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Abstract: A robust adaptive control is proposed for a class of uncertain nonlinear non-affine SISO systems. In order to approximate 
the unknown nonlinear function, an affine type neural network (ATNN) and neural state feedback compensation are used, and then to 
compensate the approximation error and external disturbance, a robust control term is employed. By Lyapunov stability analysis for 
the closed-loop system, it is proven that tracking errors asymptotically converge to zero. Moreover, an observer is designed to 
estimate the system states because all the states may not be available for measurements. Furthermore, the adaptation laws of neural 
networks and the robust controller are given based on the Lyapunov stability theory. Finally, two simulation examples are presented 
to demonstrate the effectiveness of the proposed control method. Finally, two simulation examples show that the proposed method 
exhibits strong robustness, fast response and small tracking error, even for the non-affine nonlinear system with external disturbance, 
which confirms the effectiveness of the proposed approach. 
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1 Introduction 
 

In the past decades, the control problem of the 
uncertain nonlinear systems has been given a lot of 
attention in the control field. Many powerful 
methodologies for designing the controller are proposed 
for uncertain nonlinear systems owing to advances in 
nonlinear control theory. 

Neural network (NN) approaches and fuzzy logic 
(FL) have been widely used in modelling and controlling 
of nonlinear systems because of their capabilities of 
nonlinear function approximation, learning, adaption and 
generalization. Based on this universal approximation 
property, many adaptive neural network control schemes 
have been developed to solve control problem of the 
uncertain nonlinear systems. The adaptive neural 
network control (ANNC) schemes were proposed by 
using NNs for uncertain nonlinear systems [1–3]. In such 
schemes, an NN was employed to approximate the 
uncertain nonlinear functions. There are parameter 
variations, unavoidable model uncertainties and 
unknown external disturbances for any practical system. 
These uncertainties will degrade the controller 
performance. In these cases, the conventional control 
approaches are not applicable, and usually the robust 
control approaches are suggested to address this issue. 
Therefore, the analytical study of robust adaptive control 
of uncertain nonlinear systems using NN has received 

much attention during last decade. The robust adaptive 
neural network control (RANNC) problem for a class of 
nonlinear systems with external disturbance was 
investigated [4–5]. 

It is difficult to describe dynamic models by using 
accurate math models in many nonlinear systems. Fuzzy 
logic control (FLC) is a rule-based type of control that 
uses fuzzy set concepts and fuzzy logic. It can deal with 
complex and ill-defined systems for which the 
application of conventional control techniques is not 
straightforward or feasible. The problem of adaptive 
fuzzy tracking control was presented for the external 
disturbances of a class of uncertain nonlinear systems 
[6–8]. 

In the last decade, many researchers proposed that 
the leaning abilities of NNs can be used as a powerful 
tool in fuzzy system design. The adaptive algorithms 
based on fuzzy neural networks (FNNs) were developed 
for the tracking control of the nonlinear system [9–11]. 
The proposed algorithm was based on the FNNs 
controllers. The FNN was used to online control the 
nonlinear system. 

Variable structure control (VSC) which plays an 
important role in the nonlinear control theory is a type of 
robust control design. The VSC is insensitive to 
parameter uncertainties, modelling error and external 
disturbances. As a result, there is high motivation to 
variable structure control in the control of these uncertain 
nonlinear systems [12–13]. 
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However, the states of the system were assumed to 
be available in most of the previous works, while this 
assumption may not be satisfied in practical applications. 
In these cases, observer-based or output feedback 
controllers might be used. 

Varieties of hybrid control systems have been 
designed by using different combinations of above 
methods [14–16]. However, the above mentioned studies 
had the condition that the systems or subsystems should 
be affine. In practice, there are many nonlinear systems 
with non-affine structure. 

Recently, several approaches have been developed 
for nonlinear non-affine systems [17–19]. The tracking 
control problem was studied for a class of uncertain 
non-affine systems by SHEN and ZHANG [17]. Based 
on the principle of sliding mode control (SMC), using 
the neural networks (NNs) and the property of the basis 
function, a novel adaptive design schemes were proposed. 
BAHRAM and MOHAMMAD [18] introduced a new 
decentralized adaptive neural network controller for a 
class of large-scale nonlinear systems with unknown 
non-affine subsystems and unknown interconnections 
represented by nonlinear functions. A radial basis 
function neural network was used to represent the 
controller’s structure. A novel fuzzy adaptive controller 
was investigated for a class of non-affine systems with 
unknown control direction by BOULKROUNE et al [19]. 
An equivalent model in affine-like form was first derived 
for the original non-affine system by using a Taylor 
series expansion. Then, a fuzzy adaptive control was 
designed based on the affine-like equivalent model. The 
stability of the closed loop system was guaranteed 
through Lyapunov stability analysis. 

In this work, a robust adaptive control scheme is 
proposed for a class of the uncertain nonlinear non-affine 
SISO systems. The mean value theorem is used to 
transform unknown non-affine system into a similar 
affine system. Moreover, an affine type neural network 
and neural state feedback compensation are employed to 
approximate the unknown nonlinear function, and 
observer is used to estimate unmeasured states. The 
effects of neural network approximation error and 
external disturbance are compensated using a robust term 
in the control signal. Furthermore, in the proposed 
approach, the controller singularity issue is avoided, and 
this approach can also be applied to affine systems. 
 
2 Problem formulation 
 

Consider a SISO uncertain nonlinear system 
described by  

1

1

( , ) ( , )   ( 1,  2,  ,  1)
i i

n

x x

x f u d t i n

y x


    
 


 X X        (1) 

where ( 1) T T
1 2[ ,  ,  ,  ] [ ,  ,  ,  ] [ ,n

nx x x x x x y    X  
( 1) T,  ]n ny   R  is the state vector of the system, 

yR is the system output, uR is the control input, 
( , )f uX is smooth unknown non-affine function in 

control input and the state vector, and ( , )d t RX is a 
unknown external disturbance. The control goal is to 
design a controller that the system output y(t) tracks the 
desired trajectory yd(t). 

Assumption 1: The desired trajectory yd(t) and its 
time derivatives ( )

d ( ),  1,  ,  ,iy t i n  are smooth and 
bounded. 

Assumption 2: The external disturbance d(X, t) is 
bounded:  

d( , ) ,   ,  d t t X X  
 
Assumption 3: For all ( , ) xu  RX with a 

controllability region Ωx, the function g(X,u)=
( , )f u

u



X

 

is nonzero. 
Lemma 1 (Mean value theorem): Suppose that 

( , ) : nf x y  R R R is continuous at both endpoints 
y=a and y=b, and has a derivative at each point of an 
open set Rn×(a, b). Therefore, there is a point 

( , ) :a b    
( , ) ( , ) ( , )( )f x b f x a f x b a                   (2) 

 
The tracking error vector is defined as  

( 1) T
1 1 1( ) [ ,  ,  ,  ]nt e e e   E                      (3) 

 
where e1 is the output error:  

1 de y y                                    (4) 
 
Using Eqs. (1) and (3), the tracking error system can 

be written as  
( )

d

T
1

[ ( , ) ( , )]nf u y d t

e

    




E AE B X X

C E
           (5) 

 
where 
 

0 1 0 0

0 0 1 0

,

0 0 0 1

0 0 0 0 0

 
 
 
 
 
 
  




    


A

0

0

,

0

1

 
 
 
 
 
 
  

B T [1  0    0  0]. C  

 
Considering the mean value theorem, the non-affine 

function f(X, u) can be written as 
 

( , ) ( ) ( , )f u f g u u X X X                    (6) 
 

where uλ is a point between zero and u. Then, Eq. (5) can 
be rewritten as  

( )
d

T
1

[ ( ) ( , ) ( , )]nf g u u y d t

e

     




E AE B X X X

C E
 

 
If the functions f(X) and g(X, uλ) are known and 
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there is no external disturbance d(X, t), and the state X is 
available, then we can choose   

( )1 T
0 d( , ) [ ( ) ]nu g u f y

   X X E             (7) 
 
where T

1 1[ ,  ,  ,  ]n n    should be chosen such 

that the corresponding characteristic polynomial 
becomes Hurwitz, and then the closed loop error 
dynamics is stable. Consequently, lim ( ) 0.

t
t


E  

However, if f(X) and g(X,uλ) are unknown, 
controller design is difficult. Therefore, in this work, a 
robust adaptive controller is developed. 
 
3 Controller design and stability analysis 
 

The uncertain nonlinear non-affine SISO system (1) 
can be formulated as  

( ) ( , ) ( , ) ( ( , ) ) ( , )ny f u d t u f u u d t     X X X X  

( , ) ( , )u u d t  X X                    (8) 
 
where  

( , ) ( , )u f u u  X X                          (9) 
 

Using Eqs. (9) and (6), Δ(X, u) can be rewritten as  
( , ) ( , ) ( ) ( , )u f u u f g u u u     X X X X  

( ) [ ( , ) 1] ( ) ( )f g u u f g    X X X X   (10) 
 
where ( ) [ ( , ) 1] ,g g u u X X  T T[ , ]uX X . 

Using Eqs. (8) and (10), the tracking error system 
can be written as  

( )
d

T
1

[ ( , ) ( , )]nu u y d t

e

     




E AE B X X

C E
       (11) 

 
or  

( )
d

T
1

[ ( ) ( ) ( , )]nu f g y d t

e

      




E AE B X X X

C E
  (12) 

 
In order to approximate unknown function Δ(X, u), 

an affine type neural network (ATNN) and neural state 
feedback compensator are proposed. 

The output of the neural compensator can be 
described as 

 
T T

nn sfc
ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )h h h   X X X W X K X X    (13) 

 
where T

nn
ˆ ˆ( ) ( )h X W X is the neural network 

compensator, and T
sfc

ˆ ˆ( ) ( )h X K X X is the neural state 
feedback compensator. Tˆ ˆ( ) ( ),K X P X 1 2[ ,  ,W W W  

T,  ]l W and 11 12 1 1 2[ ,  ,  ,  ,  ,  ,  ,  ,m n nP P P P P   P  
T]nmP  are the adjustable parameter vectors, and l, m are 

node numbers of neural network. 1( ) [ ( ), X X  
T

2 ( ),  ,  ( )]l X X and 1 2( ) [ ( ),  ( ),  ,   X X X  
T( )]m X  are basis function vectors. 

The commonly used Gaussian function is used as 
basis function: 

T

2

( ) ( )
( ) exp ,i i

i
i

 






   
  

  

X X
X

 
i=1, 2, …, l (14) 

T

2

( ) ( )
( ) exp ,i i

i
i

 








   
  

  

X X
X


 i=1, 2, …, m 

(15)  
where μfi and μψi are the center vectors of the receptive 
field; ηfi and ηψi are the widths of the Gaussian function, 
respectively. 

It is supposed that X and W belong to compact sets 
U and Ω, respectively, defined as  

1

2

{ : }

{ : }

n

l

U M

M

   


  

R

R

X X

W W
                   (16) 

 
where M1 and M2 are the designed parameters. 

Define the optimal parameter vector W:  

ˆ
ˆarg  min sup ( , ) ( , , )

U
u h u




 

   
 W X

W X X W        (17) 

 
and approximation error ε:  

ˆ( , ) ( )u h  X X                           (18) 
 
where Ŵ denotes the estimation of W and ˆ . W W W  

The robust adaptive controller comprises of two 
controllers and can be defined as  

f ru u u                                   (19) 
 
where uf is the feedback controller as  

( ) T
f d

nu y  E                              (20) 
 
and ur is the adaptive neural network robust controller, 
which is defined as  

r n vs rcu u u u                              (21) 
 
where un is the neural compensator to approximate the 
unknown uncertainties, usm is VSC to eliminate the 
effects of the neural network approximation errors and 
the external disturbances, and urc is the robust 
compensation controller. 

Substituting Eq. (19) into Eq. (12) and using     
Eq. (20), the error dynamic equation can be obtained as  

T
r[ ( , ) ( , ) ]u d t u    E AE B X X E        (22) 

 
By using Eq. (13), the function Δ(X, u) can be 

represented as  
( , ) ( ) ( ) ( ) , )u f g h u    （X X X X X  

T T( ) ( ) , )u  （W X K X X X         (23) 
 
where m( , .u ）X  

The output of the neural network compensator is 
given as  

T T T T
n

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )u        W X K X X W X P X X  

(24)  
Ŵ  and ̂P  are updated using the update laws: 
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T T
1 1

ˆ W B P E                             (25) 
 

T T
2 1

ˆ P XB P E                           (26) 
 
where γ1 and γ2 are positive constants. 

The VSC and robust compensation controller can be 
defined as  

T
vs s 1sgn( )u k  B P E                         (27) 

 
T

rc 1u   B P E                              (28) 
 
where s m d ,k     η is a small positive constant and 
P1 is a symmetric positive definite matrix that satisfies 
the Lyapunov equation:  

T T T
1 1 1( ) ( )    A BΛ P P A BΛ Q              (29) 

 
and Q1 is a positive definite matrix. 

Theorem 1:  For the system defined by Eq. (1), 
the robust adaptive controller is considered as Eqs. (19)– 
(21), (24), (27), (28) with the adaption laws Eqs. (25), 
(26). If Assumptions 1–3 are satisfied, the closed-loop 
system is stable in the sense of Lyapunov. 

Proof: Introducing Eq. (24), the error dynamic 
equation (22) can be rewritten as  

T
r[ ( ) , ) ( , ) ]h u d t u      （E AE B X X X E  

T T

T
r

T T

T T T
vs

T T T

T T
vs rc

T T

[ ( ) ( ) , )

   ( , ) ]

[ ( ) ( ) , )

ˆ ˆ   ( , ) ( ) ( ) ]

ˆ[ ( ) ( ) ( )

ˆ   ( ) , ) ( , ) ]

[ ( ) ( ) ,
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u

d t u

u

d t u u

u d t u u









    

 

    

    

    

    

    

（

（

（

（

AE B W X K X X X

X E

AE B W X K X X X

X E W X K X X

AE B W X W X K X X

K X X X X E

AE B W X K X X X







 

 



 ) ( , )u d t X

 

T
vs rc ]u u  E                         (30) 

 
where ˆ W W W and ˆ . K K K  

Consider a Lyapunov function candidate as  
T T T

1 1
1 2

1 1 1

2 2 2 
     V E P E W W P P           (31) 

 
where ˆ. P P P  

Differentiating Eq. (31) yields  
T T T T

1 1 1
1 2

1 1 1 1

2 2  
          V E P E E P E W W P P    (32) 

 
Substituting Eq. (30) into Eq. (32) yields  

T T
1

1
( ( ) [ ( ) ( ) , )

2
t u       （V AE B W X K X X X  

T T
vs rc 1 1

T T

T T T
vs rc

1 2

1
   ( , ) ]) ( ( )

2

   [ ( ) ( ) , ) ( , )

1 1
   ])

d t u u t

u d t

u u



 

    

   

   

 

    

（

X E P E E P AE

B W X K X X X X

E W W P P







 

T T T T
1 1

1
[( ) ( )]

2
    E A B P P A B E   

T T T T
vs 1 1 rc 1( )d u u     B P E B P E WB P E  

T T T T
1

1 2

1 1

 
      W W PXB P E P P        (33) 

 
We can write ˆ  W W and 

ˆ.  P P  Using update 
laws Eqs. (25) and (26), thus 
 

T T T T T T
1 1

1 2

1 1

 
         WB P E W W PXB P E P P  

T T T T
1 1 1

1

T T T T
1 2 1

2

1

1
   







  



 

 

W B P E W B P E

P XB P E P XB P E

 

 
 

0                                  (34) 
 

Using Eqs. (34) and (29), Eq. (33) can be rewritten 
as 
 

T T T
1 1 vs 1 1 rc

1
( )

2
d u u     V E Q E B P E B P E  

(35)  
Substituting uvs and urc into Eq. (35) yields 

 
T T T

1 1 vs 1 rc 1
1

( )
2

d u u      V E Q E B P E B P E  

T T T
1 m d s 1 1

T T T T T
1 1 1 1 1

1
( )sgn( )

2
1

2

k 

 

    

   

E Q E B P E B P E

E P BB P E E Q E E P BB P E

 

T
1

1
0

2
 E Q E                          (36) 

 
Since V>0 and 0,V  this shows stability in the 

sense of Lyapunov. As a result, the stability of the 
proposed robust adaptive controller can be guaranteed. 

Since the state vector is unmeasurable in practice, 
the unmeasurable states are estimated. An observer is 
considered as 
 

T T
0

T
1

ˆ ˆ ˆ ˆ( )

ˆê

    





E AE B E K C E E

C E


             (37) 

 
where K0 is the observer gain vector to be designed so 
that the matrix A–K0C

T is Hurwitz, and Ê is the 
estimation of E. Define the observation error as 

ˆ . E E E Then, using Eqs. (11) and (37), we can write 
 

T ( )
0 d

T
1

( ) [ ( , ) ( , )]nu u y d t

e

      




 



E A K C E B X X

C E
 

(38)  
or  

T T
0 r

T
1

( ) [ ( , ) ( , ) ]u d t u

e

       




 



E A K C E B X X E

C E
 

(39)  
Equation (39) can be rewritten as 
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T T T
0

T
vs rc

T
1

ˆ ˆ ˆ( ) [ ( ) ( )

ˆ      , ) ( , ) ]u d t u u

e

 

     
    




   



（

E A K C E B W X K X X

X X E

C E



   (40) 

 
Assumption 4: For the given positive-definite 

matrix Q2, there exists a positive-definite solution P2 for 
the matrix equations:  

T T T
0 2 2 0 2

2

( ) ( )     




A K C P P A K C Q

P B C
        (41) 

 
The output of the neural network compensator is 

given as  
T T T T

n
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )u      W X K X X W X P X X    

(42)  
Ŵ is updated using the update law: 
 

T T
1 2

ˆ ˆW B P E                             (43) 
 

T T
2 2

ˆ ˆP XB P E                           (44) 
 

The VSC and robust compensation controller can be 
defined as  

T
vs s 2sgn( )u k  B P E                         (45) 

 
where s m dk    . 
 

T
rc 0 1

ˆu  K P E                              (46) 
 

Theorem 2:  For the system defined by Eq. (1), 
the robust adaptive controller is considered as Eqs. (19)– 
(21), (42), (45), (46) with the adaption laws Eqs. (43) 
and (44). If Assumptions 1–4 are satisfied, the 
closed-loop system is stable in the sense of Lyapunov. 

Proof:  Consider a Lyapunov function candidate as  
T T T T

2 1 2
1 2

1 1 1 1ˆ ˆ
2 2  

         V E P E E P E W W P P    (47) 

 
Differentiating Eq. (47) yields  

T T T T
2 1 1 2 2

1 1 1 1ˆ ˆ ˆ ˆ
2 2 2 2

           V E P E E P E E P E E P E  

T T

1 2

1 1

 
    W W P P                      (48) 

 
Substituting Eqs. (37) and (40) into Eq. (48) yields  

T T T T
1 1

1 ˆ ˆ[( ) ( )]
2

    V E A B P P A B E   

T T T T
0 2 2 0

T T T T T
1 0 2 f  f

T T
vs rc

1

1
[( ) ( )] +

2
ˆˆ ˆ[ ( ) ( )

1ˆ, ) ( , ) ]

g g

u d t u u


  

  

     

 

   

 （

E A K C P P A K C E

E P K C E E P B W X W X

X X E W

 

 W

 

T

2

1


 P P                               (49) 

 
Then, using Eqs. (29) and (41), Eq. (49) can be 

rewritten as  
T T T T

1 1 0 2
1 1ˆ ˆ ˆ+
2 2

      V E Q E E P K C E E Q E  

T T T
2 f  f

ˆ ˆ[ ( ) ( ) , ) ( , )g g u d t      （E P B W X W X X X   

T T T
vs rc

1 2

1 1ˆ ]u u
 

        E W W P P         (50) 

 
Substituting Eqs. (45) and (46) and adaptation laws 

Eqs. (43), (44) in Eq. (50), we can write  
T T T

1 2 vs
1 1ˆ ˆ ( )
2 2

d u        V E Q E E Q E B PE  

T T
1 2 m d s

1 1ˆ ˆ ( )
2 2

k       E Q E E Q E  

  T T T T
1 2

1 1ˆ ˆsgn( ) 0
2 2

    B PE B PE E Q E E Q E  

(51)  
As a result, the closed-loop system is stable, and the 

stability of the proposed robust adaptive controller can 
be guaranteed. 

Remark 1: In the variable structure control, high 
frequency oscillation (termed as ‘chattering’) exists in 
the control input. To solve this problem, a modification 
of VSC with a saturation function has been proposed to 
reduce the control chattering:  

T T
s 2 2

vs T T
s 2 2

sgn( ),  

( ),  

k
u

k





  
 

 

 

B P E B P E

B P E B P E
           (52) 

 
Remark 2: The proposed approach can be applied 

to affine systems and avoid the controller singularity 
issue. 
 
4 Simulation results 
 

Two case studies are given to demonstrate the 
effectiveness of the proposed control method. The first 
simulation is nonlinear non-affine system and the second 
is affine system. 
 
4.1 Example 1 

Consider the following non-affine SISO nonlinear 
system [17]:  

1 2

21
2 2 1 2 2

1

1

1 exp( )
( 2 )sin (1 0.5sin )

1 exp( )

       0.4sin ( , )

x x

x
x x x x x u

x

u d t

y x


          
 







X

 

(53)  
where 1( , ) 0.5sin( 5 ),d t x t X 1y x and y =x2. 

The desired trajectory is d ( ) sin sin(0.5 ).y t t t   
According to the design procedures in Section 3, the 
design parameters are selected as ks=1, γf=0.2, γg=0.3 and 
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φ=0.001. 
The feedback and observer gain matrices are given 

by  
T[100 20] , T

0 [30 200]K  
 
Besides, the positive-definite matrices Q1 and Q2 

are chosen as  

1

1 0
,

0 1

 
  
 

Q  2

10 0

0 10

 
  
 

Q  

 
The simulations are carried out with initial 

conditions T
0 [ 0.2,  0.1] , X and T

0 [0.1,  0.1] .E  
The simulation results are shown in Figs. 1 and 2. 
Figure 1 shows the tracking responses of system 

outputs and reference signals, control inputs and tracking 
errors with Theorem 1. Figure 2 shows the tracking 
responses of system outputs, control input and tracking 
 

 
Fig. 1 Simulation results with Theorem 1 in Example 1:     

(a) Output of system; (b) Input of system; (c) Tracking error 

 

 
Fig. 2 Simulation results with Theorem 2 in Example 1:     

(a) Output of system; (b) Input of system; (c) Tracking error 
 
errors with Theorem 2. 

From Figs. 1 and 2, it is shown that the proposed 
scheme is a good method to improve the tracking error 
and the control performance of the uncertain nonlinear 
non-affine systems. 
 
4.2 Example 2 

Consider a inverted pendulum system. The dynamic 
equations of such system are given by [6, 16]  

1 2

1 2 1 1
2 2

1

1
2

1

sin ( sin cos ) /( )

[4 / 3 cos /( )]

cos /( )
       

[4 / 3 cos /( )]

x x

g x mLx x x m M
x

L m x m M

x m M
u d

L m x m M

 
  

 
  


   




    (54) 
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where x1=θ and 2x    are the angular position and 
velocity of the pole, respectively. g=9.8 m/s2 denotes the 
acceleration due to gravity. M=1 kg and m=0.1 kg are the 
masses of cart and the mass of pole, respectively. L=  
0.5 m is the half length of pole and d is the external 
disturbance. The desired trajectory is d ( ) sin .y t t  The 
disturbance is 1 sin(π / 2).d t  The controller 
parameters are chosen as ks=2, φ=0.001, γf=0.1 and 
γg=0.2. The feedback and observer gain matrices, and 
matrices Q1 and Q2 are chosen as the same as the first 
example. The initial conditions are chosen as zeros. The 
simulation results of the inverted pendulum system are 
shown in Figs. 3 and 4. 

 

 
Fig. 3 Simulation results with Theorem 1 in Example 2:     

(a) Output of system; (b) Input of system; (c) Tracking error 

 

 
Fig. 4 Simulation results with Theorem 2 in Example 2:     

(a) Output of system; (b) Input of system; (c) Tracking error 

 
Figures 3 and 4 show that the desired performance 

is successfully achieved by the designed robust adaptive 
controller. 
 
5 Conclusions 
 

The robust adaptive control is proposed for a class 
of the uncertain non-affine nonlinear SISO systems. The 
neural state feedback compensator is employed to 
approximate the unknown nonlinear function. The 
adaptive laws of the neural networks and robust 
controller are derived based on the stability of the closed 
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loop error dynamics. The mean value theorem is used to 
transform non-affine nonlinear system into affine 
nonlinear system, and the state observer is employed to 
estimate unmeasured states. Furthermore, the singularity 
problem of the proposed approach is avoided, and this 
approach can also be applied to affine systems. Finally, 
two simulation examples are applied to nonlinear 
systems. Simulation results confirm the effectiveness of 
the proposed control method for non-affine systems and 
affine systems. 
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