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Abstract: Based on the active failure mechanism and passive failure mechanism for a pressurized tunnel face, the analytical 
solutions of the minimum collapse pressure and maximum blowout pressure that could maintain the stability of pressurized tunnel 
faces were deduced using limit analysis in conjunction with nonlinear failure criterion under the condition of pore water pressure. 
Due to the objective existence of the parameter randomness of soil, the statistical properties of random variables were determined by 
the maximum entropy principle, and the Monte Carlo method was employed to calculate the failure probability of a pressurized 
tunnel. The results show that the randomness of soil parameters exerts great influence on the stability of a pressurized tunnel, which 
indicates that the research should be done on the topic of determination of statistical distribution for geotechnical parameters and the 
level of variability. For the failure probability of a pressurized tunnel under multiple failure modes, the corresponding safe retaining 
pressures and optimal range of safe retaining pressures are calculated by introducing allowable failure probability and minimum 
allowable failure probability. The results can provide practical use in the pressurized tunnel engineering. 
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1 Introduction 
 

With the rapid development of urban subway and 
significant improvement of shield machine technology, 
pressurized tunnels have become the mainstreams of 
urban tunnel engineering. However, due to the 
complexity of the strata where the pressurized tunnel 
passes through and the high density of buildings, the 
construction requirements are becoming strict. In the 
process of excavation, pressurized machine inevitably 
produces disturbance to the surrounding soils, and then 
induces a larger deformation, even a failure. When the 
retaining pressure is too small, the tunnel face easily 
collapses, while when the retaining pressure is too large, 
blowout damage would happen. Therefore, the 
determination of retaining pressure is the key to the 
stability of tunnel face, and the problem of retaining 
pressure is an important topic with great research value 
and practical significance. 

Recently, the determination of retaining pressure for 
tunnel face has been studied. A cone failure mechanism 
was assumed for the tunnel face in order to obtain the 
minimum retaining pressure for tunnel face safety using 
limit analysis method, and the results agreed well with 
the results of centrifuge tests [1]. Multi-block failure 

mechanism was employed for tunnel, and the retaining 
pressures obtained were close to the results of centrifuge 
tests [2]. Considering that the assumption of velocity 
mutation occurring before a tunnel face is not reasonable, 
a velocity field was established. This changed from 
vertical gradually to horizontal direction to calculate the 
retaining pressure. HUANG et al [2] used the 
multi-block failure mechanism for a tunnel and obtained 
an analytical solution to retaining pressure with limit 
analysis method. According to the centrifuge test results, 
SUBRIN and WONG [3] built a new 3D failure 
mechanism for a pressurized tunnel, and obtained 
different ranges of earth pressure based on limit analysis 
method. With reference to the numerical simulation 
results, KLAR et al [4] established 2D and 3D failure 
mechanism for tunnel face, and computed the failure 
probability under different retaining pressures using limit 
analysis and probabilistic methods. 

In practical engineering, a large number of 
experiments show that the soil obeys nonlinear failure 
criterion at failure and linear criterion is just a special 
case [5−6]. Both an active failure mechanism and a 
passive failure mechanism are established in this work. 
With a consideration of the influence of pore water, the 
retaining pressure for a pressurized tunnel is obtained 
using limit analysis theory with the tangent method for 
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nonlinear analysis. And on account of the objective 
existence of the parameter randomness of soil and its 
great impact on stability of geotechnical structures, 
reliability theory is applied to study the range of safe 
retaining pressures. The results can provide important 
guidance for the design and construction of pressurized 
tunnels. 
 
2 Definitions and theorems 
 
2.1 Nonlinear failure criterion and tangent method 

In geotechnical engineering, materials are generally 
assumed to follow linear Mohr-Coulomb (MC) failure 
criterion. However, in fact, most geotechnical materials 
obey nonlinear failure criterion, namely the relationship 
between shear stress and normal stress is not linear, and 
the expression is written as follows:  

mc /1
tn0 )/1( σστ +=                           (1) 

 
where τ is shear stress; σn is normal stress; c0 is initial 
cohesion; σt is axial tensile stress; m is nonlinear 
coefficient. It can be found that when m=1, the 
relationship between shear stress and normal stress is 
degenerated to be linear. Therefore, linear MC failure 
criterion is just a special case of nonlinear failure 
criterion. 

For MC materials, the analysis and calculation of 
shear strength usually refer to two important mechanics 
index, namely the cohesion c and internal friction angle 
φ. However, if geotechnical materials obey the nonlinear 
failure criterion, the expression of Eq. (1) does not 
contain the parameters c and φ. So, it is difficult to 
introduce nonlinear failure criterion to the analysis of the 
shear strength of geotechnical materials, which is the 
reason why nonlinear failure criterion is seldom used in 
geotechnical engineering. 

In order to solve this problem, the generalized 
tangent method is employed, as shown in Fig. 1. In stress 
coordinate system, nonlinear failure criterion is 
characterized by a curved line, drawing a tangential line 
to the curve at the location of tangency point M which 
presents an angle of φt to the direction of σn-axis, and the 
intercept of the straight line ct with respect to the τ-axis. 
In this case, φt and ct are the corresponding internal 
frictional angle and cohesion of point M under nonlinear 
failure criterion. Consequently, this tangent method can 
be utilized to obtain above two parameters of 
geomaterials which follow nonlinear failure criterion. 
Therein, the expression of the tangential line is 

 
t n ttancτ σ ϕ= +                              (2) 

 
With Eq. (1) and Eq. (2), Eq. (3) can be easily 

obtained. The nonlinear failure criterion will be 
introduced by Eq. (3) in the analysis and calculation of 

 

 
Fig. 1 Tangential line of nonlinear Mohr-Coulomb failure 
criterion 
 
the shear strength in this work. It is noticed that, unlike 
linear MC failure criterion, the cohesion ct and internal 
friction angle φt of nonlinear failure criterion are 
variables:  

1
1t t

t 0 t t
0

tan1 tan
mmmc c

m c
σ ϕ

σ ϕ
− −

= + 
 

           (3) 

 
2.2 Upper bound theorem with effect of pore water 

pressure 
The pore water pressure has vital impact on the 

material shear strength and the stability of geotechnical 
structures. In engineering, pore water pressure is 
generally researched by the two methods [7−8]. The pore 
water pressure can be determined based on the positions 
of flow net of ground water and the saturation line, and it 
can be regarded as a component of soil gravity, and is 
also employed in this work. The expression can be 
written as follows:  

uu r zγ=                                     (4) 
 

where u is pore water pressure; ru is the coefficient of 
pore water pressure; γ is soil weight per volume; z 
represents the vertical distance between the soil and the 
ground surface. 

The pore water pressure is considered as the internal 
force or the external force when being introduced into 
upper bound theorem [9−10]. The previously published 
works have shown that the two methods lead to the same 
results, which can be proven by the following equation:  

wd d dij i i iV S V
i

hu V u S V
x

ε γ ∂
− − = − +

∂∫ ∫ ∫ n v v  

w diV
i

Z V
x

γ ∂
∂∫ v                           (5) 

 
where u is the pore water pressure; ijε is the volumetric 
strain rate; V is the volume; ni is the outward unit normal 
vector of failure surface; vi is the velocity of the failure 
mechanism; S is the failure surface; γw is the unit weight 
of water; h is the water head; Z is the elevation head. The 
first integral on the left-hand side is the power of 
pore-water pressure on soil volumetric strain and the 
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second one on the left is the work rate of pore-water 
pressure acting on the boundary. The first term on the 
right-hand side is the power of seepage force, and the last 
is the work rate of buoyancy force. 

In this work, pore water pressure is taken as the 
external force to be introduced into upper bound theorem. 
The upper bound theorem of limit analysis could be 
expressed as: under any kinematically admissible 
velocity field, the active load calculated through equating 
the external work rate to the internal energy dissipation 
of rock/soil masses is not less than the real ultimate load 
[11−12]. To sum up, the upper bound theorem under the 
effect of pore water pressure is expressed as 

 
d d d dij ij i i i i i ijV S V V

V S V u Vσ ε ε≥ + − −∫ ∫ ∫ ∫ T v F v  

di i iS
u S∫ n v                             (6) 

 
where the first integral represents the internal energy 
dissipation; the second one is the dot product of external 
load Ti and the velocity vector vi along the boundary S, 
and the third one is the dot product of volume force Fi 
and the velocity vector vi within the region V; the fourth 
one is the power of pore-water pressure over the region V; 
the last is the work rate of pore-water pressure acting on 
the boundary S. 
 
2.3 Probability density function based on maximum 

entropy principle 
Entropy of a random variable shows the uncertainty 

degree of the random variable in the whole domain. For a 
continuous random variable X, the entropy is defined as 

 
( ) ln ( )d

R
H f x f x x= −∫                         (7) 
 
where H is the entropy of random variable X, f(x) is the 
probability density function of random variable X, and R 
is the domain of random variable X. 

The maximum entropy principle can be described as: 
the uncertainty of the random variable is the largest when 
entropy is the largest, which also means that the random 
variable has a ‘minimum bias’. Therefore, the probability 
distribution based on the principle of maximum entropy 
principle is the most close to the real probability 
distribution. The probability density function based on 
maximum entropy principle is also called optimal 
probability density function. The probability distribution 
model of random variable X on the basis of the 
maximum entropy principle can be expressed as 

 
Max. ( ) ln ( )d

R
H f x f x x= −∫                   (8) 

 
( )d 1

s.t.
( )d ( 0,1,2, , )

R
i

iR

f x x

x f x x i nµ

 =


= =

∫
∫ 

             (9) 

where Eq. (8) is the maximum of objective function H, 
Eq. (9) is the constraint of objective function H, μi is the i 
order origin moment of random variable X, and n is the 
order of moment. 

In order to obtain the maximum of objective 
function H, Lagrange function can be established using 
Lagrange multiplier method and it can be expressed as 

 

0
1

( ( )d 1) ( ( )d )
n

i
i iR R

i
L H f x x x f x xλ λ µ

=
= + − + −∑∫ ∫  (10) 

 
where λi is Lagrange multiplier. According to Fermat’s 
Theorem, maximization of Eq. (10) requires 
 

0
( )
L

f x
∂

=
∂

                                  (11) 

 
Then, the analytical solution of the maximum 

entropy can be obtained:  

0
( ) exp( )

n
i

i
i

f x xλ
=

= −∑                          (12) 

 
By substituting Eq. (12) into Eq. (9), the following 

equation is obtained  

0 1
0

( , , , ) exp( )d 0
n

i i
n i iR

i
F x x xλ λ λ λ µ

=
= − − =∑∫  

( 0,  1,  2,  ,  )i n=                       (13) 
 

Equation (13) is a system of nonlinear equations, 
which contains n+1 unknowns. Then, λi can be obtained 
using Newton’s iteration method, and the probability 
density function f(x) based on maximum entropy 
principle can be acquired by substituting λi into Eq. (12). 

The existing research results [13−17] show that: (1) 
Probability distribution based on the principle of 
maximum entropy is a normal distribution, when the 
mean and variance of the continuous random variable X 
are constants; (2) Probability distribution based on the 
principle of maximum entropy is lognormal, when the 
geometric mean and standard deviation of logarithm for 
the continuous random variable X are constants. 
Therefore, in this work, it is assumed that the probability 
distribution of geotechnical materials’ parameters 
follows normal distribution or lognormal distribution. 
 
2.4 Basic principle of Monte Carlo method 

Monte Carlo method is also called as stochastic 
simulation method, random-sampling technique or 
statistical experiment method. It offers an approach 
which can estimate the failure probability of structure 
through the structure failure frequency. At present, the 
Monte Carlo method is considered to be a relatively 
accurate method in structural reliability analysis. 

According to the law of large numbers, it is 
assumed that x1, x2, …, xn are n independent random 
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variables, which come from the same matrix and share 
the same distribution, namely, with the same 
mathematical expectation μ and variance σ2. Then, as for 
ε>0, we have 

 

1

1lim 0
n

in i
P x

n
µ ε

→∞ =

  − ≥ = 
  
∑                    (14) 

 
The probability of random event A is denoted as 

P(A). And in n independent tests, event A occurs m times, 
then the frequency is W(A)=m/n. Then, for any ε>0, we 
can get 

 

lim ( ) 1
n

mP P A
n

ε
→∞

 
− < = 

 
                    (15) 

 
Reliability calculation of structures (or probability 

of failure) by Monte Carlo method comprises the 
following steps: (1) All random variables are sampled 
with many times, which have influence on the structure; 
(2) The sampling values of random variables are 
substituted one by one into all structural performance 
functions to determine whether the structure is safe or 
not; (3) All the number of safe structures (or failure) is 
recorded; (4) The reliability or failure probability of the 
structure is calculated. 

According to Eq. (15), when the sampling number n 
is large enough, the result is close to the exact value, and 
then the statistical function can be written as follows: 

 

f 1 2
1 1

1 1( ) ( ,  ,  ,  )
n n

n
i i

P I X I X X X
n n= =

= =∑ ∑          (16) 

 
where the performance function is denoted as  

1 2
1 2

1 2

1, if ( , , , ) 0
( ) ( , , , )

0, if ( , , , ) 0
n

n
n

G X X X
I X I X X X

G X X X
<

= =  ≥





 

(17)  
By substituting n random numbers successively into 

Eq. (17), the sum nf of the number of failure can be 
obtained, and the reliability can be expressed as 

 
f

s f1 1
nR P
n

= − = −                           (18) 
 
And the corresponding failure probability can be written 
as 

 
f

f
nP
n

=                                    (19) 
 

The structural reliability can also be derived through 
the number of safe structures, that is, 

 

s 1 2
1 1

1 1( ) ( , , , )
n n

n
i i

R I X I X X X
n n= =

′ ′= =∑ ∑          (20) 

 
where the performance function is denoted as 

1 2
1 2

1 2

1, if ( , , , ) 0
( ) ( , , , )

0, if ( , , , ) 0
n

n
n

G X X X
I X I X X X

G X X X
>

′ ′= =  ≤





 

(21)  
By substituting n random numbers successively into 

Eq. (21), the sum ns of the number of safety can be 
obtained, and the reliability can be expressed as  

s
s

n
R

n
=                                    (22) 

 
Consequently, the corresponding failure probability 

is  
s

f s1 1
n

P R
n

= − = −                            (23) 

 
3 Failure mechanisms and velocity field 
 

In accordance with the requirements of the limit 
analysis, a failure mechanism of excavation face should 
be established before solving the retaining pressure of 
the pressurized tunnel, and the failure mechanism is 
usually constructed with reference to engineering 
practice, model tests and numerical simulation. As to the 
pressurized tunnel, LECA and DORMIEUX [1] proposed 
two failure mechanisms based on the results of 
centrifuge tests: (1) the first failure mechanism is 
composed of a rigid block, and the entire rigid block 
slides at failure, (2) the second one contains two rigid 
blocks, and the lower block is moving towards the 
excavation face pushed by the upper one. Subsequently, 
KLAR et al [4] established 2D and 3D failure 
mechanism for tunnel face, which makes the failure 
mechanism more reasonable. 

On the basis of the above research results and the 
characteristics of the pressurized tunnel, two failure 
mechanisms are established, as shown in Fig. 2. AB is the 
face of the pressurized tunnel, D represents the diameter 
of tunnel, and C refers to cover depth. While the 
pressurized tunnel is under excavation, it may present 
two kinds of failure styles under the action of pore water 
pressure u: (1) when the retaining pressure is small, the 
soil in front of the face tends to collapse, namely active 
failure mechanism, as shown in Fig. 2(a), and the vertex 
O may be under or above the ground surface, and (2) 
when the retaining pressure is too large, the soil in front 
of the face may be squeezed out, namely passive failure 
mechanism, as shown in Fig. 2(b). 

In addition, according to the characteristics of the 
active failure mechanism and passive failure mechanism, 
the corresponding velocity fields are built respectively, 
as shown in Fig. 3. The velocity field of active failure 
mechanism is illustrated in Fig. 3(a). From right to left, 
the apex angles are t2π2,β ϕ+ − α1, α2, …, αn−1 in the 
order; the obtuse angles are π− β, π/2−α1+2φt, π/2−α2+  
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Fig. 2 Failure mechanisms of pressurized tunnel: (a) Active 
failure mechanism; (b) Passive failure mechanism 
 

t2 ,ϕ … , 1 tπ2 2 ,nα ϕ−− + and the acute angle 
is tπ2 2 .ϕ− The velocity field of passive failure 
mechanism is illustrated in Fig. 3(b). From the bottom to 
the up, the apex angles are 1 t ,α ϕ+ α2, α3, … , αn, 

t
1

π2 2
n

i
i
α ϕ

=
− −∑ in order; the first obtuse angle is 

tπ2 ,ϕ+ other obtuse angles are tπ2 2 ,ϕ+ and the 
acute angles are 1 tπ2 2 ,α ϕ− − 2 tπ2 2 ,α ϕ− −  π2 −  

3 t2 ,α ϕ− tπ2 2 ,nα ϕ− −
1

.
n

i
i
α

=
∑  

Then, according to Fig. 3(a), the velocities of active 
failure mechanism can be derived:  

( )
( )1 0

t

sinπ
sinπ2 2

v v
β
ϕ

−
=

−
                        (24) 

 
( )
( )

t
0,1 0

t

sin 2π2
sinπ2 2

v v
β ϕ

ϕ
+ −

=
−

                    (25) 

 
( )

( )
1 t

1
t

sinπ2 2
 ( 2, , )

sinπ2 2
i

i iv v i n
α ϕ

ϕ
−

−
− +

= =
−

         (26) 

 

( )
1

1, 1
t

sin
( 2, , )

sinπ2 2
i

i i iv v i n
α

ϕ
−

− −= =
−

           (27) 

 

 
Fig. 3 Velocity fields of a pressurized tunnel: (a) Active failure 
mechanism; (b) Passive failure mechanism 
 

Similarly, according to Fig. 3(b), the velocities of 
passive failure mechanism can be written as  

( )
( )

t
1 0

1 t

sinπ2
sinπ2 2

v v
ϕ

α ϕ
+

=
− −

                    (28) 

 
( )

( )
1 t

0,1 0
1 t

sin
sinπ2 2

v v
α ϕ
α ϕ
+

=
− −

                   (29) 

 
( )

( )
t

1
t

sinπ2 2
( 2, , )

sinπ2 2i i
i

v v i n
ϕ

α ϕ −
+

= =
− −

          (30) 

 

( )1, 1
t

sin
( 2, , )

sinπ2 2
i

i i i
i

v v i n
α
α ϕ− −= =

− −
        (31) 

 

( )+1 t
1

sinπ2 2 sin
n

n n i
i

v vϕ α
=

= + ⋅ ∑              (32) 

 

, +1 t
1 1

sinπ2 2 sin
n n

n n i n i
i i

v vα ϕ α
= =

 
= − − ⋅ 

 
∑ ∑      (33) 

 
4 Calculation of retaining pressure for a 

pressurized tunnel face 
 

This work aims to obtain the range of safe retaining 
pressures for the pressurized tunnel based on limit 
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analysis and reliability theory. The failure mechanism of 
pressurized tunnel face is simplified to a 2D plane strain 
problem. The geotechnical material is considered as ideal 
plastic material, and obeys the associated flow rule, and 
energy dissipation only exists along the velocity 
discontinuity. 

For a pressurized tunnel, the power of external 
forces consists of the power of soil gravity Pγ, the work 
rate of pore water pressure Pu, and the power of retaining 
pressure PT. And the total energy dissipation PV is the 
sum of energy dissipation on every velocity 
discontinuities. 
 
4.1 Upper bound solution of active failure mechanism 

For the convenience of calculation, the 
disconnections OA, OB1, B1B2, …, Bn−1Bn, BnB, AB1, …, 
ABn in Fig. 2(a) are projected on the surface of earth, and 
their projection areas are S1, S2, S11, … , S1n−1, S1n, 
S21, …, S2n, respectively. Then, for the active failure 
mechanism, the power of external forces and energy 
dissipation can be written as follows:  

1 0 t
1

cosπ
n

OAB i
i

P S vγ γ α β ϕ∆
=

 
= ⋅ ⋅ ⋅ − − − + 

 
∑  

1 2

2 3

1

1 t
1

2 t
2

B 1 t
n-1

cosπ2

cosπ2

cosπ2
n n

n

AB B i
i

n

AB B i
i

n

AB n i
i

S v

S v

S v

γ α ϕ

γ α ϕ

γ α ϕ
−

∆
=

∆
=

∆ −
=

 
⋅ ⋅ ⋅ − + + 

 
 

⋅ ⋅ ⋅ − + + + 
 

 
⋅ ⋅ ⋅ − + + 

 

∑

∑

∑

  

( )tcosπ2
nAB B n nS vγ α ϕ∆⋅ ⋅ ⋅ − +           (34) 

 
( )T T tsinπ2n nP D vσ α ϕ= − ⋅ ⋅ ⋅ − +              (35) 

 
u u t 1 0 2 0 11 1 1sin ( n nP r S v S v S v S vγ ϕ= ⋅ ⋅ ⋅ ⋅ + ⋅ + ⋅ + + ⋅ +  

21 0,1 2 1, )n n nS v S v −⋅ + + ⋅                 (36) 
 

V t t 0 1 0 1 2 1cos (P c OA v OB v B B vϕ= ⋅ ⋅ ⋅ + ⋅ + ⋅ + +  

1 1 1 0,1n n n n nB B v B B v AB v− −⋅ + ⋅ + ⋅ + +  

1, )n n nAB v −⋅                           (37) 
 

According to the virtual power principle, the 
collapse pressure σc on the face can be determined 
through equating the external work rate to the internal 
energy dissipation. The expression can be written as 

 

( )
u V

c T
tsinπ2n n

P P P
D v

γσ σ
α ϕ

+ −
= =

⋅ ⋅ − +
            (38) 

 
( )t

t

t

0π2 2 1,2,3, , 1
s.t.π2 2π

0<π4

i i nα ϕ
ϕ β

ϕ

< < + = −


− < <
 <



        (39) 

 
According to Eq. (38), σc is a function of α1, α2, 

α3, …, αn, β and φt, namely σc=f(α1, α2, α3, …, αn, β, φt). 
The maximization of σc given by Eq. (38) is the critical 
collapse pressure. Under the constraints of Eq. (39), the 
maximization of the objective function σc=f(α1, α2, 
α3, …, αn, β, φt) can be achieved with Matlab software. 
Then, the maximum value corresponds to the 
lower-bound to ensure the safety of a pressurized tunnel. 
The point O is below the earth according to the 
optimization results. 
 
4.2 Upper bound solution of passive failure 

mechanism 
For the convenience of calculation, the 

disconnections BnO2, BB1, B1B2, …, Bn−1Bn, AB1, …, 
ABn in Fig.2(b) are projected on the earth surface, and 
their projection areas are S1, S11, S12, …, S1n, S21, …, S2n, 
respectively. In this case, the power of external forces 
and energy dissipation can be obtained:  

( )
1 1 21 1 tcosπ2ABB AB BP S v Sγ γ α ϕ γ∆ ∆= ⋅ ⋅ ⋅ − − + ⋅ ⋅  

1

2

2 t B
1

cosπ2
n ni AB n

i
v S vα ϕ γ

−∆
=

 
⋅ − − + + ⋅ ⋅ ⋅ 

 
∑   

1 2t +1 t
1

cosπ2 cos
n

n

i AO O B n
i

S vα ϕ γ ϕ∆
=

 
− − + ⋅ ⋅ ⋅ 

 
∑  

(40)  
T T 0P D vσ= − ⋅ ⋅                              (41) 

 
u u t 1 +1 11 1 1sin ( n n nP r S v S v S vγ ϕ= ⋅ ⋅ ⋅ ⋅ + ⋅ + + ⋅ +  

21 1,2 2 , +1)n n nS v S v⋅ + + ⋅                 (42) 
 

V t t 1 1 1 2 2 1cos ( n n nP c BB v B B v B B vϕ −= ⋅ ⋅ ⋅ + ⋅ + + ⋅ +  

2 +1 1 +1 1 1,2n n nB O v AO v AB v⋅ + ⋅ + ⋅ + +  

, +1)n n nAB v⋅                           (43) 
 

Likewise, according to the virtual power principle, 
the retaining pressure σT on the face can be determined 
by equating the external work rate to the internal energy 
dissipation, namely the blowout pressure σb under the 
passive failure mechanism. The expression can be 
written as  

b T u V 0( ) /( )P P P D vγσ σ= = + − ⋅                (44) 
 

( )t

1
t

0π2 2 1,2,3, ,
s.t.

0<π4 2
n

i
i

i i nα ϕ

ϕ α
=

< < − =



< −


∑



          (45) 

 
According to Eq. (44), σb is a function of α1, α2, 

α3, …, αn and φt, i.e., σb=f(α1, α2, α3, …, αn, φt). In order 
to get the critical blowout pressure, the minimum value 
of σb must be worked out. Under the constraints of    
Eq. (45), the minimization of the objective function σb= 
f(α1, α2, α3, …, αn, φt) is obtained using Matlab software. 
Then, the critical blowout pressure is the maximum 
support force to ensure the pressurized tunnel without 
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blowout happening. 
 
4.3 Reliability model 

For the objective existence of parameter 
randomness of soil and its influence on the stability of 
pressurized tunnel, it is more scientific and rational to 
solve the range of safe retaining pressure applying 
reliability theory after using limit analysis with nonlinear 
failure criterion. 

σc is the lower-bound against the collapse and σb is 
the upper-bound value to prevent blow-out, so the 
retaining pressure σT that ensures the safety of a 
pressurized tunnel excavation surface must satisfy 

 
1 T c( ) 0g X σ σ= − >                          (46) 

 
2 b T( ) 0g X σ σ= − >                          (47) 

 
For single failure mode, when pressurized tunnel 

collapses or blowouts, the reliability models are 
respectively  

{ }s 1( ) 0R P g X= >                            (48) 
 

{ }s 2 ( ) 0R P g X= >                           (49) 
 

With respect to multiple failure modes, the 
reliability model of pressurized tunnel is expressed as 
follows:  

{ }s 1 2( ) 0 ( ) 0R P g X g X= > >                  (50) 

 
5 Numerical results and discussion 
 
5.1 Number n of triangle rigid blocks 

The number of the rigid blocks of failure 
mechanism directly influences the precision of the 
calculation results. In order to strike a balance between 
the accuracy of the critical pressure for a pressurized 
tunnel and computation time, the number of triangle rigid 
blocks is discussed here. Table 1 presents the values of 
collapse pressure σc and blowout pressure σb with 
different n corresponding to tunnel diameter D=10 m, 
buried depth C=10 m, soil bulk density γ=20 kN/m3, 
nonlinear coefficient m=1.2, initial cohesion c0=10 kPa  

 
Table 1 Influence of number n of triangle rigid blocks on earth 
pressure 

n 
σc  σb 

Value/kPa Improvement/%  Value/kPa Improvement/% 

1 75.8 —  898.8 — 

2 86.4 14  806.5 10 

3 92.1 7  776.8 4 

4 95.7 4  762.3 2 

5 96.3 1  753.8 1 
      

and axial tensile stress σt=30 kPa. It is found from  
Table 1 that the precision of the earth pressure can be 
improved with the increase of the number n of triangle 
rigid blocks. When n=5, the improvement of the collapse 
pressure σc and blowout pressure σb is within 1%, 
satisfying the precision requirements. Therefore, the 
value of n is chosen to be 5 throughout the numerical 
computation. 
 
5.2 Comparison validation 

In order to verify the rationality of the failure 
mechanism and the correctness of the calculation method, 
the nonlinear failure criterion will degenerate into the 
linear MC failure criterion with the nonlinear coefficient 
being equal to 1. Then, the calculation results are 
compared with the numerical simulation results, as 
shown in Fig. 4, with relevant parameters corresponding 
to: diameter D=10 m, buried depth C=10 m, soil bulk 
density γ=20 kN/m3, cohesive force c=10 kPa and 
internal friction angle φ=18°. It can be found in Fig. 4 
that, in contrast with the displacement reprogram of the 
numerical simulation results, the failure mechanism of 
this work agrees well with the numerical simulation 
solution. It can also be obtained that the earth pressure is 
also coincident with simulation results and the difference 
is less than 8%. Then, the rationality of the failure  
 

 
Fig. 4 Comparison of results between limit analysis and 
numerical simulations: (a) Active failure mechanism; (b) 
Passive failure mechanism 
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mechanism and the validity of the calculation method are 
verified with the consistency. 
 
5.3 Sensitivity analysis 

In the case of D=10 m and C=10 m, sensitivity 
analysis is conducted to discuss the impact of random 
variables on the reliability of pressurized tunnel. Since 
the results are the same, the sensitivity factors of random 
variables are solved only for the active failure 
mechanism, and the statistical properties are given in 
Table 2, in which σT is equal to σc. The sensitivity factors 
of random variables of a pressurized tunnel are 
illustrated in Fig. 5. It is obvious to see that the reliability 
is most sensitive to the nonlinear coefficient m and pore 
water pressure coefficient ru, initial cohesive c0 and soil 
bulk density γ rank the second, while the reliability is not 
very sensitive to retaining pressure σT and axial tensile 
stress σt. It is shown that the nonlinear coefficient and 
pore water pressure coefficient are the main factors 
which influence the reliability of pressurized tunnel. 
 
Table 2 Statistical property of random variables (I) 

Random 
variable Mean Standard 

deviation 
Coefficient of 

variation 
Type of 

distribution 
M 1.2 0.18 0.15 Gaussian 

c0/kPa 10 1.5 0.15 Gaussian 

σt/kPa 30 4.5 0.15 Gaussian 

γ/(kN·m−3) 20 3 0.15 Gaussian 

ru 0.2 0.03 0.15 Gaussian 

σT/kPa 113.4 17.0 0.15 Gaussian 

 

 
Fig. 5 Comparison on sensitivity factors of distribution 
parameters of random variables 
 
5.4 Influence of coefficient of variation on reliability 

The statistic characteristics of random variables are 
given in Table 3 when σT1=σc, σT2=σb, tunnel diameter 
D=10 m and cover depth C=10 m. The effect of variation 
coefficient on the reliability of pressurized tunnel is 
illustrated in Fig. 6. According to Fig. 6, both for active 
failure mechanism and passive failure mechanism, the 

Table 3 Statistical property of random variables (II) 
Random 
variable Mean Coefficient of 

variation 
Type of 

distribution 
m 1.2 0.15 Lognormal 

ru 0.2 0.15 Lognormal 

c0/kPa 10 0.15 Lognormal 

σt/kPa 30 0.15 Lognormal 

γ/(kN·m−3) 20 0.15 Lognormal 

σT1/kPa 113.4 0.15 Gaussian 

σT2/kPa 790.3 0.15 Gaussian 

 

 
Fig. 6 Influence of variation coefficients on reliability: (a) 
Active failure mechanism; (b) Passive failure mechanism 
 
reliability tends to decrease with the increase of variation 
coefficient of nonlinear coefficient m or pore water 
pressure coefficient ru. The variation coefficient of 
nonlinear coefficient m has a more obvious effect on 
reliability. In addition, it is worth noticing that when the 
overall variation coefficients increase together, the 
reliability reduces significantly. It can be concluded that 
the variation coefficient which represents the parameter 
randomness of soil has a great impact on the reliability of 
pressurized tunnel, especially the variation coefficients 
of nonlinear coefficient m and pore water pressure 
coefficient ru. Therefore, it is suggested that the 
parameter randomness of soil should be considered in the 
design of retaining structures, and the variability level of 
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geotechnical parameters should also be improved 
simultaneously. 
 
5.5 Range of safe retaining pressure 

In the view of the main influence factors, the range 
of safe retaining pressure for a pressurized tunnel is 
presented by considering the parameter randomness of 
soil or neglecting it with tunnel diameter D=10 m and 
cover depth C=10 m. 
5.5.1 Range of safe retaining pressure without 

considering parameter randomness of soil 
Without considering the parameter randomness of 

soil, the influences of nonlinear coefficient m and pore 
water pressure coefficient ru on earth pressure are 
illustrated in Fig. 7, with other parameters corresponding 
to soil bulk density γ=20 kN/m3, initial cohesion c0=   

10 kPa and axial tensile stress σt=30 kPa. According to 
Fig. 7, the collapse pressure σc shows a trend of increase 
with the increasing values of nonlinear coefficient m and 
pore water pressure coefficient ru under active failure 
mechanism. However, the blowout pressure σb is positive 
to pore water pressure coefficient ru but decreases with 
the increase of nonlinear coefficient m under passive 
failure mechanism. Table 4 gives the range of safe 
retaining pressure according to the data obtained in   
Fig. 7. 
5.5.2 Range of safe retaining pressure in consideration 

with parameter randomness of soil 
Considering the parameter randomness of soil, it is 

assumed that the statistic characteristics of random 
variables are shown in Table 5. The failure probabilities 
of a pressurized tunnel under single failure mode and 

 

 
Fig. 7 Influences of nonlinear coefficient and pore water pressure coefficient on earth pressure: (a) ru−m−σc; (b) ru−m−σb; (c) m− 
ru−σc; (d) m− ru−σb 

 
Table 4 Range of safe retaining pressure without regard to parameter randomness of soil 

m  
Range of safe retaining pressure/kPa 

ru=0.1 ru=0.2 ru=0.3 ru=0.4 ru=0.5 

1.1 

 

85.3−931.9 96.4−953.3 107.5−974.6 118.9−995.8 130.4−1016.9 

1.2 104.5−776.4 113.4−790.3 122.4−804.1 131.6−817.9 141.0−831.4 

1.3 127.2−684.0 134.0−694.1 141.0−704.0 148.2−713.9 155.5−723.6 

1.4 153.9−623.3 158.9−631.0 164.1−638.6 169.4−646.2 174.8−653.6 

1.5 185.0−580.5 188.5−586.7 192.1−592.8 195.8−598.8 199.6−604.8 
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Table 5 Statistical properties of random variables (III) 

Random variable Mean COV Type of distribution 

m 1.1−1.5 0.15 Lognormal 

ru 0.1−0.5 0.15 Lognormal 

c0/kPa 10 0.15 Lognormal 

σt/kPa 30 0.15 Lognormal 

γ/(kN·m−3) 20 0.15 Lognormal 

σT/kPa — 0.15 Gaussian 

 
multiple failure modes are illustrated in Fig. 8 and Fig. 9 
respectively. In Fig. 8, with the mean of retaining 
pressure increasing, the failure probability of a 
pressurized tunnel in active failure mechanism shows a 
trend of decrease, while a trend of increase in passive 
failure mechanism. 

In Fig. 9, with the increase of the mean of retaining 
pressure, the failure probability of a pressurized tunnel 
decreases at first and then increases. Thus, as for 
multiple failure modes, when the mean of retaining 
pressure is less than the value of the lowest point on the 
curve, the probability for collapse is larger; when the 
mean of retaining pressure is greater than the value of the 
lowest point on the curve, the probability for blowout is 
greater. The value of the lowest point on the curve is the 

best mean of retaining pressure for pressurized tunnel 
face. 

For the failure probability of a pressurized tunnel 
against multiple failure modes, as shown in Fig. 9, the 
range of safe retaining pressure for a pressurized tunnel 
can be obtained by introducing the allowable failure 
probability [Pf]. As given in Table 6, different ranges of 
safe retaining pressure can be obtained when nonlinear 
coefficient m increases linearly from 1.1 to 1.5 and pore 
water pressure coefficient ru increases linearly from 0.1 
to 0.5, allowable failure probability [Pf] decreasing 
nonlinearly from 0.1 to 0.00001. Different allowable 
failure probabilities also correspond to different ranges 
of safe retaining pressure, so the optimal range of safe 
retaining pressure for a pressurized tunnel can be 
obtained by seeking the minimum allowable failure 
probability. As shown in Fig. 10, when the allowable 
failure probabilities [Pf] are equal to 0.1, 0.01 and 0.001, 
the ranges of safe retaining pressure are 166−588 kPa, 
226−471 kPa, and 291−399 kPa, respectively, for the 
case of the nonlinear coefficient m=1.2, pore water 
pressure coefficient ru=0.2, but it cannot be satisfied that 
the allowable failure probability is 0.0001. Then, the 
optimal range of safe retaining pressure for a pressurized 
tunnel can be obtained as 324−373 kPa corresponding to 
the minimum allowable failure probability is [Pf]min= 
0.0005. 

 

 
Fig. 8 Influence of mean of retaining pressure on failure probability with regard to a single failure mode: (a) ru=0.1; (b) ru=0.2;    
(c) ru=0.3; (d) ru=0.4 
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Fig. 9 Influence of mean of retaining pressure on failure probability against multiple failure modes: (a) ru=0.1; (b) ru=0.2; (c) ru=0.3; 
(d) ru=0.4  
 
Table 6 Range of safe retaining pressures with regard to parameter randomness of soil 

m ru 
Range of safe retaining pressures/kPa 

[Pf]min 
Optimal 

range/kPa [Pf]=0.1 [Pf]=0.01 [Pf]=0.001 [Pf]=0.0001 

1.1 

0.1 131−686 180−546 234−471 288−406 0.0001 288−406 

0.2 142−700 194−557 246−475 310−395 0.0001 310−395 

0.3 156−714 208−566 260−481 334−382 0.0001 334−382 

0.4 170−728 222−576 275−489 358−369 0.0001 358−369 

0.5 184−742 236−587 290−497 — 0.0002 345−413 

1.2 

0.1 157−578 214−464 274−394 — 0.0004 314−362 

0.2 166−588 226−471 291−399 — 0.0005 324−373 

0.3 176−597 239−478 309−403 — 0.0006 334−382 

0.4 186−606 252−485 328−406 — 0.0007 350−387 

0.5 197−615 266−491 351−408 — 0.0008 367−394 

1.3 

0.1 192−521 265−416 — — 0.002 314−368 

0.2 199−528 272−421 — — 0.002 324−371 

0.3 205−535 281−426 — — 0.002 335−373 

0.4 212−541 290−431 — — 0.002 348−375 

0.5 220−548 299−436 — — 0.003 341−395 
        to be continued 
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Continued 

m ru 
Range of safe retaining pressure/kPa 

[Pf]min 
Optimal 

range/kPa [Pf]=0.1 [Pf]=0.01 [Pf]=0.001 [Pf]=0.0001 

1.4 

0.1 234−482 329−378 — — 0.008 343−364 

0.2 239−487 334−381 — — 0.008 350−367 

0.3 243−493 340−385 — — 0.008 360−369 

0.4 248−498 345−388 — — 0.009 353−381 

0.5 252−503 352−391 — — 0.009 359−383 

1.5 

0.1 286−451 — — — 0.04 338−398 

0.2 289−455 — — — 0.04 340−402 

0.3 291−460 — — — 0.04 342−406 

0.4 294−464 — — — 0.04 345−410 

0.5 296−468 — — — 0.04 347−414 
         

 
Fig. 10 Range of safe retaining pressures of pressurized tunnel faces with different allowable failure probabilities 
 

As a result, the importance of parameter 
randomness of soil is proved by the results of Table 6. If 
the parameter randomness of soil is not taken into 
account, collapse or blowout damage may take place 
even if the retaining pressure of a pressurized tunnel 
satisfies safe requirement. In short, it will be more 
scientific and rational to utilize the reliability theory for 
the design of a pressurized tunnel. The results in Table 6 
can provide important reference for design and 
construction of pressurized tunnels in the future. 
 
6 Conclusions 
 

1) In order to meet the accuracy of results and the 
time-costing requirement, the number of triangle rigid 
blocks is discussed, and the result can satisfy the relevant 
requirements simultaneously with n=5. 

2) The present solutions are compared with 
numerical simulation results when the nonlinear failure 
criterion degenerates into the linear MC failure criterion, 
with nonlinear coefficient m=1.0. The rationality of the 
failure mechanism and the correctness of the calculation 
method are verified by the consistency of displacement 
reprogram and agreement of earth pressure. 

3) In the sensitivity analysis of random variables, 
nonlinear coefficient and pore water pressure coefficient 
have a significant effect on reliability, whereas initial 
cohesion and soil bulk density have a less impact. The 
retaining pressure and axial tensile stress almost have no 
effect on the reliability. Thus, nonlinear coefficient and 
pore water pressure coefficient are the principal factors 
which affect the reliability of structure system for a 
pressurized tunnel. 

4) According to the maximum entropy principle, the 
soil parameters are assumed to obey the most common 
and important normal distribution and lognormal 
distribution, respectively. The variation coefficient which 
represents the parameter randomness of soil has a large 
impact on the reliability of a pressurized tunnel. The 
research of the statistical distribution and the analysis of 
variability level should be further improved. 

5) Ranges of safe retaining pressure for a 
pressurized tunnel in multiple failure modes are solved 
by referring to the parameter randomness of soils and 
introducing allowable failure probability. If the 
parameter randomness of soils is not considered, collapse 
or blowout damage might take place even if the retaining 
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pressure is between the collapse pressure and the 
blowout pressure. 
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