600 0.5 

 
It is assumed that the travelers are all risk averse 

and the desired on-time arrival probability is 80% and 
the perception error distribution of a unit travel time 
follows N(0.4,(0.4)2). The coefficients of the BPR 
function in Eq. (1) are 0.15  and 4.   The 
parameters of the value function in Eq. (11) are assumed 
to be α = 0.37, β = 0.59, η = 1.51, and the probability 
weighting function in Eq. (12) is used with γ = 0.74. The 
results of equilibrium path flows with and without SPE 
are presented in Table 2 and Fig. 3. The equilibrium 
result with SPE is shown by the bracketed figures in 
Table 2. 

From Table 3 and Fig. 3, it can be seen that the 
equilibrium route flow pattern obtained from the model 
with SPE is significantly different from those obtained 
from the one without SPE. In particular, the differences 

Table 2 Equilibrium route flow patternswith and without SPE 

Parameter Route 1 Route 2 Route 3 

Link sequence 1-2 1-3-5 4-5 

Route flow 479 (550) 62 (255) 459 (195) 

CPV 1.18 (3.94) 1.18 (3.94) 1.18 (3.94)

Mean travel time 21.97 (24.86) 20.93 (25.69) 22.06 (23.43)

Standard 

deviation 
3.20 (3.14) 3.56 (2.37) 2.40 (3.71)

RP 23.25 (32.19) 

 

 
Fig. 3 Equilibrium route flow patterns with and without SPE 
 
Table 3 Link-route incidence relationship 

O-D Route Link sequence 

(1,2) 

1 2-18-11 

2 1-5-7-9-11 

3 1-5-7-10-15 

4 1-6-12-14-15 

5 2-17-7-9-11 

6 2-17-7-9-11 

7 2-17-7-10-15 

8 2-17-8-14-15 

(4,2) 

15 4-12-14-15 

16 3-5-7-9-11 

17 3-5-7-10-15 

18 3-5-8-14-15 

19 3-6-12-14-15 

(1,3) 

9 1-6-13-19 

10 1-5-7-10-16 

11 1-5-8-14-16 

12 1-6-12-14-16 

13 2-17-7-10-16 

14 2-17-8-14-16 

(4,3) 

20 4-13-19 

21 4-12-14-16 

22 3-6-13-19 

23 3-5-7-10-16 

24 3-5-8-14-16 

25 3-6-12-14-16 
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can be explained by the following reason: travelers 
choose the reference time points and estimate CPV of 
each path based on the perceived and actual travel time 
distribution, respectively. 

Figure 4 depicts the perceived and actual TTD could 
be significantly different for all the three routes. This 
discrepancy is attributed to the consideration of the SPE, 
which plays an important role in making route choice 
decisions under CPT-based behavioral assumption. 

In order to further examine the effect of SPE on the 
perceived TTD, we set the SD at 0, 0.2 and 0.4, 
respectively. Their corresponding CDFs in route 1 are 
shown in Fig. 5. It is found that the perceived TTD 
gradually move to the right with a larger variability with 
the increase of SPE variance. This means that for a given 
cumulative probability (e.g., 80%), the perceived travel 
time is increasing with the SPE variance. 
 

 
Fig. 4 Probability distribution of perceived and actual route 

travel times: (a) Route1; (b) Route 2; (c) Route 3 

 

 
Fig. 5 Actual and perceived TTDs under different SPE 

variances 

The impacts of SPE on the equilibrium RP and CPV 
are displayed in Figs. 6 and 7, respectively. From these 
figures, it can be seen that the RP and CPV increase as μ 
and σ increase. This is to be expected, because μ and σ of 
the perception error contribute to a larger variance of the 
perceived TTD. Therefore, in order to reach the specified 
travel time reliability requirement and also avoid 
unacceptable delay, higher RP is required and larger CPV 
is obtained. 

 

 
Fig. 6 Impact of SPE on RP 

 

 
Fig. 7 Impact of SPE on CPV 

 
5.2 Nguyen-dupuis network 

In this example, the well-known Nguyen-Dupuis 
network is used to further demonstrate the CPT-UE 
model and solution algorithm. The Nguyen-Dupuis 
network, shown in Fig. 8, contains 13 nodes, 19 directed 
links, 4 O-D pairs, and 25 routes. The link-route 
incidence relationship is shown in Table 3. The values of 
the base travel demands of O-D pairs (1, 2), (1, 3), (4, 2), 
and (4, 3) are 600, 500, 400, and 500, respectively. The 
free-flow travel time, design capacity and degradation 
parameter for each link are listed in Table 4. For 
simplicity, we further assume all travelers have the same 
confidence level of 80%. The parameters of the BPR 
function, the value function and the probability 
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weighting function are the same as in the above example. 
The perception error is normally distributed with the 
mean of 0.5 and standard deviation of 0.5. 
 

 
Fig. 8 Nguyen-dupuis network 

 

Table 4 Link characteristics 

Link 
Free-flow 

travel time 

Design 

capacity 

Degradation 

parameter 

1 7 300 0.9 

2 9 200 0.5 

3 9 200 0.7 

4 12 200 0.9 

5 3 350 0.5 

6 9 400 0.7 

7 5 500 0.9 

8 13 250 0.5 

9 5 250 0.7 

10 9 300 0.9 

11 9 500 0.5 

12 10 550 0.7 

13 9 200 0.9 

14 6 400 0.5 

15 9 300 0.7 

16 8 300 0.9 

17 7 200 0.5 

18 14 300 0.7 

19 11 200 0.9 

 
The convergence characteristic of the solution 

algorithm is shown in Fig. 9. As can be seen, the algorithm 
terminates at iteration 347th given the convergence 
criteria that M is almost equal to zero. This illustrates 
that the proposed solution algorithm can converge to a 
stable solution for the medium-size network. 

The impact of SPE on the mean of total travel time 
(TTT) is shown in Fig. 10. From this figure, it can be 
known that the TTT goes up as μ and σ increase.    
Figure 10 alsopresents that travelers’ SPE of travel time 
variability has a bad effect on the system performance. It 

is believed that the proposed model in this paper can be 
used to investigate the effects of advanced traveler 
information system (ATIS) with different travel time 
information. 

The TTT distributions corresponding to the system 
optimal (SO), the CPT-UE model without SPE and the 
CPT-UE model with SPE are revealed in Fig. 11. It can 
be observed that: 1) The TTT distribution corresponding 
to the CPT-UE with SPE is obviously different from that 

 

 
Fig. 9 Convergence of solution algorithm for Nguyen-Dupuis 

network 

 

 
Fig. 10 Impact of SPE on TTT 
 

 
Fig. 11 Impact of SPE on TTT distribution 
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corresponding to the CPT-UE without SPE. 2) The TTT 
distribution under the CPT-UE considering SPE has the 
largest variance and asymmetry. The large variance is 
due to the consideration of SPE, which adds extra 
uncertainty to the total travel time variability.         
3) Considering travelers’ SPE on network conditions, the 
TTT becomes larger and more random. Therefore, 
ignoring the SPE in the CPT-UE models can lead to bias 
estimation of the TTT distribution, resulting in an 
inaccurate network performance assessment. 

Figure 12 plots the sensitivity of the equilibrium 
CPV of OD pair (1-2) to changes in α and β at the RP 
(ρr=80%). Similar tests at other OD pairs are carried out 
through not displayed here due to space limitations. For 
high values of RP (ρr = 80%), the CPV is more sensitive 
to changes in α (risk aversion to gain); the nature of risk 
seeking to loss (via β) is limited since loss is rarely 
experienced. Figure 13 depicts the sensitivity of the 
equilibrium CPVs to the change in γ. γ determines the 
distortion of the probability perception in which as 

1   the probability weighting function becomes 
identify mapping. From Fig. 13, as 1   the CPVs of 
all OD pairs converge to a particular value which is 
indeed an average of the value function. 
 

 

Fig. 12 Sensitivity analyses of α and β parameter values 
 

 
Fig. 13 Sensitivity analyses of γ parameter value 

 
6 Conclusions 
 

1) The traditional CPT-UE model is extended by 
explicitly modeling travelers’ SPE within their route 
choice decision processes. The SPE is conditionally 
dependent on the actual TTD, which is different from the 
deterministic perception error used in the traditional 
logit-type SUE models. Then, travelers will make route 
choice decision based on the perceived TTD rather than 
the actual one. 

2) The CPT-UE model with SPE is formulated as a 
variational inequality problem and solved by a heuristic 
solution algorithm. Two numerical examples are 
provided to highlight the essential ideas of the proposed 
model and to demonstrate the solution algorithm. The 
numerical results indicate the importance of explicitly 
considering the SPE in the CPT-UE models. For the 
travelers, ignoring the SPE will affect their route choice 
and trip time planning. For the network planners, 
ignoring the SPE in the CPT-UE models can lead to bias 
estimation of equilibrium traffic flows and inaccurate 
assessment of network performance. 

3) The effects of SPE in the CPT-UE model are 
investigated at four levels: the determination of reference 
time points for each O-D pair, the estimation of the 
probability distribution of route travel time and the 
calculation of CPV for each path, travelers’ route choice 
decision and user equilibrium pattern and network 
performance. 

4) For future research, multiple user classes with 
various perception errors should be considered. In 
addition,it is interesting but challenging to present the 
application of the proposed CPT-UE model in congestion 
pricing and traffic network design. 
 
Nomenclature 
G=(N, A) A road network, with N and A being sets

of nodes and links respectively 
R Set of origin-destination (O-D) pairs 
Kr Set of routes for O-D pair r R  
qr Total travel demand for O-D pair r R  

k
rf  Traffic flow on route  rk K  between O-D 

pair r 
va Traffic flow on link a A  
Ta Actual travel time on link a A  

aT  Perceived travel time on link a A  
0
at  Free-flow travel time on link a A  

Ca Capacity on link a A  
k

rT  Actual travel time on path  rk K  

 k
rT  Perceived travel time on path  rk K  
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 ka
r  Indicator variable that is equal to 1 if path

 rk K  contains link a A , and 0 otherwise
k
rU  CPV of path  rk K  with perceived TTD 

( ) k
r  CDF of perceived travel time on path

 rk K  
 
Abbreviations 
CPT Cumulative prospect theory 

CPT-UE Cumulative prospect theory-based user
equilibrium 

CPT-SUE Cumulative prospect theory-based stochastic
user equilibrium 

CPT-DUE Cumulative prospect theory-based dynamic
user equilibrium 

RP Reference point 

CDF Cumulative distribution function 

PDF Probability density function 

CPV Cumulative prospect value 

TTT Total travel time 

SPE Stochastic perception error 

BPR Bureau of Public Road 

VI Variational inequality 

ATIS Advanced traveler information system 

SD Standard deviation 

 
Appendix A 

The first to fourth origin moments of the perceived 
link TTD can be derived as follows: 

 
( 1)

[( ) ] (1 ) [( ) ]
2

 
    m m m

a a
m m

E T E T  

 2 1 1(1 ) [( ) ],    , 1,3      m m m
aE T a mA        (25) 
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  
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, 2, 4  a mA                         (26) 
 
Consequently, the second central moments of the 

perceived link TTD can be represented as follows: 
 
[( ) ] [( ( )) ],   m m

a a aCM T E T E T  

    , 2,3,4  a mA                        (27) 
 
It is well known that the first to fourth cumulants of 

the perceived link TTD can be derived from the central 
moments as follows: 

 
[( ) ] [( ) ], m m

a aCum T E T  

    , 1, 2,3  a mA                             (28) 
 

4 4 2 2[( ) ] [( ) ] 3( [( ) ]) ,   
a a aCum T CM T CM T  

     a A                                    (29) 

From the additive property of the cumulants, the 
first to fourth cumulants of the perceived route TTD can 
be obtained as follows: 

 
( ) ( )[( ) ]= [( ) ] ,


 k m m ka

r a r
a

Cum T Cum T
A

 

, , =1, 2,  3,  4  rk r mK R                              (30) 
 
Denote [ ]k

rE T  and [ ] k
rSD T  as the expected 

value and standard deviation (SD) of the perceived route 
travel time, respectively, which can be calculated as 

 
2 1/ 2[ ] [ ], [ ] [( ) ] ,   k k k

r r rE T Cum T SD T Cum v  

,  rk rK R                                             (31) 
 
Let [ ] k

rS T  and [ ]k
rK T  denote the theoretical 

skewness and kurtosis of the perceived route TTD, 
respectively, which can be defined as 

 
3 4

2 3/ 2 2 2
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