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Abstract: In this work, power efficient butterfly unit based FFT architecture is presented. The butterfly unit is designed using 
floating-point fused arithmetic units. The fused arithmetic units include two-term dot product unit and add-subtract unit. In these 
arithmetic units, operations are performed over complex data values. A modified fused floating-point two-term dot product and an 
enhanced model for the Radix-4 FFT butterfly unit are proposed. The modified fused two-term dot product is designed using 
Radix-16 booth multiplier. Radix-16 booth multiplier will reduce the switching activities compared to Radix-8 booth multiplier in 
existing system and also will reduce the area required. The proposed architecture is implemented efficiently for Radix-4 decimation 
in time (DIT) FFT butterfly with the two floating-point fused arithmetic units. The proposed enhanced architecture is synthesized, 
implemented, placed and routed on a FPGA device using Xilinx ISE tool. It is observed that the Radix-4 DIT fused floating-point 
FFT butterfly requires 50.17% less space and 12.16% reduced power compared to the existing methods and the proposed enhanced 
model requires 49.82% less space on the FPGA device compared to the proposed design. Also, reduced power consumption is 
addressed by utilizing the reusability technique, which results in 11.42% of power reduction of the enhanced model compared to the 
proposed design. 
 
Key words: floating-point arithmetic; floating-point fused dot product; Radix-16 booth multiplier; Radix-4 FFT butterfly; fast fourier 
transform; decimation in time 
                                                                                                             
 

 
1 Introduction 
 

For several years, a lot of researchers have shown 
their attention towards floating-point fused arithmetic 
implementation on FPGAs [1]. The IBM RISC (reduced 
instruction set computer) system (RS/6000) floating- 
point unit (FPU) [2] indicates a second-generation RISC 
CPU architecture and an implementation that is capable 
of largely improving the floating-point performance and 
accuracy. They denoted a unified floating-point 
multiply-add-fused unit (MAF) that can decrease the 
latency, rounding errors and chip busing. In addition, the 
number of adders/normalizers used can be reduced as 
well. This unit has achieved a peak execution rate of 50 
MFLOPS (million floating-point operations per second) 
with a 25-MHz clock frequency and was able to maintain 
this rate even in complex programs. But HOKENEK   
et al [3] have explained about a 440000-transistor 
second-generation RISC floating-point chip in. The 

pipeline latency obtained with this architecture was two 
cycles only and each cycle yielded a double-precision 
result. An improvement in the system throughput and 
accuracy was also achieved with the utilization of a 
floating-point multiply-add-fused unit, which performed 
double-precision accumulate as a two-cycle pipelined 
execution with only one rounding error. As the cycle 
time (40 ns) was competitive with other CMOS RISC 
systems, the floating-point performance gets enlarged to 
the range of bipolar RISC systems (7.4-13 MFLOPS 
LINPACK). Leading zero anticipation has enabled the 
two-cycle pipeline possible through nearly reducing the 
extra post normalization time and the factors that has 
resulted in reduced overall system potential. Partial 
decode shifters have permitted complete time sharing for 
the multiply and data alignment. 

An efficient implementation of a conventional 
floating point multiplier that has aided the IEEE 
754-2008 binary interchange format was introduced in 
by AL-ASHRAFY et al [4] and is shown in Fig. 1. A  
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comparison of this technique [4] against the two FMA 
techniques that aims to reduce latency as discussed in 
Refs. [2−3] has been made and it was found that the 
former technique [4] would yield an enhanced precision 
than the latter technique if the entire 48 bits were used up 
in another unit called a floating point adder to form a 
MAC unit. But the designed multiplier [4] does not 
perform rounding and has provided only the significand 
multiplication result that is 48 bits long. The design 
comprised of three pipelining stages and has resulted in 
301 MFLOPs and latency of 3 cycles after implementing 
it on a Xilinx Virtex5 FPGA. QUINNELL et al [5] and 
HUANG et al [6] presented the bridge FMA unit [5] and 
a low-cost binary floating-point FMA unit [6], 
respectively. The performance, area and power cost of 
these two techniques offered a practical and reasonable 
analysis of their presented FMA hardware tradeoffs. 

Multiplying floating point numbers is a most 
essential need for DSP applications that are related to 
large dynamic range as depicted in Ref. [6]. Binary32, 
binary64, binary128 floating-point representations may 
be cited as examples for this large dynamic range. This 
work deals with single precision binary or binary 32 
interchange format alone. It contains a one bit sign (S), 
an eight bit exponent (E) and a twenty three bit fraction 
(M or Mantissa). An additional bit is added to the 
fraction to obtain what is called the signific and 1. If the 
exponent is found to be larger than 0 and less than 255 
along with 1 in the MSB of the significand, then the 
number is termed as a normalized number. In this case, 
the real number is indicated by Eq. (1). 
 

  
Fig. 1 IEEE 754 single precision binary format representation 

 
Z=(−1·S)·2(E−B)·(1·M)                              (1) 
 
where M=m222-1+m212-2+m202-3+…+m12-22+m02-23; B=127. 

The multiplication of two numbers in floating point 
format can be performed by the following sequence of 
steps: Add the exponent of the two numbers, subtract the 
bias from their result, multiply the significand of the two 
numbers and finally, compute the sign by XORing the 
sign of the two numbers. The multiplication result can be 
represented as a normalized number if and only if a 1 is 
present in the MSB of the result (leading one). 

Commonly, the multiplication of the significand bits 
in the two floating point numbers is done through the 
conventional multipliers or shift-add multipliers. The 
work shows interest in presenting a power efficient 
multiplier for carrying out the significand multiplication 
and hence, a couple of available multiplier designs are 

examined. MOTTAGHI-DASTJERDI et al [7] have 
designed a low-power structure called bypass zero, feed 
A directly (BZ-FAD) for shift-and-add multipliers that 
does not consider speed as its principal factor. In contrast 
to the other conventional shift-add methods, this 
architecture has achieved great reductions in the 
switching activity up to 76% and power consumption up 
to 30%. YAN and CHEN [8] have proposed a low power 
digital multiplier design by using a 2-dimensional 
bypassing method, which omits both the redundant 
signal transitions and computations when the 
horizontally partial product or the vertical operand is 
zero. The power dissipation obtained with their designed 
multiplier had decreased beyond 75% on comparison 
with the existing by passing methods. A low power and 
high speed row bypassing multiplier that lessens power 
consumption and delay by 17% and 36% respectively, 
with 20% increase of chip area in comparison with those 
of conventional array multipliers is presented in Ref. [9]. 
The booth multiplier technique [10] offers a lower power 
consumption rate when compared to bypass techniques 
and array multipliers. The recoding approach presented 
in booth decoder has raised the number of zeros in 
multiplicand. In this way, the number of switching 
transitions is reduced and the power consumed can be 
decreased. Booth multiplier consumes comparatively less 
power and hence, this work employs multiplier with 
booth recoding unit for designs with low power 
consumption. 

The processor designers chiefly consider scaling 
and overflow/underflow for selecting the fixed-point 
arithmetic for their design. One way of solving this 
problem is to use the floating-point arithmetic for the 
special purpose processor design. In current years, the 
researchers have shown keen attention towards the 
utilization of the fused arithmetic units in DSP 
applications. Employing the IEEE-754 standard 32-bit 
floating-point format [1] allows the high speed fourier 
transform processors to be used as coprocessors in 
combination with general purpose processors. 
SWARTZLANDER and SALEH [11] have created a 
design that merges two floating-point Arithmetic units 
and have applied it to the implementation of fast fourier 
transform (FFT) butterfly operations. Their method has 
produced minimizations in the delay and the area of FFT 
computation units. 

The speed of entire computing decreases with the 
serial operation of fused dot product and add-subtract 
operations. The parallel operation of computation units 
can solve this issue of slower processing, but the silicon 
area and power consumption rate with high throughput 
gets increased. These shortcomings of parallel processing 
give rise to hardware and energy issues and hence, this 
paper tries to present a modified floating point fused DP 
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architecture that is more power efficient. Numerous 
digital signal processing (DSP) applications such as FFT 
and discrete cosine transform (DCT) with the butterfly 
operations have been developed for employing the fused 
floating-point units [11−12]. Thus, this work aims to 
present a power efficient Radix-4 DIT FFT butterfly unit 
by contributing to the improvement in floating point 
fused DP unit, which paves way for the advancements in 
next generation floating-point arithmetic and DSP 
applications. 

In the recent years, two fused floating-point 
primitive operations have been proposed to minimize the 
delay and area of FFT computation units [11]. The role 
of this work is to design a efficient Fused floating-point 
two-term dot product unit for the application of Radix-4 
DIT FFT butterfly unit. The modified fused floating– 
point two-term dot product unit will be realized by 
designing a reduced hardware 24×24 bits multiplier that 
multiplies the two-term 24 bit mantissa. The area 
efficient 24×24 bits multiplier is designed with the help 
of Radix-4 Booth’s recoding method. The booth’s 
method encodes more number of zeros and hence, the 
switching activity gets reduced. Encoded multiplier zeros 
will generate partial products value that indicate zeros, 
which will be bypassed in the proposed 24×24 bits booth 
recoding multiplier architecture. Moreover, the power 
efficiency will be gained by realizing the reusability 
technique. This will reduce the number of hardware 
required on the device along with the required power. 
 
2 Literature review 
 
2.1 Fast fourier transform (FFT) 

The FFT is one among the chief elements of various 
signal processing and communication applications such 
as software defined radio and OFDM. The basic 
architecture of a Radix-r pipeline FFT processor is a 
familiar one. The n-point discrete Fourier transform is 
defined by 
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The N-point FFT can be decomposed to recurring 
micro-operations called butterfly operations. If the size 
of the butterfly is r, then the FFT operation will be 
termed as Radix-r FFT. The Radix-r butterfly unit 
includes a computational element (CE) and a twiddle 
factor (TF). The input data flows from r-complex data to 
the CE along one direction. The (r−1)-complex data to 
the CE is either utilized from TF ROM or may be 

computed from the TF unit. Practically, there are two 
types of FFT that can be realized. They are decimation in 
time (DIT) and decimation in frequency (DIF). The 
DIT-FFT butterfly unit has a complex multiplication 
followed by a sum and difference network. But on the 
contrary, the DIF-FFT butterfly unit consists of a sum 
and difference network followed by a complex 
multiplication. The Radix-r butterfly unit computes a 
fourier transform of the r-complex inputs that has been 
received. Employing S Radix-r butterfly yields an 
rs-point FFT. The data rate of (r×clock rate) implies that 
on each clock cycle, r-data enter and r-data exit from 
each butterfly unit. This in turn reveals that a Radix-4 
FFT can be four times faster than a Radix-2 FFT. 
 
2.2 Floating point fused arithmetic unit 

The fused floating-point two-term dot product unit 
(Fused DP) is a modified form of the fused multiply-add 
(FMA) operation that was formerly designed for the IBM 
RS/6000 processor [2−3] and nowadays it is combined 
with IEEE Std-754. The fused DP unit figures out a 
two-term dot product as 
 

DCBAX                                 (3) 
 

In a conventional dot product addition, the two 
products are added together as shown in Eq. (2). But the 
fused DP unit computes the difference of the two 
products using the same unit as well [11]. The fused DP 
unit relies on the fused multiply-add unit. The 
eradication of rounding and normalization logic in both 
the multipliers has resulted in an efficient area reduction 
than in a conventional parallel discrete implementation 
of two multipliers and an adder. The accuracy of the 
result increases to some extent with the implementation 
of this approach because only one rounding operation is 
performed. But in the case of discrete implementation, 
three rounding operations are being made and the 
accuracy gets affected. There are a number of reasons 
that make floating-point FMA to be superior to the 
discrete floating-point adders and multipliers in a general 
purpose processor [5−6]. These reasons can be as follows: 
The FMA reduces the latency of a multiplication 
followed by an addition, the floating-point adder and the 
floating-point multiplier in a system can be replaced by a 
single FMA as well and it supports implementation of 
complex multiplication. 

Another fused operation is a fused add-subtract unit 
(Fused AS) [11−12]. This executes a parallel operation of 
addition and subtraction with the same pair of data.  

BAX                                    (4) 
 

BAY                                     (5) 
 

The design of fused add-subtract unit has its basis 
on a conventional floating-point adder. The complex 
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addition and subtraction operation can be made simpler 
by combining both addition and subtraction operations as 
a single unit. The sharing of exponent comparison and 
arrangement largely helps decreasing the complexity. 
This in turn, reduces the area of the required circuit as 
well [11]. 
 
3 Proposed architecture 
 
3.1 Proposed fused dot product unit 

The architecture for floating-point fused two-term 
dot-product unit [11] is drawn from the architecture of a 
conventional single path floating-point fused 
multiplier-adder. In this work, the proposed modified 
floating-point fused two-term dot-product unit is derived 
from the floating-point fused two-term dot-product unit 
[11]. The proposed architecture consists of blocks as 
given below: 

1) Exponent compare; 
2) Two proposed Radix-16 booth mantissa 

multipliers; 
3) Alignment; 
4) Leading zero anticipator (LZA) and normalize. 
All these blocks are portrayed in Fig. 2. The 

proposed fused DP unit carries out its operation with 
regard to single precision floating-point arithmetic 
IEEE-754 standard. The basic fused DP operation is to 
compute the addition or subtraction of the products 
obtained from the two mantissa multiplier trees.  The 
subtraction can be performed by transforming the output 
of one of the multiplier trees to 2’s complement form. 
But to perform an addition operation, the products can be 
added without complementing any product. 

The exponent compared block for the proposed 
modified floating-point fused two-term dot-product unit 
relies on the exponent compared circuit for the floating- 

 

 
Fig. 2 Floating point fused dot product unit 
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point fused two-term dot-product unit [11]. This 
exponent compare circuit consists of two 8-bit exponent 
adders for single-precision IEEE floating-point to add the 
exponents of input pairs C&D and A&B. The two 
exponent adders work in parallel and hence will not 
permit the delay of the exponent compare circuit to 
exceed twice the delay needed for the single adder. 

The alignment block describes a pair of alignment 
shifter block. Each shifter block aids in arranging the 
output sum and carry of the “C×D” significand 
multiplication to the output sum and carry of the “A*B” 
significand multiplication. The alignment circuit 
determines the operation (addition or subtraction) to be 
performed between sum and carry of “C×D” and “A*B” 
as well. The difference between the exponents of the two 
operands of C&D serves as the support for this. 

The normalization circuit helps in counting the 
number of leading zeros in the significand adder 
outcome and left-shifts the sum to have a leading one in 
the left-most digit. The LZA circuit has a pre-encoder 
and a leading zero detector (LZD) [11] as shown in   
Fig. 3. The normalization of the floating-point unit result 
is done with the use of LZA circuit, principally for 
subtraction operations in fused DP unit with massive 
offsets.  

LZA [11]: Pre-encode algorithm 
For i=0 to n 
Begin 

1)](~| 1)([ & )](~^)([ =~)(  iBiAiBiAiY         (6) 
 

End 
 
3.2 Proposed Radix-16 booth multiplier 

The micro architecture block schematic of the 
significand multiplier is shown in Fig. 4. Actually, 
multiplication is the procedure of partial product 
generation and then addition of the generated partial 
products. There are many multiplication algorithms 
proposed in literature and these algorithms differ in 
generation of partial products and addition of partial 
products to evaluate the net result. Out of which booth’s 
encoding algorithm is the most popular multiplication 
algorithm. Also, the booth algorithm is effectively 
utilized for multiplication with modified Radix-r 
encoding method and is so called as modified Radix 
booth encoding multiplier. The most common encoding 
is Radix-4 booth encoding technique. In FFT 
Implementation with fused floating-point multiplier 
operation [11] Radix-8 booth encoding multiplier is used. 
This will reduce the number of partial product generation 
when compared to shift-add multiplier, array multiplier, 
and Radix-4 booth encoding multiplier architecture. 
Usually, in Radix-r booth’s algorithm the multiplier 
operand is often encoded into a Radix higher than 2 in 
order to reduce the number of partial products. Therefore, 
the higher the Radix-r the lesser will be the number of 

 

 
Fig. 3 LZA logic 
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partial products generated. The encoding algorithm 
converts a series of successive 1’s into 0’s for the 
purpose of reducing the switching activity. Since r=2n 
each n+1 consecutive bits of the multiplier operand 
denotes the input to booth encoding circuit and the 
resultant from this circuit describes the suitable operation 
on the multiplicand operand that may be “shift and 
invert”, “invert”, “equal to zero”, “no operation” and 
“shift”, for example (−8A, −4A, −2A, −1A, 0, +1A, +2A, 
+4A, +8A) respectively. Thus, in this work a Radix-16 
booth encoding multiplier algorithm circuit is proposed 
and it reduces the number of partial products generation 
by 75% compared to conventional multiplier, 50% 
compared to Radix-4 booth encoding multiplier, and 
25% compared to Radix-8 booth encoding multiplier. 
 

 
Fig. 4 Block schematic of proposed Radix-16 booth multiplier 

 
In proposed Radix-16 booth encoding technique, a 

24-bit multiplier operand (B0, B1, …, B23)is sub divided 
into 6 groups with each group having 5-consecutive bits. 
These, groups are booth encoded as represented in 
second column of Table 1 and the same can be 
represented in encoded bits as in third column of Table 1, 
while the last column of Table 1 presents the operation to 
be performed over multiplier operand. 

1) Proposed Radix-16 booth encoder circuit. 
The Encoded bits are represented as a hardware 

circuit, as shown in Fig. 5. Thus, the proposed circuit is 
developed with respect to the relation between 
multiplicand input bits (A0, A1, …, An) in column one 
and encoded bits in column three and is called as 
proposed Radix-16 booth encoder circuit. Also, the 
mathematical expression for the same is given by 
 

01 BE                                      (7) 
 

43210432102 BBBBBBBBBBE                  (8) 
 

 103210321043 )( BBBBBBBBBBBE  

)()( 432103243 BBBBBBBBB         (9) 
 

 )()()( 432043204324 BBBBBBBBBBBE  

)( 4320 BBBB                          (10) 
 

)( 435 BBE                               (11) 
 

2) Proposed partial product generation circuit. 
Since, the number of groups encoded is 6 for 24-bit 

multiplier, the number of partial products generated is 6. 
The partial product generation circuit utilizes last 
operation columns of Table 1. From the table it is clear 
that the operations performed by the partial product 
generation circuit are “+1×A”, “+2×A”, “+4×A”, and  

Table 1 Proposed Radix-16 booth encoding table 

5-consecutive 
multiplicand

bits 

Radix-16
Booth

encoding

Encoded bits 
Operation 

E1 E2 E3 E4 E5 

00000 0 00000 0A 0A 

00001 +1 00001 +1A 0A 

00010 +1 00001 +1A 0A 

00011 +2 00010 +2A 0A 

00100 +2 00010 +2A 0A 

00101 +3 00011 +2A +1A 

00110 +3 00011 +2A +1A 

00111 +4 00100 +4A 0A 

01000 +4 00100 +4A 0A 

01001 +5 00101 +4A +1A 

01010 +5 00101 +4A +1A 

01011 +6 00110 +4A +2A 

01100 +6 00110 +4A +2A 

01101 +7 00111 +4A +2A +1A

01110 +7 00111 +4A +2A +1A

01111 +8 01000 +8A 0A 

10000 −8 11000 −8A 0A 

10001 −7 10111 −4A −2A −1A

10010 −7 10111 −4A −2A −1A

10011 −6 10110 −4A −2A 

10100 −6 10110 −4A −2A 

10101 −5 10101 −4A −1A 

10110 −5 10101 −4A −1A 

10111 −4 10100 −4A 0A 

11000 −4 10100 −4A 0A 

11001 −3 10011 −2A −1A 

11010 −3 10011 −2A −1A 

11011 −2 10010 −2A 0A 

11100 −2 10010 −2A 0A 

11101 −1 10001 −1A 0A 

11110 −1 10001 −1A 0A 

11111 0 00000 0A 0A 

 
“+8×A” or “−1×A”, “−2×A”, “−4×A”, and “−8×A”, 
while these operations represent shifting left the 
multiplicand “A” by 0, 1, 2, and 3 respectively for 
positive operations and for negative operations the 
multiplicand “A” will be shifted left by 0, 1, 2, and 3 
after performing 2’s complement of A, respectively. 
There is a probability that a partial product output will be 
1 of the 8 different combinations +/− (A, 2A, 3A, 4A, 5A, 
6A, 7A, and 8A) of encoder circuit driven operations. 
This is represented in the circuit Fig. 6. 
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Fig. 5 Proposed Radix-16 booth encoder circuit 

 
If the above partial product circuit is observed 

carefully, an 8:1 multiplexer with partial product select 
line logic circuit is interpreted. The 3-bit select line logic 
is designed such that gate logic circuit as shown in Fig. 7 
utilizes the 4-output bits of the encoder circuit E2, E3, E4 
and E5 to select 1 partial product from the 8 probable 
outputs. The mathematical model for the same is 
presented in Eqs. (12)−(14). The left shift operations are 
enabled based on the 4-output bits of the encoder circuit 
Fig. 6. Also, the positive and negative operations depend 
on the E1 bit. This maintains the synchronization 

between each operation of the partial product circuit. 
Again, the operation will be positive if E1 bit is 0 and it 
will be negative if E2 is 1, i.e., if E1 bit is 1 then 2’s 
complement of the multiplicand is first executed and 
then remainder will be shifted left with respect to the 
remaining encoder bits. 

The mathematical representations of proposed 
partial product select line logic are 
 

)()( 543254320 MMMMMMMMP S         (12) 
 

)()( 54254321 MMMMMMMP S           (13) 
 

))(( 43243251 MMMMMMMP S        (14) 
 

3) Partial product addition circuit. 
The selected 6 partial product need to be added to 

produce the desired result. The partial product addition is 
so designed that the “0” (zero) partial product generated 
is disabled form the addition circuit with the help of the 
enable logic for the 3: 8 decoder and 8:1 mux circuit. In 
Fig. 8, a 4-input OR gate is used to identify the low logic 
at active high enable signal (EN) of the decoder and mux. 
The 6 partial products are generated and stored in 49 bit 
partial product registers (PP0, PP1, PP2, PP3, PP4, and 
PP5). The orientation of these resultant partial product 
registers are sketched in Fig. 8. Now, these partial 
product registers are selected using a 3-bit up counter 
output as select line for 3:8 decoder and 8:1 mux. Again, 
if the EN (EN) input is 0, the decoder and mux will 
disable the partial product output to be decoded through 
to the adder unit and vice versa if EN input is 1. The 
enable logic reduces the switching activity and this is 
represented by a simple OR gate. 

 

 
Fig. 6 Proposed partial product generator 
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Fig. 7 Select line logic circuit 

 

)( 5432N MMMME                    .(15) 

 
3.3 Proposed Radix-4 DIT FFT 

This section deals with a floating point fused 
Radix-4 FFT butterfly unit. This unit utilizes the 
IEEE-754 single precision format with Radix-16 booth 
encoding multiplier for mantissa multiplication. The 
Radix-4 FFT is an algorithm that constitutes the essential 
4-point FFT computation element called butterfly unit. 
The Radix-4 FFT algorithm step-downs the amount of 
stages required for the implementation of FFT algorithm 
by executing more computations in the Radix-4 FFT 
butterfly unit. The principal merit of the Radix-4 FFT is 
that it attempts to lessen the number of complex 
multiplications by about 25% [17] in comparison to a 
same size Radix-2 FFT. Figure 9 illustrates the operation 
executed by Radix-4 decimation in time FFT butterfly 

unit. A Radix-4 FFT butterfly demands for eight complex 
additions and three complex multiplications for its 
operation. 

The entire lines carry complex pairs of 32-bit 
IEEE-754 numbers and all operations are complex. A 
discrete realization of the parallel Radix-4 FFT butterfly 
unit demands 12 real multipliers and 6 real adders for the 
implementation of the 3 complex multipliers and 16 real 
adders for implementing the 8 complex adders, resulting 
in a total of 12 real multipliers and 22 real adders. 
Another fused realization is in need of 6 fused dot 
product units to implement the 3 complex multipliers and 
8 fused add-subtract units to implement the 8 complex 
adders, resulting in a total of 6 fused DP units and 8 
fused AS units. For the fused implementation, rounding 
and normalization takes place at the output of the fused 
dot product alone and once at each of the two layers of 
fused add-subtract units. This is illustrated in Fig. 10. 
 
4 Implementation results and comparison 
 

In this work a floating-point fused Radix-4 FFT 
butterfly unit is proposed using the IEEE-754 
single-precision floating-point arithmetic format as 
shown in Fig. 11. The hardware utilization of the 
proposed fused butterfly design is compared to the 
conventional butterfly implemented with discrete 
floating-point multipliers and adders and to the fused 
butterfly design in Ref. [11]. The proposed fused 
butterfly unit is compared to the existing techniques for 
hardware utilization metrics such as; area and power. The 
proposed system is designed using Radix-16 booth 
encoding multiplier. The entire architecture is 
implemented in xilinx-ise and is coded in verilog 
language. For generating the hardware utilization report,  

 

 
Fig. 8 Partial product addition circuit 
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Fig. 9 Radix-4 DIT FFT butterfly unit 

 
the verilog code of the proposed architecture is 
synthesized and implemented using synthesis tool, while 
the power report is produced by using the xpower 

analyzer tool in Xilinx-ISE. Then, the simulation of the 
same is performed by developing a test bench for the 
proposed design. 

The implementation results presented for the above 
specifications are synthesized using vertex-4 FPGA 
device. To demonstrate the advantages of the proposed 
fused floating-point dot-product unit, the hardware 
utilization metrics for the following modules designed 
are analyzed: 

1) Proposed Radix-16 booth encoding multiplier; 
2) Proposed Radix-16 Fused Floating-Point 

Dot-Product Unit; 
3) Proposed Radix-4 FFT Butterfly Unit. 
The Proposed Radix-16 fused floating-point dot- 

product unit is shown in Fig. 2. Most of the sub-circuits 
of the proposed fused dot product unit are similar to the 
sub-circuits of the fused dot product unit [11]. The 

 

 
Fig. 10 Conventional complex arithmetic based butterfly unit 
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Fig. 11 Proposed complex arithmetic based Radix-4 DIT FFT butterfly unit 

 
sub-circuits in proposed fused dot product differs from 
the one in Ref. [11] in the design of significand 
multiplier. The architecture shown in Figs. 5−8 
contribute to the proposed significand multiplier. The 
Booth encoder shown in Table 1 reduce the number of 
partial products compared to the Radix-8 booth 
technique. 

The partial product addition in Ref. [11] is executed 
by a Wallace carry save compression tree and a One-hot 
encoding is applied in organizing these partial products 
to nullify the overhead of executing full 2’s complement 
needed by Booth negative encoded digits. But, in this 
paper the 2’s complement is executed while the partial 
product is generated. The 2’s complement operation is 
executed only if the MSB of the encoded bits is high. 
And hence the complexity of executing the one hot 
encoding in partial product addition is eliminated. To 
produce the resultant value of significand multiplication, 
the partial products addition has to be aligned as shown 

in Fig. 12. And the another major contribution of the 
designed multiplier is that, it reduces the switching 
activities by disabling the zero encoded operation (0×A) 
for partial product addition as it will unnecessarily 
increase the switching activities. 

The Radix-4 FFT butterfly unit utilizes the 
IEEE-754 single-precision floating-point multiplication 
and addition operations on the pairs of data. The 
proposed system is synthesized and implemented on the 
xc6vlx550tl-1Lff1759 FPGA device using Xilinx ISE 
tool. 
 
5 Comparison of implementation results 
 
5.1 Proposed Radix-16 booth encoding multiplier 

This circuit reduces the number of partial products 
generation by 75 % compared to conventional multiplier, 
and 25% compared to Radix-8 booth encoding multiplier. 
This results in 54.3% less space on the selected FPGA 
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Fig. 12 Partial product registers 

 
device. This fact is addressed in Table 2. 
 
Table 2 Comparison of Booth multipliers 

Parameter 

R-16 booth 

encoding 

multiplier 

R-8 booth 

encoding 

multiplier 

No. of slice registers 297 0 

No. of LUTs 1182 2117 

No. of IOBs 449 303 

Total no. of occupied slices 401 877 

 
5.2 Proposed Radix-16 fused floating-point dot- 

product unit 
The proposed unit is superior to the technique 

presented in Ref. [11] since it occupies less space on the 
chosen device. This fact is addressed in the Table 3. 
 
Table 3 Comparison of FPDP unit 

Parameter R-16 FPDP unit R-8 FPDP unit

No. of slices fdp 87 87 

No. of slices multiplier 401 877 

Total no. of Slices 488 964 

 
5.3 Proposed Radix-4 FFT butterfly unit 

The proposed unit occupies less space compared 
and consumes less power to existing techniques 
presented in Ref. [11]. With the use of Radix-16 fused 
floating-point Dot-Product Unit, the area and power 
required will be reduced. This fact is addressed in  
Table 4. 
 
6 Proposed enhancement 
 

The analysis of the proposed model is effective in 
terms of area required, but consumes slightly less power 
than existing techniques as discussed in the above  

Table 4 Comparison of FFT architectures 

Parameter 
Proposed 

R-16 FDP R-4 
BU 

R-8 
FDP 

R-4 BU 

Proposed 
R-16 FDP R-2 

BU 

R-8 
FDP 

R-2 BU
No. of Slices 

FFT BU 
871 877 1164 804

Power consumed 
(watts) 

6.070 6.122 4.094 5.667

 
section. Therefore, in this section a further enhancement 
in the proposed model has been visualized. Enhancement 
in the proposed model is interpreted by utilizing the 
simple term reusability, the designed model in Fig. 11 
can be realized as in Fig. 13 by examining Eqs. (16) to 
(31).  
x0·w0+x2·w2=A                               (16) 
 
x0·w0+x2·w2=B                               (17) 
 
x1·w1+x3·w3=C                               (18) 
 
x1·w1+x3·w3=D                               (19) 
 

Representing the above equations in complex 
multiplication and addition form;  
(X0r+X2r)+(X0i+X2i)=Ar+Ai                      (20) 
 
(X0r+X2r)+(−X0i−X2i)=Br+Bi                     (21) 
 
(X1r+X3r)+(X1i+X3i)=Cr+Ci                      (22) 
 
(X1r+X3r)+(−X1i−X3i)=Dr+Di                     (23) 
 
where Xr (real value) and Xi (Imaginary value) are the 
fused dot product units which is constituted as  
Xr=(xr·wr–xi·wi) and Xi=(xr·wi+xi·wr)  

Finally, 
 
Ar+Cr=Y0r                                  (24) 
 
Ar+Cr=Y1r                                   (25)  
Br+Dr=Y2r                                   (26) 
 
Br−Dr=Y3r                                   (27) 
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Fig. 13 Detailed block representation of enhanced proposed model using reusability technique 

 
Ai+Ci=Y0i                                   (28) 
 
Ai−Ci=Y1i                                   (29) 
 
Bi+Di=Y2i                                   (30) 
 
Bi−Di=Y3i                                   (31) 
 

Now, comparing Fig. 11 and Fig. 13, it is observed 
that the four FDP and four FAS modules can be 
considered as a part of reusability term. Form 
observation, it is clear that out of these 4-FDP and 4-FAS, 
a pair of 2-FDP and 2-FAS executes real and imaginary 
values of the complex multiplication and addition 
operations in FFT butterfly for a pair of input. Thus, 
these 2-FDP and 2-FAS modules of Radix-4 FFT 
butterfly unit can be utilized to generate the real and 
imaginary values for the 1st half of the output, while the 
remaining half of the output will be generated post 
execution of the 1st half of Radix-4 FFT butterfly unit. 
So the enhanced model will consume less power 
compared to the proposed model by utilizing the 
reusability technique. This is true, because the reusability 
technique allows only 2-FDP and 2-FAS modules out of 
4-FDP and 4-FAS modules required to execute the 
operations of Radix-4 FFT butterfly unit. 

The enhanced model in Fig. 13 improves the results 
of the proposed model using the reusability technique. 
This consumes less space and power compared to 
existing techniques and as well as the proposed design in 
section 3-4. This fact is addressed in Table 5. 

Table 5 Comparison of enhanced model with existing FFT 

architectures 

Parameter

Enhanced

R-16 

FDP R-4 

BU 

Proposed 

R-16 

FDP R-4 

BU 

R-8 

FDP 

R-4 

BU 

Enhanced 

R-16 

FDP R-2 

BU 

Proposed 

R-16 

FDP R-2 

BU 

R-8 

FDP 

R-2 

BU

No. of 

Slices 

FFT BU

437 871 877 520 1164 804

Power 

consumed 

(watts)

5.377 6.070 6.122 3.681 4.094 5.667

 
7 Conclusions 
 

1) The proposed Radix-16 Booth encoding 
multiplier based FDP unit for Radix-4 DIT FFT butterfly 
unit is synthesized and implemented on the 
xc6vlx550tl-1Lff1759 FPGA device using Xilinx ISE 
tool. 

2) This system requires 12.16% less total power 
compared to the existing Radix-8 booth multiplier fused 
dot product based Radix-4 FFT butterfly unit (R-8 FDP 
based R-4 FFT BU). Similarly, R-16 FDP based R-2 FFT 
BU requires 5.11% less total power compared to the 
existing R-8 FDP based R-2 FFT BU. 

3) On the other hand, the enhanced model with 
reusability technique benefits a power efficient butterfly 
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unit. 
4) The proposed enhanced R-16 FDP based R-4 

FFT BU require 49.82% less hardware and reduced 
11.42% of total power compared to the proposed R-16 
FDP based R-4 FFT BU while, the proposed enhanced 
R-16 FDP based R-2 FFT BU requires 55.32% less space 
as well 10.08% reduced power consumption on the 
FPGA device equated to the proposed R-16 FDP based 
R-2 FFT BU. 

5) Thus, from the comparison results it can be 
concluded that the proposed system is area and power 
efficient. 
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