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Abstract: The behavior of single bubble rising in quiescent shear-thinning fluids was investigated numerically by level set method. A 
number of bubbles in a large range of Reynolds number and Eotvos number were investigated including spherical, oblate and 
spherical. The bubble shape and drag coefficient were compared with experimental results. It is observed that the simulated results 
show good conformity to experimental results over a wide range of Reynolds number. In addition, the detailed flow field based on 
the reference coordinate system moving with the bubble is obtained, and the relationship among flow field, bubble shape and velocity 
is discussed. 
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1 Introduction 
 

The motion of a gas bubble in shear-thinning fluids 
is frequently encountered in chemical, biochemical, 
pharmaceutical, environment, food, and other industrial 
applications [1−3]. In all of the above-mentioned 
applications, one encounters bubble swarms rather than 
single bubble, but understanding of the hydrodynamics 
of a single bubble can provide an insight to applications 
involving bubble swarm, which therefore often serves as 
a useful starting point to undertake the modeling process. 
Thus, the knowledge about the fundamentals of 
hydrodynamics, particularly the velocity, shape and flow 
field of a single bubble rising in shear thinning fluids, is 
necessary for design and efficient operation of those 
processes. 

In above-mentioned fundamentals of 
hydrodynamics, the velocity of single bubble is the most 
important parameter due to its effects on the average 
residence time of the gas phase. To calculate the velocity 
of single bubble, it is customary to present the 
dependence of the free rise velocity on the pertinent 
variables in terms of nondimensional groups, such as the 
Reynolds number and drag coefficient. In the case of 
shear thinning fluids, the viscosity term of the Reynolds 
number and drag coefficient are computed by certain 

rheological equations, including Power Law model, 
Cross model, Carreau model, and herein a number of 
correlations were further proposed [4−6]. However, those 
formulas are only applicable at low Reynolds number 
when the bubble shape can be viewed as sphere. As to 
large Reynolds number, the bubble is of oblate shape or 
even spherical cap [7]. In order to quantify the shape of 
bubble, MIYAHARA and YAMANAKA [8] introduced a 
concept of aspect ratio to characterize bubble shape, and 
proposed an empirical correlation on the basis of 
experimental results in order to predict the bubble aspect 
ratio. It is well known that the motion behavior of bubble 
in shear thinning fluids depends not only on fluid 
properties and bubble size, but also on the bubble shape. 
Generally, the shape of bubble rising in shear thinning 
fluids is oblate at large Reynolds number [9]. Logically, 
the drag of oblate bubble is certainly larger than that of 
spherical bubble at the same size [10]. Nevertheless, only 
a few studies on the bubble shape in shear thinning have 
been reported by now [11−12]. In our previous work  
[13], single bubbles rising in shear thinning fluids were 
investigated via experiments, and accordingly, the graph 
of bubble shape distribution in shear-thinning fluids was 
drawn. As well known that adequate understanding of the 
flow structure surrounding single bubble in shear 
thinning fluids is the essential basic for better 
understanding gas−liquid absorption processes with or 
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without reactions as well as taking overall insight into 
the bubbles swarm behavior. Considering the importance 
of that, the flow structure surrounding a single bubble in 
shear thinning fluids has been studied by many 
researchers with visualization experiment and numerical 
simulation. At present, the research of this domain 
mainly focuses on velocity field [14−15], viscosity 
distribution [16−17], shear stress distribution and the 
averaged description of wake properties including 
shedding frequency, primary wake size, and bubble 
inclined angle [18−19]. 

In recent years, direct numerical simulation (DNS) 
technique has been proven as a reliable approach to gain 
extensive understanding of flow phenomena in 
two-phase flows of shear-thinning fluids. There are many 
different DNS models available in literature for bubble 
motion with deformable interfaces, such as the volume of 
fluid (VOF), level set, lattice Boltzmann (LB) and the 
front tracking (FT). The main difference of those models 
lies in the description of the phase boundaries. Level set 
and lattice Boltzmann (LB) models capture the interface 
using data from the fixed grid, whi le the front tracking 
(FT) model tracks the interface explicitly use a 
Lagrangian surface mesh. A more thorough overview of 
those models can be benefited from the review of VAN 
SINT ANNALAND et al [20]. 

In this work, we study the direct numerical 
simulations of single bubble rising in shear thinning 
fluids with different rheological properties via level set 
method. The shape and drag coefficient for rising single 
bubble are obtained from simulation under a wide range 
of Re, Eo and Mo, which are then compared with the 
experimental results presented in our previous work [13]. 
In addition, the flow field structure of bubbles with 
different Re, Eo and Mo are analyzed, and thereby the 
influence of bubble shape and rheological properties of 
fluids on the flow field structure are further discussed. 
 
2 Computational model 
 
2.1 Governing equations 

In the level set method, a smooth function φ, called 
level set function, is used to represent the interface. The 
location of interface is determined when φ=0.5. The 
equation governing transmission and reinitialization of φ 
is expressed as the following equation:  
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where γ and ε are initialization parameters. More 
specifically, γ denotes the virtual time for reinitialization, 
ε denotes the width of transition region used for 
smoothening, and u is the velocity vector. Generally, the 
value of φ is from 0 to 1. 

The mass conservation for the whole domain under 
the incompressible condition may be expressed as  

0=⋅∇ u                                     (2) 
 

The momentum conservation (Navier–Stokes 
equations) takes the form:  
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where I is the identity matrix; p is the pressure; F is the 
body force; Fs is the surface tension component. The 
discontinuous physical quantities (density and viscosity) 
near interfaces are related to level set function φ  and 
can be smoothed by 
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where gρ  denotes the density of gas phase; lρ  
denotes the density of liquid phase; gµ  denotes the 
viscosity of gas phase; and gµ  denotes the viscosity of 
liquid phase. 

When bubbles are rising steadily in liquids, the 
body force is only relevant to the gravity, which 
therefore can be expressed as  

gF ρ=                                      (6) 
 
2.2 Momentum source terms caused by surface 

tension 
Surface tension describes a contractive tendency of 

the surface of a liquid that allows it to resist an external 
force and has important effect on the formation of drop 
and bubble. In the gas−liquid two-phase flow, a 
relatively small curvature radius can produce a 
remarkable additional stress. Therefore, the influence of 
surface tension should not be ignored in bubble motion 
and shape processing. 

In level set method, the surface tension term is 
calculated using the smoothed function as following 
equation:  

)))((( T
s δσ nnI −+⋅∇=F                       (7) 

 
where σ is the surface tension coefficient; n is the unit 
vector normal to the interface pointing towards the 
continuous phase; and δ is Dirac delta function related to 
the interface of gas−liquid phase. It should be noted that 
n and δ are obtained by the following equations:  
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2.3 Viscous term of shearing thinning fluids 

In most cases, it is found that the Carreau viscosity 
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equation provids an adequate representation of the shear 
viscosity of the shear-thinning fluids. And the Carreau 
viscosity equation is expressed as  

2
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where μ0 is the viscosity of the zero shear-rate; λ is the 
characteristic time of the liquid; s is the power law index. 
The Carreau model is a triple parameter model, which 
can be used at low shear rate. After the local shear-rate 
γ  is determined at each nodal point in the 
computational domain, the apparent viscosity of fluids 
can be calculated. The local shear-rate γ  is calculated 
using Eqs. (11) and (12):  

DD ⋅= 2γ                                 (11) 
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2.4 Boundary and initial conditions 

A sketch of the computational domain is provided in 
Fig. 1. The height and width of computational domain 
are 0.2 m and 0.1 m, respectively, which are proved to 
have little disturbance from the boundary on the shape 
and velocity of the bubble under the conditions studied in 
Ref. [21]. The bubble initially has a spherical shape, and 
is placed in 2 times diameter of bubble from the bottom 
wall. When the simulation starts (t=0), the bubble starts 
to rise in the quiescent liquid t under the action of the 
gravity, Buoyancy force and the drag force. The initial 
boundary conditions are set as follows:  
t=0, uz=0, ur=0 
 

 
Fig. 1 Schematic diagram of calculation domain for numerical 
simulation 
 

In the case of simulated bubble motion in this work, 
a pressure outlet boundary condition is employed at the 

top of the computational domain. The pressure is fixed as 
follows: 
 
p=0 
 

Other walls are regarded as non-slip boundaries: 
 
uz=0, ur=0 
 

The initial fluid interface is calculated as 
 

0))(( T =∇+∇+− nuuI ηp  
 
2.5 Mesh adaptation 

Mesh adaptation is the pre-processing stage of the 
simulation, and the quality of mesh is directly related to 
the accuracy of numerical simulation. Commonly, sparse 
mesh could reduce computing amount, but can not 
remove the influence of artificial diffusing. Instead, 
through the dense mesh, it is able to obtain accurate 
result along with huge computation load. In this work, 
the triangle mesh is used to proceed numerical 
simulation. The meth spacing is set to be around 0.5 mm, 
depending on the bubble diameter. On the whole, there 
are about 20 grid points across the bubble diameter to 
ensure the resolution of the bubble surface. 
 
2.6. Solution procedure 

The detailed solution steps are described as follows: 
1) Initializae the velocity field, physical property 

parameters of gas phase and liquid phase, and then 
initialize level set function φ; 

2) Solve of flow field within one time step; 
3) Update the level set function φ  based on the 

flow field obtained in step 2). 
4) Update the physical property parameters 

according to the level set function φ  obtained in step 
3). 

Afterwards, repeat steps 2)−4) in order to advance 
the solution onto the next time step. The PARDISO 
solver is used to solve the mass continuity, governing 
equations and the level set evolution equation according 
to the above-mentioned boundary conditions. It is 
believed that the time step t∆  has  influence on the 
simulated result. A minimized time step can slow down 
the computation speed and therefore increase the 
instability, but conversely, a larger time step causes 
iterative divergence. Additionally, t∆  should meet the 
constraints of convective term and viscous term. The 
convective term and viscous term can be calculated by 
Eqs. (13) [22] and (14) [23]: 
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where advt∆  is the time step of the convective term 
constraints; visct∆  is the time step of the viscous term 
constraints; maxU  is the maximum fluid velocity in the 
computational domain, and x∆  is the mesh size. In this 
work, the time steps corresponding to different simulated 
conditions are determined based on Eqs. (13) and (14). 
 
3 Results and discussion 
 

Since the viscosity of shear-thinning fluids varies 
with shear rate, the first issue is to define the 
dimensionless numbers, including shear viscosity. These 
dimensionless numbers should meet following 
requirements: the shear-thinning effect is fully 
highlighted and consistent with that in Newtonian fluids 
while the shear-thinning effect vanishes, in which the 
viscosity of shear-thinning fluids follows Carreau model 
as shown in Eq. (10). However, the viscosity calculated 
by Eq. (10) varies as a function of shear-rate, resulting in 
the uneven distribution [16]. Thus, the initial procedure 
should focus on the definition of Reynolds number, 
which is closely related to both liquid viscosity and 
bubble velocity. Re is defined by introducing 2Ub/de 
(where Ub and de are the terminal velocity and the 

volume-equivalent diameter of a bubble, respectively) as 
a representative shear-rate in the system. In accordance 
with these limitations mentioned above, the related 
dimensionless numbers are independently defined as 
follows: 

Reynolds number:  
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where lρ  is the density of the liquid. Also, de can be 
calculated by  
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Eötvös number:  
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3.1 Bubble shape 

The simulation conditions and corresponding results 
are listed in Table 1. From Table 1, it can be clearly 
observed that the bubble shape is spherical as Eo<30 and 
Re<10. With the increase of Reynolds number, the 
bubbles deform remarkably, and the bubble shape 
changes from spherical to oblate. When Eo>30 and Re>0, 
the bubble shape turns into spherical cap. The 
computational results are consistent with the 
experimental results reported by LI et al [13]. Table 1 
only shows the bubble shape under various Re and Eo 

 
Table 1 Simulation conditions 

Number ρ σ η0 s de Re Eo Mo Shape 

A 1000 0.03 0.5 0.3 0.004 182.65 5.23 6.94×10−9 Oblate 

B 1000 0.03 0.5 0.5 0.004 20.79 5.23 2.45×10−5 Oblate 

C 1000 0.03 1 0.7 0.004 0.439 5.23 2.54 Spherical 

D 1000 0.03 0.5 0.9 0.004 0.7 5.23 2.91 Spherical 

E 1000 0.03 0.5 1 0.004 0.32 5.23 22.71 Spherical 

F 1000 0.03 0.5 0.7 0.006 10.37 11.77 0.01 Oblate 

G 1000 0.03 0.5 0.5 0.006 51.22 16.02 8.29×10−5 Oblate 

H 1000 0.03 0.5 0.5 0.005 57.82 8.17 1.69×10−5 Oblate 

I 1000 0.03 0.5 0.7 0.005 8.63 8.17 0.01 Spherical 

J 1000 0.03 0.5 0.9 0.005 1.60 8.17 2.25 Spherical 

K 1000 0.03 0.01 0.7 0.01 291.85 32.71 5.44×10−9 Spherical cap 

L 1000 0.03 0.1 0.7 0.008 70.54 20.9 2.36×10−5 Oblate 

M 1000 0.03 0.05 0.7 0.01 197.81 32.71 1.52×10−6 Spherical cap 

N 1000 0.03 0.5 0.7 0.005 8.08 8.18 0.01 Spherical 

O 1000 0.03 1 0.7 0.005 3.36 8.18 0.23 Spherical 

P 1000 0.03 0.7 0.7 0.005 2.44 8.18 0.154 Spherical 

Q 1000 0.03 0.3 0.6 0.002 0.15 1.31 0.26 Spherical 

R 1000 0.03 0.3 0.6 0.006 40.81 11.8 2.20×10−5 Oblate 

S 1000 0.03 0.3 0.6 0.008 60.32 20.9 1.16×10−4 Oblate  
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values, which does not represent the evolutionary 
process of bubble shape with different Re and Eo. The 
shape regime map for bubble rising in carboxymethyl 
cellulose (CMC) solution (a typical shear-thinning fluids) 
is recorded using high speed camera as shown in Fig. 2, 
which was conducted by our previous work [13]. Seven 
representative cases in Table 1 are plotted along with the 
bubble regime map in Fig. 2. It can be seen that the 
bubble shape changes from spherical to oblate as Re and 
Eo increase, and when Re, Eo are higher, the type of 
bubble is spherical cap. Nevertheless, the experimental 
work shows that the prolate bubbles can be observed at 
high-concentration CMC aqueous solutions with certain 
viscoelasticity. In comparison, the prolate bubbles do not 
appear in the computational results due to the absence of 
viscoelastic dynamic equation in the simulated process. 
Thus, the computational results in Table 1 are mainly 
compared with the experimental results at low 
concentration CMC solutions without the viscoelasticity. 
 

 
Fig. 2 Shape regime map for isolated bubbles in CMC aqueous 
solutions [13] (Images of bubble shape corresponding to 
conditions listed in Table 1) 
 
3.2 Bubble drag coefficient 

For a process relating to bubbles rising in 
shear-thinning fluids, the velocity of single bubble is one 
of the most significant factors for designing and 
optimizing the process. Typically, in order to calculate 
the bubble terminal velocity in shear thinning fluids, it is 
necessary to know the relationship between the drag 
coefficient of the gas bubble and Reynolds number (the 
drag curve). In this study, the calculation of the simulated 
bubble’s drag coefficient is obtained with a force balance 
based on the Newton’s second law. The numerical results 
are further compared with the experimental results in  
Ref. [13] as illustrated in Fig. 3, in which CD is given by  

])1(3.8681)[0.431(16 0.68100.75280.44
D EsRe

Re
C −++= (18) 
 

It could be clearly observed from Fig. 3 that the 
numerical cases agree well with the correlation proposed 

by LI et al [13] in all computational and experimental 
conditions. 
 

 
Fig. 3 Comparison of Re between simulated values and 
experimental data and evolution of bubble shape with Re 
(Images of bubble shape corresponding to conditions listed in 
Table 1) 
 
3.3 Flow field around bubble 

The interplay among bubble shape, velocity and 
flow field is multiple, by which these three parameters 
interrelate and confine each other. Thus, it is also worthy 
to view and analyze the flow field in the reference 
coordinate system moving with the bubble. The relative 
velocity in the liquid domain is given by  

blR UUU −=                                (19) 
 
where UR is the relative axial velocity component of 
bubble; Ul is the velocity of fluid particle; and Ub is the 
velocity of bubble. 

The streamlines around various shape bubbles are 
presented in Figs. 4−7. It can be observed that the flow 
fields around the head of bubble are similar in the 
studied cases, but great differences are shown around the 
rear of bubbles. Figure 4 simulates the streamlines 
around spherical bubble corresponding to case Q 
(Re=0.15, Eo=1.31), in which the streamlines around 
bubble reveal symmetrical distribution not only along the 
vertical axis of bubble, but also in the head and rear of 
the spherical bubble. It is also shown that a circulating 
vortex appears on the surface of bubble, but no 
circulating vortex can be observed in the wake of 
spherical bubble. Figure 5 displays the streamlines 
around B bubble (Re=20.79, Eo=5.23) corresponding to 
case B in Fig. 2, of which the shape is oblate with 
symmetry between the head and rear of bubble. The 
distribution of streamlines around bubble in Fig. 5 is 
similar to that in Fig. 4, but the streamlines curvature 
around bubble in Fig. 5 increases owing to the increase 
of bubble aspect ratio. It can be found in Fig. 3 that, as 
the Re and Eo increase, the head and rear of oblate 
bubbles change from symmetrical to asymmetrical (case 
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R). Hence, the distribution of streamlines around the 
shape bubble (case R) is presented in Fig. 6. It can be 
observed that both the distribution of streamlines and the 
circulating vortex on the surface of bubble are 
asymmetrical at the region between the head and rear of 
bubble. It should be noted that the distribution of 
streamlines and the bubble surface circulating vortex are 
slightly pointed tip, which may be related to the 
flattening of the bubble rear. Accordingly, it can be 
concluded that the velocity of this shape bubble is high, 
and the liquid on both sides of the bubble cannot flow 
back into the bubble wake, which is coincident with the 
boundary layer separation in the flow past a circular 
cylinder. In case R, the rear of bubble is mainly filled 
with the liquid that follows the motion of bubble, 
resulting in the asymmetrical streamlines between the 
head and rear of the bubble. Figure 7 shows the 
streamline distribution around the spherical cap bubble, 
corresponding to case M in Fig. 3. As shown in Fig. 7, 
there is a large recirculation zone behind the rear of 
spherical cap bubble, which is formed by a pair of 
 

 
Fig. 4 Streamlines around a spherical bubble (case Q: Re=0.15, 
Eo=1.31) 
 

 
Fig. 5 Streamlines around a symmetrical oblate bubble (case B: 
Re=20.79, Eo=5.23) 

 

 
Fig. 6 Streamlines around an asymmetrical oblate bubble (case 
R: Re=40.81, Eo=11.8) 
 

 
Fig. 7 Streamlines around a spherical cap bubble (case M: 
Re=197.81, Eo=32.71) 
 
symmetric vortices that enable the liquid in front of 
bubble to flow into the bubble wake. 
 
4 Conclusions 
 

1) The simulated bubble shapes show that along 
with the increase of Eo and Re, the bubble shape deforms 
from spherical to oblate and eventually turns into 
spherical cap at relatively high Eo and Re, which is 
coincident with the experimental observations. However, 
the absence of prolate shape is presented without the 
introduction of viscoelastic dynamic equation, as distinct 
from the experimental results. 

2) The calculation of the simulated bubble’s drag 
coefficient is obtained with a force balance based on the 
Newton’s second law. With regards to the simulated 
bubble drag coefficients, it is found that the simulated 
results show good conformity with the empirical 
correlation in literature. 

3) In addition, the flow fields around bubbles in 
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shear-thinning fluids are obtained on the reference 
coordinate system moving with the bubble. The 
simulated flow field around spherical bubble is 
symmetrical in the head and rear of bubble, indicating 
the well-known phenomenon of hindered rise of liquid 
following the bubble, whereas the distribution of 
streamlines and the bubble surface circulating vortex are 
slightly pointed tip for oblate bubble. When the bubble 
shape changes to spherical cap, a large recirculation zone 
formed by a pair of symmetric vortices reveals in the rear 
of the bubble. 
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