

J. Cent. South Univ. (2016) 23: 1669−1681
DOI: 10.1007/s11771-016-3221-y

Design of area and power efficient Radix-4 DIT FFT butterfly unit using
floating point fused arithmetic

Prabhu E1, Mangalam H2, Karthick S3

1. Department of Electronics and Communication Engineering, Amrita School of Engineering,

Coimbatore, Amrita Vishwa Vidyapeetham, Amrita University, India;
2. Department of Electronics and Communication Engineering, Sri Krishna College of Engineering and Technology,

Coimbatore-641008, Tamilnadu, India;
3. Department of Electronics and Communication Engineering,

Bannari Amman Institute of Technology, Sathyamangalam-638401, Tamilnadu, India

© Central South University Press and Springer-Verlag Berlin Heidelberg 2016

Abstract: In this work, power efficient butterfly unit based FFT architecture is presented. The butterfly unit is designed using
floating-point fused arithmetic units. The fused arithmetic units include two-term dot product unit and add-subtract unit. In these
arithmetic units, operations are performed over complex data values. A modified fused floating-point two-term dot product and an
enhanced model for the Radix-4 FFT butterfly unit are proposed. The modified fused two-term dot product is designed using
Radix-16 booth multiplier. Radix-16 booth multiplier will reduce the switching activities compared to Radix-8 booth multiplier in
existing system and also will reduce the area required. The proposed architecture is implemented efficiently for Radix-4 decimation
in time (DIT) FFT butterfly with the two floating-point fused arithmetic units. The proposed enhanced architecture is synthesized,
implemented, placed and routed on a FPGA device using Xilinx ISE tool. It is observed that the Radix-4 DIT fused floating-point
FFT butterfly requires 50.17% less space and 12.16% reduced power compared to the existing methods and the proposed enhanced
model requires 49.82% less space on the FPGA device compared to the proposed design. Also, reduced power consumption is
addressed by utilizing the reusability technique, which results in 11.42% of power reduction of the enhanced model compared to the
proposed design.

Key words: floating-point arithmetic; floating-point fused dot product; Radix-16 booth multiplier; Radix-4 FFT butterfly; fast fourier
transform; decimation in time

1 Introduction

For several years, a lot of researchers have shown
their attention towards floating-point fused arithmetic
implementation on FPGAs [1]. The IBM RISC (reduced
instruction set computer) system (RS/6000) floating-
point unit (FPU) [2] indicates a second-generation RISC
CPU architecture and an implementation that is capable
of largely improving the floating-point performance and
accuracy. They denoted a unified floating-point
multiply-add-fused unit (MAF) that can decrease the
latency, rounding errors and chip busing. In addition, the
number of adders/normalizers used can be reduced as
well. This unit has achieved a peak execution rate of 50
MFLOPS (million floating-point operations per second)
with a 25-MHz clock frequency and was able to maintain
this rate even in complex programs. But HOKENEK
et al [3] have explained about a 440000-transistor
second-generation RISC floating-point chip in. The

pipeline latency obtained with this architecture was two
cycles only and each cycle yielded a double-precision
result. An improvement in the system throughput and
accuracy was also achieved with the utilization of a
floating-point multiply-add-fused unit, which performed
double-precision accumulate as a two-cycle pipelined
execution with only one rounding error. As the cycle
time (40 ns) was competitive with other CMOS RISC
systems, the floating-point performance gets enlarged to
the range of bipolar RISC systems (7.4-13 MFLOPS
LINPACK). Leading zero anticipation has enabled the
two-cycle pipeline possible through nearly reducing the
extra post normalization time and the factors that has
resulted in reduced overall system potential. Partial
decode shifters have permitted complete time sharing for
the multiply and data alignment.

An efficient implementation of a conventional
floating point multiplier that has aided the IEEE
754-2008 binary interchange format was introduced in
by AL-ASHRAFY et al [4] and is shown in Fig. 1. A

Received date: 2015−04−07; Accepted date: 2015−10−29
Corresponding author: Prabhu E; Tel: +91−9994205499; E-mail: e-prabhu@cb.amrita.edu

J. Cent. South Univ. (2016) 23: 1669−1681

1670

comparison of this technique [4] against the two FMA
techniques that aims to reduce latency as discussed in
Refs. [2−3] has been made and it was found that the
former technique [4] would yield an enhanced precision
than the latter technique if the entire 48 bits were used up
in another unit called a floating point adder to form a
MAC unit. But the designed multiplier [4] does not
perform rounding and has provided only the significand
multiplication result that is 48 bits long. The design
comprised of three pipelining stages and has resulted in
301 MFLOPs and latency of 3 cycles after implementing
it on a Xilinx Virtex5 FPGA. QUINNELL et al [5] and
HUANG et al [6] presented the bridge FMA unit [5] and
a low-cost binary floating-point FMA unit [6],
respectively. The performance, area and power cost of
these two techniques offered a practical and reasonable
analysis of their presented FMA hardware tradeoffs.

Multiplying floating point numbers is a most
essential need for DSP applications that are related to
large dynamic range as depicted in Ref. [6]. Binary32,
binary64, binary128 floating-point representations may
be cited as examples for this large dynamic range. This
work deals with single precision binary or binary 32
interchange format alone. It contains a one bit sign (S),
an eight bit exponent (E) and a twenty three bit fraction
(M or Mantissa). An additional bit is added to the
fraction to obtain what is called the signific and 1. If the
exponent is found to be larger than 0 and less than 255
along with 1 in the MSB of the significand, then the
number is termed as a normalized number. In this case,
the real number is indicated by Eq. (1).

Fig. 1 IEEE 754 single precision binary format representation

Z=(−1·S)·2(E−B)·(1·M) (1)

where M=m222-1+m212-2+m202-3+…+m12-22+m02-23; B=127.

The multiplication of two numbers in floating point
format can be performed by the following sequence of
steps: Add the exponent of the two numbers, subtract the
bias from their result, multiply the significand of the two
numbers and finally, compute the sign by XORing the
sign of the two numbers. The multiplication result can be
represented as a normalized number if and only if a 1 is
present in the MSB of the result (leading one).

Commonly, the multiplication of the significand bits
in the two floating point numbers is done through the
conventional multipliers or shift-add multipliers. The
work shows interest in presenting a power efficient
multiplier for carrying out the significand multiplication
and hence, a couple of available multiplier designs are

examined. MOTTAGHI-DASTJERDI et al [7] have
designed a low-power structure called bypass zero, feed
A directly (BZ-FAD) for shift-and-add multipliers that
does not consider speed as its principal factor. In contrast
to the other conventional shift-add methods, this
architecture has achieved great reductions in the
switching activity up to 76% and power consumption up
to 30%. YAN and CHEN [8] have proposed a low power
digital multiplier design by using a 2-dimensional
bypassing method, which omits both the redundant
signal transitions and computations when the
horizontally partial product or the vertical operand is
zero. The power dissipation obtained with their designed
multiplier had decreased beyond 75% on comparison
with the existing by passing methods. A low power and
high speed row bypassing multiplier that lessens power
consumption and delay by 17% and 36% respectively,
with 20% increase of chip area in comparison with those
of conventional array multipliers is presented in Ref. [9].
The booth multiplier technique [10] offers a lower power
consumption rate when compared to bypass techniques
and array multipliers. The recoding approach presented
in booth decoder has raised the number of zeros in
multiplicand. In this way, the number of switching
transitions is reduced and the power consumed can be
decreased. Booth multiplier consumes comparatively less
power and hence, this work employs multiplier with
booth recoding unit for designs with low power
consumption.

The processor designers chiefly consider scaling
and overflow/underflow for selecting the fixed-point
arithmetic for their design. One way of solving this
problem is to use the floating-point arithmetic for the
special purpose processor design. In current years, the
researchers have shown keen attention towards the
utilization of the fused arithmetic units in DSP
applications. Employing the IEEE-754 standard 32-bit
floating-point format [1] allows the high speed fourier
transform processors to be used as coprocessors in
combination with general purpose processors.
SWARTZLANDER and SALEH [11] have created a
design that merges two floating-point Arithmetic units
and have applied it to the implementation of fast fourier
transform (FFT) butterfly operations. Their method has
produced minimizations in the delay and the area of FFT
computation units.

The speed of entire computing decreases with the
serial operation of fused dot product and add-subtract
operations. The parallel operation of computation units
can solve this issue of slower processing, but the silicon
area and power consumption rate with high throughput
gets increased. These shortcomings of parallel processing
give rise to hardware and energy issues and hence, this
paper tries to present a modified floating point fused DP

J. Cent. South Univ. (2016) 23: 1669−1681

1671

architecture that is more power efficient. Numerous
digital signal processing (DSP) applications such as FFT
and discrete cosine transform (DCT) with the butterfly
operations have been developed for employing the fused
floating-point units [11−12]. Thus, this work aims to
present a power efficient Radix-4 DIT FFT butterfly unit
by contributing to the improvement in floating point
fused DP unit, which paves way for the advancements in
next generation floating-point arithmetic and DSP
applications.

In the recent years, two fused floating-point
primitive operations have been proposed to minimize the
delay and area of FFT computation units [11]. The role
of this work is to design a efficient Fused floating-point
two-term dot product unit for the application of Radix-4
DIT FFT butterfly unit. The modified fused floating–
point two-term dot product unit will be realized by
designing a reduced hardware 24×24 bits multiplier that
multiplies the two-term 24 bit mantissa. The area
efficient 24×24 bits multiplier is designed with the help
of Radix-4 Booth’s recoding method. The booth’s
method encodes more number of zeros and hence, the
switching activity gets reduced. Encoded multiplier zeros
will generate partial products value that indicate zeros,
which will be bypassed in the proposed 24×24 bits booth
recoding multiplier architecture. Moreover, the power
efficiency will be gained by realizing the reusability
technique. This will reduce the number of hardware
required on the device along with the required power.

2 Literature review

2.1 Fast fourier transform (FFT)

The FFT is one among the chief elements of various
signal processing and communication applications such
as software defined radio and OFDM. The basic
architecture of a Radix-r pipeline FFT processor is a
familiar one. The n-point discrete Fourier transform is
defined by







1

0

)(=)(
N

n

nk
NWnxkX (2)

where k=0, 1, 2, …, N−1, and .e
π2

j.
N

kn
nk

NW




The N-point FFT can be decomposed to recurring
micro-operations called butterfly operations. If the size
of the butterfly is r, then the FFT operation will be
termed as Radix-r FFT. The Radix-r butterfly unit
includes a computational element (CE) and a twiddle
factor (TF). The input data flows from r-complex data to
the CE along one direction. The (r−1)-complex data to
the CE is either utilized from TF ROM or may be

computed from the TF unit. Practically, there are two
types of FFT that can be realized. They are decimation in
time (DIT) and decimation in frequency (DIF). The
DIT-FFT butterfly unit has a complex multiplication
followed by a sum and difference network. But on the
contrary, the DIF-FFT butterfly unit consists of a sum
and difference network followed by a complex
multiplication. The Radix-r butterfly unit computes a
fourier transform of the r-complex inputs that has been
received. Employing S Radix-r butterfly yields an
rs-point FFT. The data rate of (r×clock rate) implies that
on each clock cycle, r-data enter and r-data exit from
each butterfly unit. This in turn reveals that a Radix-4
FFT can be four times faster than a Radix-2 FFT.

2.2 Floating point fused arithmetic unit

The fused floating-point two-term dot product unit
(Fused DP) is a modified form of the fused multiply-add
(FMA) operation that was formerly designed for the IBM
RS/6000 processor [2−3] and nowadays it is combined
with IEEE Std-754. The fused DP unit figures out a
two-term dot product as

DCBAX  (3)

In a conventional dot product addition, the two
products are added together as shown in Eq. (2). But the
fused DP unit computes the difference of the two
products using the same unit as well [11]. The fused DP
unit relies on the fused multiply-add unit. The
eradication of rounding and normalization logic in both
the multipliers has resulted in an efficient area reduction
than in a conventional parallel discrete implementation
of two multipliers and an adder. The accuracy of the
result increases to some extent with the implementation
of this approach because only one rounding operation is
performed. But in the case of discrete implementation,
three rounding operations are being made and the
accuracy gets affected. There are a number of reasons
that make floating-point FMA to be superior to the
discrete floating-point adders and multipliers in a general
purpose processor [5−6]. These reasons can be as follows:
The FMA reduces the latency of a multiplication
followed by an addition, the floating-point adder and the
floating-point multiplier in a system can be replaced by a
single FMA as well and it supports implementation of
complex multiplication.

Another fused operation is a fused add-subtract unit
(Fused AS) [11−12]. This executes a parallel operation of
addition and subtraction with the same pair of data.

BAX  (4)

BAY  (5)

The design of fused add-subtract unit has its basis
on a conventional floating-point adder. The complex

J. Cent. South Univ. (2016) 23: 1669−1681

1672

addition and subtraction operation can be made simpler
by combining both addition and subtraction operations as
a single unit. The sharing of exponent comparison and
arrangement largely helps decreasing the complexity.
This in turn, reduces the area of the required circuit as
well [11].

3 Proposed architecture

3.1 Proposed fused dot product unit

The architecture for floating-point fused two-term
dot-product unit [11] is drawn from the architecture of a
conventional single path floating-point fused
multiplier-adder. In this work, the proposed modified
floating-point fused two-term dot-product unit is derived
from the floating-point fused two-term dot-product unit
[11]. The proposed architecture consists of blocks as
given below:

1) Exponent compare;
2) Two proposed Radix-16 booth mantissa

multipliers;
3) Alignment;
4) Leading zero anticipator (LZA) and normalize.
All these blocks are portrayed in Fig. 2. The

proposed fused DP unit carries out its operation with
regard to single precision floating-point arithmetic
IEEE-754 standard. The basic fused DP operation is to
compute the addition or subtraction of the products
obtained from the two mantissa multiplier trees. The
subtraction can be performed by transforming the output
of one of the multiplier trees to 2’s complement form.
But to perform an addition operation, the products can be
added without complementing any product.

The exponent compared block for the proposed
modified floating-point fused two-term dot-product unit
relies on the exponent compared circuit for the floating-

Fig. 2 Floating point fused dot product unit

J. Cent. South Univ. (2016) 23: 1669−1681

1673

point fused two-term dot-product unit [11]. This
exponent compare circuit consists of two 8-bit exponent
adders for single-precision IEEE floating-point to add the
exponents of input pairs C&D and A&B. The two
exponent adders work in parallel and hence will not
permit the delay of the exponent compare circuit to
exceed twice the delay needed for the single adder.

The alignment block describes a pair of alignment
shifter block. Each shifter block aids in arranging the
output sum and carry of the “C×D” significand
multiplication to the output sum and carry of the “A*B”
significand multiplication. The alignment circuit
determines the operation (addition or subtraction) to be
performed between sum and carry of “C×D” and “A*B”
as well. The difference between the exponents of the two
operands of C&D serves as the support for this.

The normalization circuit helps in counting the
number of leading zeros in the significand adder
outcome and left-shifts the sum to have a leading one in
the left-most digit. The LZA circuit has a pre-encoder
and a leading zero detector (LZD) [11] as shown in
Fig. 3. The normalization of the floating-point unit result
is done with the use of LZA circuit, principally for
subtraction operations in fused DP unit with massive
offsets.

LZA [11]: Pre-encode algorithm
For i=0 to n
Begin

1)](~| 1)([&)](~^)([=~)( iBiAiBiAiY (6)

End

3.2 Proposed Radix-16 booth multiplier

The micro architecture block schematic of the
significand multiplier is shown in Fig. 4. Actually,
multiplication is the procedure of partial product
generation and then addition of the generated partial
products. There are many multiplication algorithms
proposed in literature and these algorithms differ in
generation of partial products and addition of partial
products to evaluate the net result. Out of which booth’s
encoding algorithm is the most popular multiplication
algorithm. Also, the booth algorithm is effectively
utilized for multiplication with modified Radix-r
encoding method and is so called as modified Radix
booth encoding multiplier. The most common encoding
is Radix-4 booth encoding technique. In FFT
Implementation with fused floating-point multiplier
operation [11] Radix-8 booth encoding multiplier is used.
This will reduce the number of partial product generation
when compared to shift-add multiplier, array multiplier,
and Radix-4 booth encoding multiplier architecture.
Usually, in Radix-r booth’s algorithm the multiplier
operand is often encoded into a Radix higher than 2 in
order to reduce the number of partial products. Therefore,
the higher the Radix-r the lesser will be the number of

Fig. 3 LZA logic

J. Cent. South Univ. (2016) 23: 1669−1681

1674

partial products generated. The encoding algorithm
converts a series of successive 1’s into 0’s for the
purpose of reducing the switching activity. Since r=2n
each n+1 consecutive bits of the multiplier operand
denotes the input to booth encoding circuit and the
resultant from this circuit describes the suitable operation
on the multiplicand operand that may be “shift and
invert”, “invert”, “equal to zero”, “no operation” and
“shift”, for example (−8A, −4A, −2A, −1A, 0, +1A, +2A,
+4A, +8A) respectively. Thus, in this work a Radix-16
booth encoding multiplier algorithm circuit is proposed
and it reduces the number of partial products generation
by 75% compared to conventional multiplier, 50%
compared to Radix-4 booth encoding multiplier, and
25% compared to Radix-8 booth encoding multiplier.

Fig. 4 Block schematic of proposed Radix-16 booth multiplier

In proposed Radix-16 booth encoding technique, a

24-bit multiplier operand (B0, B1, …, B23)is sub divided
into 6 groups with each group having 5-consecutive bits.
These, groups are booth encoded as represented in
second column of Table 1 and the same can be
represented in encoded bits as in third column of Table 1,
while the last column of Table 1 presents the operation to
be performed over multiplier operand.

1) Proposed Radix-16 booth encoder circuit.
The Encoded bits are represented as a hardware

circuit, as shown in Fig. 5. Thus, the proposed circuit is
developed with respect to the relation between
multiplicand input bits (A0, A1, …, An) in column one
and encoded bits in column three and is called as
proposed Radix-16 booth encoder circuit. Also, the
mathematical expression for the same is given by

01 BE  (7)

43210432102 BBBBBBBBBBE  (8)

 103210321043)(BBBBBBBBBBBE

)()(432103243 BBBBBBBBB  (9)

)()()(432043204324 BBBBBBBBBBBE

)(4320 BBBB  (10)

)(435 BBE  (11)

2) Proposed partial product generation circuit.
Since, the number of groups encoded is 6 for 24-bit

multiplier, the number of partial products generated is 6.
The partial product generation circuit utilizes last
operation columns of Table 1. From the table it is clear
that the operations performed by the partial product
generation circuit are “+1×A”, “+2×A”, “+4×A”, and

Table 1 Proposed Radix-16 booth encoding table

5-consecutive
multiplicand

bits

Radix-16
Booth

encoding

Encoded bits
Operation

E1 E2 E3 E4 E5

00000 0 00000 0A 0A

00001 +1 00001 +1A 0A

00010 +1 00001 +1A 0A

00011 +2 00010 +2A 0A

00100 +2 00010 +2A 0A

00101 +3 00011 +2A +1A

00110 +3 00011 +2A +1A

00111 +4 00100 +4A 0A

01000 +4 00100 +4A 0A

01001 +5 00101 +4A +1A

01010 +5 00101 +4A +1A

01011 +6 00110 +4A +2A

01100 +6 00110 +4A +2A

01101 +7 00111 +4A +2A +1A

01110 +7 00111 +4A +2A +1A

01111 +8 01000 +8A 0A

10000 −8 11000 −8A 0A

10001 −7 10111 −4A −2A −1A

10010 −7 10111 −4A −2A −1A

10011 −6 10110 −4A −2A

10100 −6 10110 −4A −2A

10101 −5 10101 −4A −1A

10110 −5 10101 −4A −1A

10111 −4 10100 −4A 0A

11000 −4 10100 −4A 0A

11001 −3 10011 −2A −1A

11010 −3 10011 −2A −1A

11011 −2 10010 −2A 0A

11100 −2 10010 −2A 0A

11101 −1 10001 −1A 0A

11110 −1 10001 −1A 0A

11111 0 00000 0A 0A

“+8×A” or “−1×A”, “−2×A”, “−4×A”, and “−8×A”,
while these operations represent shifting left the
multiplicand “A” by 0, 1, 2, and 3 respectively for
positive operations and for negative operations the
multiplicand “A” will be shifted left by 0, 1, 2, and 3
after performing 2’s complement of A, respectively.
There is a probability that a partial product output will be
1 of the 8 different combinations +/− (A, 2A, 3A, 4A, 5A,
6A, 7A, and 8A) of encoder circuit driven operations.
This is represented in the circuit Fig. 6.

J. Cent. South Univ. (2016) 23: 1669−1681

1675

Fig. 5 Proposed Radix-16 booth encoder circuit

If the above partial product circuit is observed

carefully, an 8:1 multiplexer with partial product select
line logic circuit is interpreted. The 3-bit select line logic
is designed such that gate logic circuit as shown in Fig. 7
utilizes the 4-output bits of the encoder circuit E2, E3, E4
and E5 to select 1 partial product from the 8 probable
outputs. The mathematical model for the same is
presented in Eqs. (12)−(14). The left shift operations are
enabled based on the 4-output bits of the encoder circuit
Fig. 6. Also, the positive and negative operations depend
on the E1 bit. This maintains the synchronization

between each operation of the partial product circuit.
Again, the operation will be positive if E1 bit is 0 and it
will be negative if E2 is 1, i.e., if E1 bit is 1 then 2’s
complement of the multiplicand is first executed and
then remainder will be shifted left with respect to the
remaining encoder bits.

The mathematical representations of proposed
partial product select line logic are

)()(543254320 MMMMMMMMP S (12)

)()(54254321 MMMMMMMP S (13)

))((43243251 MMMMMMMP S (14)

3) Partial product addition circuit.
The selected 6 partial product need to be added to

produce the desired result. The partial product addition is
so designed that the “0” (zero) partial product generated
is disabled form the addition circuit with the help of the
enable logic for the 3: 8 decoder and 8:1 mux circuit. In
Fig. 8, a 4-input OR gate is used to identify the low logic
at active high enable signal (EN) of the decoder and mux.
The 6 partial products are generated and stored in 49 bit
partial product registers (PP0, PP1, PP2, PP3, PP4, and
PP5). The orientation of these resultant partial product
registers are sketched in Fig. 8. Now, these partial
product registers are selected using a 3-bit up counter
output as select line for 3:8 decoder and 8:1 mux. Again,
if the EN (EN) input is 0, the decoder and mux will
disable the partial product output to be decoded through
to the adder unit and vice versa if EN input is 1. The
enable logic reduces the switching activity and this is
represented by a simple OR gate.

Fig. 6 Proposed partial product generator

J. Cent. South Univ. (2016) 23: 1669−1681

1676

Fig. 7 Select line logic circuit

)(5432N MMMME  .(15)

3.3 Proposed Radix-4 DIT FFT

This section deals with a floating point fused
Radix-4 FFT butterfly unit. This unit utilizes the
IEEE-754 single precision format with Radix-16 booth
encoding multiplier for mantissa multiplication. The
Radix-4 FFT is an algorithm that constitutes the essential
4-point FFT computation element called butterfly unit.
The Radix-4 FFT algorithm step-downs the amount of
stages required for the implementation of FFT algorithm
by executing more computations in the Radix-4 FFT
butterfly unit. The principal merit of the Radix-4 FFT is
that it attempts to lessen the number of complex
multiplications by about 25% [17] in comparison to a
same size Radix-2 FFT. Figure 9 illustrates the operation
executed by Radix-4 decimation in time FFT butterfly

unit. A Radix-4 FFT butterfly demands for eight complex
additions and three complex multiplications for its
operation.

The entire lines carry complex pairs of 32-bit
IEEE-754 numbers and all operations are complex. A
discrete realization of the parallel Radix-4 FFT butterfly
unit demands 12 real multipliers and 6 real adders for the
implementation of the 3 complex multipliers and 16 real
adders for implementing the 8 complex adders, resulting
in a total of 12 real multipliers and 22 real adders.
Another fused realization is in need of 6 fused dot
product units to implement the 3 complex multipliers and
8 fused add-subtract units to implement the 8 complex
adders, resulting in a total of 6 fused DP units and 8
fused AS units. For the fused implementation, rounding
and normalization takes place at the output of the fused
dot product alone and once at each of the two layers of
fused add-subtract units. This is illustrated in Fig. 10.

4 Implementation results and comparison

In this work a floating-point fused Radix-4 FFT
butterfly unit is proposed using the IEEE-754
single-precision floating-point arithmetic format as
shown in Fig. 11. The hardware utilization of the
proposed fused butterfly design is compared to the
conventional butterfly implemented with discrete
floating-point multipliers and adders and to the fused
butterfly design in Ref. [11]. The proposed fused
butterfly unit is compared to the existing techniques for
hardware utilization metrics such as; area and power. The
proposed system is designed using Radix-16 booth
encoding multiplier. The entire architecture is
implemented in xilinx-ise and is coded in verilog
language. For generating the hardware utilization report,

Fig. 8 Partial product addition circuit

J. Cent. South Univ. (2016) 23: 1669−1681

1677

Fig. 9 Radix-4 DIT FFT butterfly unit

the verilog code of the proposed architecture is
synthesized and implemented using synthesis tool, while
the power report is produced by using the xpower

analyzer tool in Xilinx-ISE. Then, the simulation of the
same is performed by developing a test bench for the
proposed design.

The implementation results presented for the above
specifications are synthesized using vertex-4 FPGA
device. To demonstrate the advantages of the proposed
fused floating-point dot-product unit, the hardware
utilization metrics for the following modules designed
are analyzed:

1) Proposed Radix-16 booth encoding multiplier;
2) Proposed Radix-16 Fused Floating-Point

Dot-Product Unit;
3) Proposed Radix-4 FFT Butterfly Unit.
The Proposed Radix-16 fused floating-point dot-

product unit is shown in Fig. 2. Most of the sub-circuits
of the proposed fused dot product unit are similar to the
sub-circuits of the fused dot product unit [11]. The

Fig. 10 Conventional complex arithmetic based butterfly unit

J. Cent. South Univ. (2016) 23: 1669−1681

1678

Fig. 11 Proposed complex arithmetic based Radix-4 DIT FFT butterfly unit

sub-circuits in proposed fused dot product differs from
the one in Ref. [11] in the design of significand
multiplier. The architecture shown in Figs. 5−8
contribute to the proposed significand multiplier. The
Booth encoder shown in Table 1 reduce the number of
partial products compared to the Radix-8 booth
technique.

The partial product addition in Ref. [11] is executed
by a Wallace carry save compression tree and a One-hot
encoding is applied in organizing these partial products
to nullify the overhead of executing full 2’s complement
needed by Booth negative encoded digits. But, in this
paper the 2’s complement is executed while the partial
product is generated. The 2’s complement operation is
executed only if the MSB of the encoded bits is high.
And hence the complexity of executing the one hot
encoding in partial product addition is eliminated. To
produce the resultant value of significand multiplication,
the partial products addition has to be aligned as shown

in Fig. 12. And the another major contribution of the
designed multiplier is that, it reduces the switching
activities by disabling the zero encoded operation (0×A)
for partial product addition as it will unnecessarily
increase the switching activities.

The Radix-4 FFT butterfly unit utilizes the
IEEE-754 single-precision floating-point multiplication
and addition operations on the pairs of data. The
proposed system is synthesized and implemented on the
xc6vlx550tl-1Lff1759 FPGA device using Xilinx ISE
tool.

5 Comparison of implementation results

5.1 Proposed Radix-16 booth encoding multiplier

This circuit reduces the number of partial products
generation by 75 % compared to conventional multiplier,
and 25% compared to Radix-8 booth encoding multiplier.
This results in 54.3% less space on the selected FPGA

J. Cent. South Univ. (2016) 23: 1669−1681

1679

Fig. 12 Partial product registers

device. This fact is addressed in Table 2.

Table 2 Comparison of Booth multipliers

Parameter

R-16 booth

encoding

multiplier

R-8 booth

encoding

multiplier

No. of slice registers 297 0

No. of LUTs 1182 2117

No. of IOBs 449 303

Total no. of occupied slices 401 877

5.2 Proposed Radix-16 fused floating-point dot-

product unit
The proposed unit is superior to the technique

presented in Ref. [11] since it occupies less space on the
chosen device. This fact is addressed in the Table 3.

Table 3 Comparison of FPDP unit

Parameter R-16 FPDP unit R-8 FPDP unit

No. of slices fdp 87 87

No. of slices multiplier 401 877

Total no. of Slices 488 964

5.3 Proposed Radix-4 FFT butterfly unit

The proposed unit occupies less space compared
and consumes less power to existing techniques
presented in Ref. [11]. With the use of Radix-16 fused
floating-point Dot-Product Unit, the area and power
required will be reduced. This fact is addressed in
Table 4.

6 Proposed enhancement

The analysis of the proposed model is effective in
terms of area required, but consumes slightly less power
than existing techniques as discussed in the above

Table 4 Comparison of FFT architectures

Parameter
Proposed

R-16 FDP R-4
BU

R-8
FDP

R-4 BU

Proposed
R-16 FDP R-2

BU

R-8
FDP

R-2 BU
No. of Slices

FFT BU
871 877 1164 804

Power consumed
(watts)

6.070 6.122 4.094 5.667

section. Therefore, in this section a further enhancement
in the proposed model has been visualized. Enhancement
in the proposed model is interpreted by utilizing the
simple term reusability, the designed model in Fig. 11
can be realized as in Fig. 13 by examining Eqs. (16) to
(31).
x0·w0+x2·w2=A (16)

x0·w0+x2·w2=B (17)

x1·w1+x3·w3=C (18)

x1·w1+x3·w3=D (19)

Representing the above equations in complex
multiplication and addition form;
(X0r+X2r)+(X0i+X2i)=Ar+Ai (20)

(X0r+X2r)+(−X0i−X2i)=Br+Bi (21)

(X1r+X3r)+(X1i+X3i)=Cr+Ci (22)

(X1r+X3r)+(−X1i−X3i)=Dr+Di (23)

where Xr (real value) and Xi (Imaginary value) are the
fused dot product units which is constituted as
Xr=(xr·wr–xi·wi) and Xi=(xr·wi+xi·wr)

Finally,

Ar+Cr=Y0r (24)

Ar+Cr=Y1r (25)
Br+Dr=Y2r (26)

Br−Dr=Y3r (27)

J. Cent. South Univ. (2016) 23: 1669−1681

1680

Fig. 13 Detailed block representation of enhanced proposed model using reusability technique

Ai+Ci=Y0i (28)

Ai−Ci=Y1i (29)

Bi+Di=Y2i (30)

Bi−Di=Y3i (31)

Now, comparing Fig. 11 and Fig. 13, it is observed
that the four FDP and four FAS modules can be
considered as a part of reusability term. Form
observation, it is clear that out of these 4-FDP and 4-FAS,
a pair of 2-FDP and 2-FAS executes real and imaginary
values of the complex multiplication and addition
operations in FFT butterfly for a pair of input. Thus,
these 2-FDP and 2-FAS modules of Radix-4 FFT
butterfly unit can be utilized to generate the real and
imaginary values for the 1st half of the output, while the
remaining half of the output will be generated post
execution of the 1st half of Radix-4 FFT butterfly unit.
So the enhanced model will consume less power
compared to the proposed model by utilizing the
reusability technique. This is true, because the reusability
technique allows only 2-FDP and 2-FAS modules out of
4-FDP and 4-FAS modules required to execute the
operations of Radix-4 FFT butterfly unit.

The enhanced model in Fig. 13 improves the results
of the proposed model using the reusability technique.
This consumes less space and power compared to
existing techniques and as well as the proposed design in
section 3-4. This fact is addressed in Table 5.

Table 5 Comparison of enhanced model with existing FFT

architectures

Parameter

Enhanced

R-16

FDP R-4

BU

Proposed

R-16

FDP R-4

BU

R-8

FDP

R-4

BU

Enhanced

R-16

FDP R-2

BU

Proposed

R-16

FDP R-2

BU

R-8

FDP

R-2

BU

No. of

Slices

FFT BU

437 871 877 520 1164 804

Power

consumed

(watts)

5.377 6.070 6.122 3.681 4.094 5.667

7 Conclusions

1) The proposed Radix-16 Booth encoding
multiplier based FDP unit for Radix-4 DIT FFT butterfly
unit is synthesized and implemented on the
xc6vlx550tl-1Lff1759 FPGA device using Xilinx ISE
tool.

2) This system requires 12.16% less total power
compared to the existing Radix-8 booth multiplier fused
dot product based Radix-4 FFT butterfly unit (R-8 FDP
based R-4 FFT BU). Similarly, R-16 FDP based R-2 FFT
BU requires 5.11% less total power compared to the
existing R-8 FDP based R-2 FFT BU.

3) On the other hand, the enhanced model with
reusability technique benefits a power efficient butterfly

J. Cent. South Univ. (2016) 23: 1669−1681

1681

unit.
4) The proposed enhanced R-16 FDP based R-4

FFT BU require 49.82% less hardware and reduced
11.42% of total power compared to the proposed R-16
FDP based R-4 FFT BU while, the proposed enhanced
R-16 FDP based R-2 FFT BU requires 55.32% less space
as well 10.08% reduced power consumption on the
FPGA device equated to the proposed R-16 FDP based
R-2 FFT BU.

5) Thus, from the comparison results it can be
concluded that the proposed system is area and power
efficient.

References

[1] IEEE Standard for Floating-Point Arithmetic, ANSI/IEEE Standard

754-2008 [S]. New York: IEEE, Inc., 2008.

[2] MONTOYA R K, HOKENEK E, RUNYON S L. Design of the IBM

RISC system/6000 floating-point execution unit [J]. IBM Journal of

Research & Development, 1990, 34: 59−70.

[3] HOKENEK E, MONTOYA R K, COOK P W. Second-generation

RISC floating point with multiply-add fused [J]. IEEE J Solid-State

Circuits, 1990, 25(5): 1207−1213.

[4] AL-ASHRAFY M, SALEM A, ANIS W. An efficient implementation

of floating point multiplier [C]// Electronics, Communications and

Photonics Conference (SIECPC). Saudi International, Ryadh: IEEE,

2011: 1−5.

[5] QUINNELL E, SWARTZLANDER Jr E E, LEMONDS C. Bridge

floating-point fused multiply-add design [J]. IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, 2008, 16(12):

1726−1730.

[6] HUANG Li-bo, MA Sheng, SHEN Li, WANG Zhi-ying, XIAO Nong.

Low-cost binary128 floating-point FMA unit design with SIMD

support [J]. IEEE Transactions on Computers, 2012, 61(5): 745−751.

[7] MOTTAGHI-DASTJERDI M, AFZALI-KUSHA A, PEDRAM M.

BZ-FAD: A low-power low-area multiplier based on shift-and-add

Architecture [J]. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 2009, 17(2): 302−306.

[8] YAN Jin-tai, CHEN Zhi-wei. Low-cost low-power bypassing-based

multiplier design [C]// IEEE International Symposium on Circuits

and Systems Paris: IEEE, 2010: 2338−2341.

[9] KUO Ko-chi, CHOU Chi-wen. Low power and high speed multiplier

design with row bypassing and parallel architecture [J].

Microelectronics Journal, 2010, 10: 639−650.

[10] PRABHU A S, ELAKYA V. Design of modified low power booth

multiplier [C]// International Conference on Computing,

Communication and Applications, Dindigul: IEEE, 2012: 1−6.

[11] GALAL S, HOROWITZ M. Energy-efficient floating-point unit

design [J]. IEEE Transactions on Computers, 2011, 60(7): 913−922.

[12] REDDY B N K, SEKHAR M C, VEERAMACHANENI S,

SRINIVAS M B. A novel low power error detection logic for inexact

leading zero anticipator in floating point units [C]// VLSI Design and

13th International Conference on Embedded Systems,Mumbai: IEEE,

2014: 128−132.

[13] SOHN J, SWARTZLANDER E E. Improved architectures for a

floating-point fused dot product unit [C]// IEEE 21st Symposium on

Computer, Arithmetic Proceeding ARITH’13, Anstin: IEEE, 2013:

41−48.

[14] SWARTZLANDER E E, SALEH H H M. FFT Implementation with

fused floating-point operations [J]. IEEE Transactions on Computers,

2012, 61(2): 284−288.

[15] SOHN Jong-wook, SWARTZLANDER E E. Improved architectures

for a fused floating-point add-subtract unit [J]. IEEE Transactions on

Circuits and Systems—I: Regular Papers, 2012, 59(10): 2285−2291.

(Edited by DENG Lü-xiang)

