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Abstract: The main objective of this work is to investigate analytically the steady nanofluid flow and heat transfer characteristics 
between nonparallel plane walls. Using appropriate transformations for the velocity and temperature, the basic nonlinear partial 
differential equations are reduced to the ordinary differential equations. Then, these equations have been solved analytically and 
numerically for some values of the governing parameters, Reynolds number, Re, channel half angle, α, Prandtl number, Pr, and 
Eckert number, Ec, using Adomian decomposition method and the Runge-Kutta method with mathematic package. Analytical and 
numerical results are searched for the skin friction coefficient, Nusselt number and the velocity and temperature profiles. It is found 
on one hand that the Nusselt number increases as Eckert number or channel half-angle increases, but it decreases as Reynolds 
number increases. On the other hand, it is also found that the presence of Cu nanoparticles in a water base fluid enhances heat 
transfer between nonparallel plane walls and in consequence the Nusselt number increases with the increase of nanoparticles volume 
fraction. Finally, an excellent agreement between analytical results and those obtained by numerical Runge-Kutta method is highly 
noticed. 
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1 Introduction 
 

The steady two-dimensional flow of an 
incompressible, viscous fluid between nonparallel plane 
walls separated by an angle 2α driven by a line source or 
sink provides one of the few exact solutions of the 
Navier-Stokes equations. The nonlinear governing 
equation of this flow was given by JEFFERY [1] and 
independently by HAMEL [2]. Thereafter, several 
contributions were undertaken by many researchers in 
order to solve the nonlinear problem of Jeffery-Hamel 
flow. The study done by ROSENHEAD [3] gives the 
solution in terms of Jacobian elliptic functions. The exact 
solution of the energy equation governing thermal 
distributions between nonparallel plane walls was 
explored by MILLSAPS and POHLHAUSEN [4]. They 
calculated temperature profiles only due to dissipation. 
FRAENKEL [5] studied laminar flow in symmetrical 
channels with slightly curved walls. This study gives the 
solution of the velocity profile as a power series. 
SHEIKHOLESLAMI et al [6] studied the effects of 
magnetic field and nanoparticles on the Jeffery-Hamel 
flow using Adomian decomposition method. Their 
results show an excellent agreement with those of 

numerical Runge-Kutta method. HATAMI et al [7] used 
different analytical methods for solving the equation 
governing the magneto-hydrodynamic (MHD) Jeffery- 
Hamel nanofluid flow. They found that the last square 
method (LSM) is more accurate in obtaining the solution 
of the studied problem. The research done by ELLAHI  
et al [8] gives a theoretical study dealing with the effects 
of magnetohydrodynamic on the peristaltic flow of 
Jeffery fluid in a rectangular duct through a porous 
medium. They solved analytically the governing 
equations of the studied problem, and, demonstrated that 
their results are in excellent agreement with those 
reported in literature. According to Refs. [9–11], many 
researchers also discussed the nonlinear problem of 
Jeffery-Hamel flow. 

Nowadays, it is well established that the nanofluids 
are considered as a highly efficient class of heat transfer 
fluids. This novel category of fluids is generated by 
dispersing ultrafine particles (less than 100 nm) like Cu, 
CuO, Al2O3 and SiC in a conventional base fluid such as 
water, ethylene glycol and engine oil. The first use of 
nanofluid term is given by CHOI [12]. Since then, there 
has been an increasing interest in the analysis of 
nanofluids. We can easily find a wide number of 
experimental and theoretical studies dealing with 
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nanofluids. Experimentally, a particular attention was 
dedicated to the measurement of thermal conductivity for 
different nanofluids [13–16]. In fact, researchers found 
that the nanofluids exhibit significantly higher thermal 
conductivities than base fluids. On the other hand, 
nanofluids were widely used as heat transfer fluids in 
many configurations, especially in heat exchangers. With 
this intent, PAK and CHO [17] studied turbulent friction 
and heat transfer characteristics of several nanofluids in a 
circular pipe. XUAN and LI [18] undertook an 
experimental study on an original test rig. They 
investigated flow performance and convective heat 
transfer of Cu-water nanofluid for turbulent flow in a 
circular pipe. HE et al [19] also studied experimentally 
nanofluid flow and heat transfer characteristics through a 
straight vertical pipe for both laminar and turbulent flow. 
The convective heat transfer behaviour of nanofluid flow 
through horizontal tube heated by a constant heat flux 
was studied by TORII and YANG [20]. 

Theoretically, the effect of nanoparticles on    
heat transfer characteristics was studied. 
SHEIKHOLESLAMI and GANJI [21] investigated 
analytically, by homotopy perturbation method, heat 
transfer of Cu-water nanofluid flow between parallel 
plates. They found that their results are in excellent 
agreement when being compared with other numerical 
methods. KHANAFER et al [22] in their numerical 
investigation showed that nanoparticles enhanced 
significantly heat transfer rate at any given Grashof 
number. KUZNETSOV and NIELD [23] also studied 
natural convection of nanofluids flow past a vertical 
semi-infinite plate. SHEIKHOLESLAMI [24] used the 
KKL correlation for simulation of nanofluid flow and 
heat transfer in a permeable channel. The obtained 
results showed that the heat transfer enhancement is 
mainly related to the Reynolds number when power law 
index is equal to zero. Ferrofluid flow and heat transfer 
under the effect of spatially variable magnetic field were 
also investigated by SHEIKHOLESLAMI [25]. In fact, 
this study uses the control volume based finite element 
method (CVFEM) to investigate the effects of active 
parameters. The problem of nanofluid flow and heat 
transfer between parallel plates considering Brownian 
motion in the presence of variable magnetic field were 
studied analytically by SHEIKHOLESLAMI and GANJI 
[26] using differential transformation method. Their 
results showed on one hand that skin friction coefficient 
increases with an increase of squeeze number and 
Hartmann number, while it decreases as nanoparticle 
volume fraction increases. On the other hand, obtained 
results also demonstrated that Nusselt number is an 
increasing function of nanoparticle volume fraction and 
Hartmann number, but it is a decreasing function of the 
squeeze number. The magnetohydrodynamic free 

convection flow of CuO-water nanofluid in a square 
enclosure with a rectangular heated body was 
investigated numerically by SHEIKHOLESLAMI and 
GANJI [27] using lattice Boltzmann method. In fact, this 
investigation examines the effects of active parameters 
on the flow, heat transfer and the entropy generation, and, 
the results reveal that the heat transfer rate and the 
entropy generation number increase with increase of 
nanoparticle volume fraction and the Reynolds number; 
however, they are decreasing functions of Hartmann 
number. SHEIKHOLESLAMI and GANJI [28] also 
studied ferrofluid flow and heat transfer under the effect 
of an external magnetic field in a semi annulus enclosure 
with sinusoidal hot wall using control volume based 
finite element method (CVFEM). They investigated the 
effects of Rayleigh number, nanoparticle volume fraction, 
Magnetic number and Hartmann number on flow and 
heat transfer characteristics. 

In recent years, several methods were developed in 
order to solve analytically the nonlinear initial or 
boundary value problem, such as the homotopy method 
[29–30], the variational iteration method [31–32] and the 
Adomian decomposition method [33]. These methods 
have been successfully applied for solving mathematical 
and physical problems [34–36]. On the other hand, many 
authors [37–40] have used these new approximate 
analytical techniques to investigate the nonlinear 
problem of Jeffery-Hamel flow. 

In this work, the solution of steady two-dimensional 
flow of Cu-water nanofluid between nonparallel plane 
walls is presented. The resulting nonlinear ordinary 
differential equations governing velocity and heat 
transfer are solved analytically by an efficient technique 
of computation, called Adomian decomposition method 
and the obtained results are compared to the numerical 
Runge-Kutta solution. The principal aim of this work is 
to find approximate analytical solution of Jeffery-Hamel 
flow of Cu-water nanofluid in convergent and divergent 
channels. 
 
2 Problem statement and governing 

equations 
 

In this work, steady nanofluid flow and heat transfer 
between nonparallel plates are investigated analytically 
using the Adomian decomposition method. The geometry 
configuration of the Jeffery-Hamel flow of nanofluids is 
given in Fig. 1. In fact, the considered flow is uniform 
along z-direction and we assume purely radial motion, 
i.e., for velocity components we can write Vr=V(r, θ); 
Vθ=Vz=0. 

In vector form, the continuity equation, Navier- 
Stokes equation and energy equation for Jeffery-Hamel 
flow of nanofluids are expressed as 
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Fig. 1 Geometry of Jeffery-Hamel nanofluid flow 
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where V is the velocity vector, T is the temperature, ρnf is 
the effective nanofluid density, vnf is the effective 
kinematic viscosity of nanofluid, P is fluid pressure, 
(cp)nf is the effective specific heat of nanofluid at 
constant pressure and Knf is the effective nanofluid 
thermal conductivity. 

The term φ on the right-hand side of Eq. (3) is the 
viscous dissipation term and is given by  

]22[ 222
uf θθθ εεεµφ rrr ++=                       (4) 

 
The components of the strain tensor are given as  
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In cylindrical coordinates (r, θ, z), the reduced 

forms of continuity, Navier-Stokes and energy equations 
are given by 
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The effective density ρnf, the effective dynamic 

viscosity μnf, the effective heat capacity (ρ·cp)nf and the 
effective thermal conductivity Knf of the nanofluid are 
given as  
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where ψ is the volume fraction of nanoparticles, the 
subscript “f ” denotes the base fluid and “s” the solid 
nanoparticles. 

Now, introduce the following parameters:  
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where TW is the constant wall temperature, and uc is the 
rate of movement in the radial direction (uc=r·Vmax). 

And eliminating the pressure term between Eq. (7) 
and Eq. (8), we obtain 
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The Reynolds, Prandtl and Eckert numbers of the 
Jeffery-Hamel flow of nanofluids are introduced as  
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The boundary conditions of the nanofluid flow and 

heat transfer between nonparallel plates in terms of F(η) 
and G(η) are expressed as follows: 

At the centerline of channel:  
F(0)=1, F′(0)=0, G′(0)=0                      (17)  

At the body of channel: 
F(1)=0, G(1)=1                              (18) 
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Based on the wall shear stress =wτ  
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On the other hand, Nusselt number is expressed as 
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By using the dimensionless parameters Eq. (11), 
Eqs. (19) and (20) become  
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3 Basic idea of Adomian decomposition 

method 
 

Consider the differential equation:  
)(tgNuRuLu =++                          (23) 

 
where N is a nonlinear operator, L is the highest ordered 
derivative and R represents the remainder of linear 
operator L. 

By considering L–1 as an n-fold integration for an 
nth order of L, the principles of method consists of 
applying the operator L–1 to the expression (23). Indeed, 
we obtain 
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The solution of Eq. (24) is given by  
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where φ is determined from the boundary or initial 
conditions. 

For the standard Adomian decomposition method, 
the solution u can be determined as the infinite series 
with the components given by 
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By substituting the given series Eqs. (28), (29) into 
both sides of Eq. (27), we obtain the following 
expressions: 
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According to Eq. (29), the recursive expression 

which defines the ADM components un is given as 
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Finally, after some iterations, the solution of the 

studied equation can be given as an infinite series by 
 
u=u0+ u1+ u2+ u3+…+ un                       (31)  

The main advantage of this powerful analytical 
technique is to obtain the solution of nonlinear problems 
as a fast convergent series with elegantly computable 
terms and does not need linearization, discretization or 
restrictive assumptions. 
 
4 Application of ADM to Jeffery-Hamel 

problem of nanofluid 
 

In this section, we will apply the Adomian 
decomposition method to ordinary nonlinear differential 
equations (12) and (13) governing velocity and heat 
transfer of nanofluid flow between nonparallel plane 
walls. In fact, to solve the studied problem using ADM, 
we choose linear operators as the following expressions: 
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On the other hand, by applying the boundary 

conditions, we have 
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For the above problem, by applying the recursive 
formula (30) of ADM, the terms of Adomian 
polynomials are expressed as  
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Therefore, the first iterations of solutions are 
expressed as follows:  
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Finally, the approximate solution for nanofluid flow 

and heat transfer in Jeffery-Hamel problem could be 
expressed as  
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According to Eqs. (56) and (57), it is worth noting 
that the accuracy of ADM solutions increases by 
increasing the number of iterations term (n). On the other 
hand, the constants a and b could be determined with 
boundary conditions Eqs. (17) and (18). 
 
5 Results and discussion 
 

In this work, nanofluid flow and heat transfer 
between inclined walls are studied analytically. An 
efficient technique of computation, namely the Adomian 
decomposition method, is employed to solve the 
governing equations. The thermophysical properties of 
Cu-water nanofluid are given in Table 1. 
 
Table 1 Thermophysical properties of Cu-water nanofluid 

Material ρ/(kg·m–3) cp/(J·kg–1·K–1) K/(W·m–1·K–1) 

Water 997.1 4179 0.613 

Cu 8933 385 401 

 
Effect of Reynolds number, Re, on the velocity 

profile for convergent flow is depicted in Fig. 2. Indeed, 
increasing Reynolds number leads, on one hand, to a 
flatter profile at the centre of channel with high gradients 
near the walls, and on the other hand, to decreased 
thickness of the momentum boundary layer. We notice 
also that the velocity profiles are symmetric against η=0 
and the symmetric convergent flow is possible for an 
opening angle, 2α, not exceeding π. It is also clear for 
convergent channel that the backflow is entirely 
excluded. On the other hand, the effect of Reynolds 
number on divergent flow (Fig. 3) is to concentrate the 
volume flux at the centre of channel with smaller 
gradients near the walls and consequently the thickness 
of momentum boundary layer increases. For purely 
divergent channel, the symmetric flow is not possible for 
an opening angle, 2α, unless Reynolds number does not 
exceed a critical value. Above this critical value, the 
separation and backflow phenomena are started. 

Figures 4–5 show the effect of channel half-angle, α, 
on the velocity profiles in convergent and divergent 

 

 
Fig. 2 Effect of Reynolds number, Re, on velocity profile in 
converging channel 
 

 
Fig. 3 Effect of Reynolds number, Re, on velocity profile in 
diverging channel 
 

 
Fig. 4 Effect of channel half-angle, α, on velocity profile in 
converging channel 
 
channels. It is found that the behaviour of velocity is 
predicted to be similar to that observed in Figs. 2–3. 
Indeed, in converging channel (Fig. 4), we can see that 
the increase of α leads to an increase of favourable 
pressure gradient, while in diverging channel (Fig. 5), we 
can clearly observe that, with increasing of α, the 
backflow phenomenon is started when the adverse 
pressure gradient is large enough. 
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Fig. 5 Effect of channel half-angle, α, on velocity profile in 
diverging channel 
 

Effect of copper nanoparticles on the velocity 
profiles for a convergent-divergent channel (when 
Re=200 and α=±3°) is displayed in Figs. 6 and 7, 
respectively. In fact, Fig. 6 reveals that the velocity in 
convergent channel increases when nanoparticle volume 
fraction increases; however, in the case of divergent 
channel (Fig. 7), it appears that the velocity is a 
decreasing function of nanoparticle volume fraction. It  
 

 
Fig. 6 Effect of nanoparticle volume fraction, ψ, on velocity 
profile in converging channel 
 

 
Fig. 7 Effect of nanoparticle volume fraction, ψ, on velocity 
profile in diverging channel 

can be clearly seen that the backflow phenomenon may 
occur for high values of Reynolds number when the 
volume fraction of the nanoparticle increases. 

Effects of Reynolds number, Re, nanoparticle 
volume fraction, ψ, the channel half-angle, α, and Eckert 
number, Ec, on the evolution of skin friction, Nusselt 
number and the temperature profiles are displayed in 
Figs. 8–20. 

Effects of Reynolds number and the channel 
half-angle (when Pr=7, Ec=0.6 and ψ=0.1) for a  
 

 
Fig. 8 Effect of Reynolds number, Re, on temperature 
distribution in converging channel 
 

 
Fig. 9 Effect of channel half-angle, α, on temperature 
distribution in converging channel 
 

 
Fig. 10 Effect of Reynolds number, Re, on temperature 
distribution in diverging channel 
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Fig. 11 Effect of channel half-angle, α, on temperature 
distribution in diverging channel 
 

 
Fig. 12 Effect of nanoparticle volume fraction, ψ, on 
temperature distribution in converging channel 
 

 
Fig. 13 Effect of nanoparticle volume fraction, ψ, on 
temperature distribution in diverging channel 
 
convergent and divergent channel, are depicted in   
Figs. 8–11. It can be seen for convergent channel (Figs. 8 
and 9) that the thermal boundary layer thickness is 
decreased as the magnitude of Reynolds number Re 
increases; while the thermal boundary layer thickness is 
an increasing function of the channel half-angle, α. On 
the other hand, as depicted in Figs. 10 and 11 for the case 
of a divergent channel (when α=3°, Pr=7 and Ec=0.6), it 
is well seen that increase of both of the Reynolds number 

 

 
Fig. 14 Effects of Reynolds number, Re, and nanoparticle 
volume fraction, ψ, on skin friction coefficient 
 

 
Fig. 15 Effects of Reynolds number, Re, and nanoparticle 
volume fraction, ψ, on Nusselt number 
 

 
Fig. 16 Effects of Eckert number, Ec, and nanoparticle volume 
fraction, ψ, on Nusselt number 
 
and the channel half-angle makes an increase in the 
thickness of thermal boundary layer. 

Effect of nanoparticle volume fraction on 
temperature profiles is depicted in Figs. 12 and 13. It is 
well known that the presence of nanoparticles leads to 
increased thermal conductivity of the nanofluids. This 
increase is mainly accompanied by an increase in 
thermal diffusivity and consequently a drop in 
temperature gradients occurs, which leads to increase in  
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Fig. 17 Effects of channel half-angle, α, and nanoparticle 
volume fraction, ψ, on Nusselt number 
 

 
Fig. 18 Effects of Reynolds number, Re, and nanoparticle 
volume fraction, ψ, on enhancement heat transfer 
 

 
Fig. 19 Effects of Eckert number, Ec, and nanoparticle volume 
fraction, ψ, on enhancement heat transfer 
 
the thickness of thermal boundary layer for both 
convergent and divergent channels. 

Effects of Reynolds number, Re, and volume 
fraction of nanofluid, ψ, on skin friction coefficient are 
drawn in Fig. 14. In fact, results show that the magnitude 
of skin friction decreases with the increase of both of the 
Reynolds number and the nanofluid volume fraction. On 
the other hand, it can be clearly seen that the backflow 
starts with apparition of negative values of skin friction 

 

 
Fig. 20 Effects of channel half-angle, α, and nanoparticle 
volume fraction, ψ, on enhancement heat transfer 
 
coefficient. 

Figure 15 displays the effect of Reynolds number 
on Nusselt number. As shown above (Fig. 10), increased 
Reynolds number leads to the increase of thermal 
boundary layer thickness; therefore, Nusselt number 
appears as a decreasing function of Reynolds number, Re. 
The behaviour of Nusselt number, Nu, versus Eckert 
number, Ec, is quite different. Indeed, as shown in    
Fig. 16, we notice an increase in magnitude of Nusselt 
number with increase of Eckert number. This can be 
explained by the presence of viscous dissipation, which 
leads to an increase in magnitude of temperature, and, 
consequently the increase in Nusselt number is observed. 
Figure 17 depicts the effect of channel half-angle on 
Nusselt number. It can be seen that increasing the 
channel half-angle causes an increase in thermal 
boundary layer thickness (see Fig. 11) and consequently 
leads to an increase in Nusselt number. 

It is also well known that Nusselt number is the 
ratio of convective to conductive heat transfer. On the 
other hand, convection includes both advection and 
diffusion. As mentioned above, a higher diffusivity leads 
to an increase in the thickness of thermal boundary layer. 
This increase can considerably reduce Nusselt number, 
however, as given in Eq. (22), Nusselt number is defined 
as a multiplication of thermal conductivity ratio (Knf/Kf) 
and the temperature gradient. According to Figs. 15–17, 
an increase in Nusselt number is observed by increasing 
volume fraction of copper nanoparticles. In fact, with the 
presence of copper nanoparticles in a water base fluid, 
thermal conductivity ratio is bigger than reduction in 
temperature gradient and consequently an enhancement 
in Nusselt number is produced with increase of 
nanoparticle volume fraction. 

Heat transfer enhancement due to the presence of 
copper nanoparticles is evaluated and results are reported 
in Figs. 18–20. In fact, this enhancement is calculated as 
follows: 



J. Cent. South Univ. (2016) 23: 484−496 

 

493 

 

100
fluid) (base

fluid) (base)(nanofluid ×
−

=
Nu

NuNu
e  

 
The enhancement evolution versus nanoparticle 

volume fraction, ψ, for different values of Reynolds 
number, Re, and Eckert number, Ec, is displayed in  
Figs. 18 and 19. Indeed, it is noticed that the 
enhancement increases with the increase of Reynolds 
number and Eckert number; however, it decreases with 
increase of the channel half-angle, α, as shown in    
Fig. 20. 

In comparison of ADM solution with numerical 
results, it is found that results are similar to each other, 
which justifies and confirms validity, applicability and 
the higher accuracy of Adomian decomposition method. 

Tables 2–5 show numerical data of velocity and 
temperature distributions for a convergent and divergent 
channel when Re=50, α=±3°, Pr=7, Ec=0.6 and ψ=0.03. 
On the other hand, Tables 6–9 also give numerical data 
of velocity and temperature distributions when Re=100, 
α=±5°, Pr=7, Ec=0.6 and ψ=0.01. In these tables, the 
errors are introduced as follows: 

 
ADMNum1 )()( ηη FFE −=  

 
ADMNum2 )()( ηη GGE −=  

 
Finally, according to the obtained results depicted in 

Tables 2–9, an excellent agreement between numerical 
Runge-Kutta method and Adomian decomposition 
method is clearly observed. 

 
Table 2 Comparison between numerical and analytical results for velocity distribution in converging channel (Re=50, α=–3° and 
ψ=3%) 

η Numerical ADM E1 
–1 

–0.75 
–0.5 

–0.25 
0 

0.25 
0.5 

0.75 
1 

0.00000000000 
0.9568619246104294 
0.8114573769442529 
0.5158279952776336 

1.00000000000 
0.5158279952776336 
0.8114573769442529 
0.9568619246104294 

0.00000000000 

0.00000000000 
0.9568615908529563 
0.8114559074862294 
0.5158243637441324 

1.00000000000 
0.5158243637441324 
0.8114559074862294 
0.9568615908529563 

0.00000000000 

0.00000000000 
3.337574731032688×10–7 

0.000001469458023484193 
0.000003631533501136097 

0.00000000000 
0.000003631533501136097 
0.000001469458023484193 
3.337574731032688×10–7 

0.00000000000 
 
Table 3 Comparison between numerical and analytical results for velocity distribution in diverging channel (Re=50, α=3° and ψ=3%)  

η Numerical ADM E1 
–1 

–0.75 
–0.5 

–0.25 
0 

0.25 
0.5 
0.75 

1 

0.00000000000 
0.34617891945024026 
0.6693201741166637 
0.9097653427408956 

1.00000000000 
0.9097653427408956 
0.6693201741166637 

0.34617891627424824 
0.00000000000 

0.00000000000 
0.34619249466793467 

0.669327237913685 
0.9097672581403088 

1.00000000000 
0.9097672581403088 
0.669327237913685 

0.34619249466793467 
0.00000000000 

0.00000000000 
0.000013575217694440595 
0.000007063797021311657 
0.00000191539941318819 

0.00000000000 
0.00000191539941318819 
0.000007063797021311657 
0.000013578393686430879 

0.00000000000 
 
Table 4 Comparison between numerical and analytical results for thermal distribution in converging channel (Re=50, α=–3° and 
ψ=3%) 

η Numerical ADM E2 
–1 

–0.75 
–0.5 

–0.25 
0 

1.00000000000 
1.0226755380341845 
1.0311432179608124 
1.034488616758601 
1.0354237076304937 

1.00000000000 
1.02267456214785 
1.031142143045987 
1.034487498214572 
1.035424987231457 

0.00000000000 
9.75886334630971×10–7 

0.000001074914825371919 
0.00000111854402895517 

0.000001279600963188798 
0.25 
0.5 

0.75 
1 

1.034488616758601 
1.0311432179608124 
1.0226755380341845 

1.00000000000 

1.034487498214572 
1.031142143045987 
1.02267456214785 

1.00000000000 

0.00000111854402895517 
0.000001074914825371919 

9.75886334630971×10–7 
0.00000000000 
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Table 5 Comparison between numerical and analytical results for thermal distribution in diverging channel (Re=50, α=3° and ψ=3%) 

η Numerical ADM E2 

–1 
–0.75 
–0.5 

–0.25 
0 

0.25 
0.5 

0.75 
1 

1.00000000000 
1.0227929743872683 
1.036453755744072 

1.0420667601778564 
1.0432060494431412 
1.0420667601778564 
1.036453755744072 

1.0227929743872683 
1.00000000000 

1.00000000000 
1.0227918020580276 
1.0364514226254804 
1.0420640611590504 
1.0432033195693209 
1.0420640611590504 
1.0364514226254804 
1.0227918020580276 

1.00000000000 

0.00000000000 
0.000001172329240795022 
0.000002333118591657523 
0.000002699018806007203 
0.000002729873820328521 
0.000002699018806007203 
0.000002333118591657523 
0.000001172329240795022 

0.00000000000 

 
Table 6 Comparison between numerical and analytical results for velocity distribution in converging channel (Re=100, α=–5° and 
ψ=1%) 

η Numerical ADM E1 

–1 
–0.75 
–0.5 

0.00000000000 
0.680935867130178 
0.9153966003670116 

0.00000000000 
0.680935597321428 
0.9153963132569125 

0.00000000000 
2.69808749897570×10–7 
2.871101016932442×10–7 

–0.25 
0 

0.25 
0.5 
0.75 

1 

0.9851250287096571 
1.00000000000 

0.9851250287096571 
0.9153966003670116 
0.680935867130178 

0.00000000000 

0.9851254012398745 
1.00000000000 

0.9851254012398745 
0.9153963132569125 
0.680935597321428 

0.00000000000 

3.725302173407385×10–7 
0.00000000000 

3.725302173407385×10–7 
2.871101016932442×10–7 
2.69808749897570×10–7 

0.00000000000 

 
Table 7 Comparison between numerical and analytical results for velocity distribution in diverging channel (Re=100, α=5° and 
ψ=1%) 

η Numerical ADM E1 

–1 
–0.75 
–0.5 

–0.25 
0 

0.25 
0.5 
0.75 

1 

0.00000000000 
0.05086374496916339 
0.3449786943001594 
0.7740537080551285 

1.000000000 
0.7740537080551285 
0.3449786943001594 

0.05086374496916339 
0.00000000000 

0.00000000000 
0.0508629832146875 
0.3449774518351627 
0.7740548514236578 

1.000000000 
0.7740548514236578 
0.3449774518351627 
0.0508629832146875 

0.00000000000 

0.00000000000 
7.617544758933836×10–7 

0.000001242464996720205 
0.000001143368529299415 

0.000000000 
0.000001143368529299415 
0.000001242464996720205 
7.617544758933836×10–7 

0.00000000000 

 
Table 8 Comparison between numerical and analytical results for thermal distribution in converging channel (Re=100, α=–5° and 
ψ=1%) 

η Numerical ADM E2 

–1 
–0.75 
–0.5 

–0.25 
0 

0.25 
0.5 

0.75 
1 

1.0000000000 
1.031104207748306 

1.0495480712958662 
1.0604751591699018 
1.0641353188531641 
1.0604751591699018 
1.0495480712958662 
1.031104207748306 

1.0000000000 

1.0000000000 
1.03110313698745 

1.0495452314569875 
1.0604726987453212 
1.0641333456789213 
1.0604726987453212 
1.0495452314569875 

1.03110313698745 
1.0000000000 

0.0000000000 
0.000001070760855981234 
0.000002839838878720968 
0.000002460424580519316 
0.000001973174242886344 
0.000002460424580519316 
0.000002839838878720968 
0.000001070760855981234 

0.0000000000 
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Table 9 Comparison between numerical and analytical results for thermal distribution in diverging channel (Re=100, α=5° and 
ψ=1%) 

η Numerical ADM E2 

–1 
–0.75 
–0.5 

–0.25 
0 

0.25 
0.5 
0.75 

1 

1.0000000000 
1.0276466580371744 
1.0515856680371445 
1.0665953697611374 
1.0707850923679623 
1.0665953697611374 
1.0515856680371445 
1.0276466580371744 

1.0000000000 

1.0000000000 
1.027643265417895 
1.051588213654789 

1.0665936987436522 
1.0707843215864798 
1.0665936987436522 
1.051588213654789 
1.027643265417895 

1.0000000000 

0.0000000000 
0.0000033926192792854 
0.0000025456654444422 
0.0000016710174852718 
7.70781482417604×10–7 
0.0000016710174852718 
0.0000025456654444422 
0.0000033926192792854 

0.0000000000 
 
 
6 Conclusions 
 

1) Increasing Reynolds number of a convergent 
flow leads to a flatter profile at the centerline of channel 
and consequently the thickness of momentum boundary 
layer decreases with the increase of Reynolds number. 

2) Effect of increasing Reynolds number of a 
divergent flow is to concentrate the volume flux at the 
centerline of channel. Consequently, the thickness of 
momentum boundary layer increases with the increase of 
Reynolds number. 

3) The behaviour of velocity under the effect of 
varying channel half-angle, α, is predicted to be similar 
to that observed in the case of varying Reynolds number 
for both convergent and divergent flows. 

4) The backflow phenomenon is entirely excluded 
in a convergent channel; however, this phenomenon may 
occur at high values of the channel half-angle, α, and 
Reynolds number, Re, in a diverging channel. 

5) Skin friction coefficient decreases with the 
increase of both of the Reynolds number and the 
nanoparticles volume fraction. 

6) The magnitude of Nusselt number increases with 
the increase of Eckert number and the channel half-angle; 
however, it decreases with the increase of Reynolds 
number. 

7) The presence of copper nanoparticles in a water 
base fluid enhances significantly the heat transfer 
characteristics. Consequently, the Nusselt number 
increases as nanoparticle volume fraction increases. 

8) An excellent agreement between Adomian 
decomposition method and numerical Runge-Kutta 
method is observed, thus justifying validity, applicability 
and higher accuracy of the used analytical method. 
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