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Abstract: The trajectory tracking control problem for underactuated unmanned surface vehicles (USV) was addressed, and the 
control system took account of the uncertain influences induced by model perturbation, external disturbance, etc. By introducing the 
reference, trajectory was generated by a virtual USV, and the error equation of trajectory tracking for USV was obtained, which 
transformed the tracking problem of underactuated USV into the stabilization problem of the trajectory tracking error equation. A 
backstepping adaptive sliding mode controller was proposed based on backstepping technology and method of dynamic slide model 
control. By means of theoretical analysis, it is proved that the proposed controller ensures that the solutions of closed loop system 
have the ultimate boundedness property. Simulation results are presented to illustrate the effectiveness of the proposed controller. 
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1 Introduction 
 

Over the past decade, the control problem of 
underactuated unmanned surface vehicle (USV) has 
attracted a great deal of attentions [1−5]. The major 
solutions of tracking problem for underactuated USV are 
the methods of Lyapunov’s direct method, backstepping 
technique, sliding mode control, feedback linearization, 
robust control, switching control, etc. [4]. Some scholars 
used the method of feedback linearization [6], but the 
inversion of dynamical equation must meet a strict 
limited condition while its application has been so 
limited that it cannot ensure the stability of zero 
dynamics. On the contrary, the Lyapunov’s direct method 
does not have limitations of the above methods [7−8]. 
This method is used to realize the trajectory tracking. 
However, these methods do not take account of the 
strong nonlinearity or even the uncertainties coming 
from the movement of vehicles. REPOULIAS and 
PAPADOPOULOS [9] discussed the trajectory planning 
and tracking problems for underactuated AUV, and 
developed a trajectory-tracking controller by application 
of integral backstepping technique. Furthermore, the 
above-mentioned works have ignored the impact of the 
second damping force and the uncertainties of the model. 

The problem of combined trajectory-tracking and 

path-following for underactuated USV with parametric 
modeling uncertainty was addressed [10]. By combining 
control law of adaptive switching with the control law 
based on nonlinear Lyapunov’s direct method, this work 
solved the global convergence problem about the system 
position error. Simulations validated the effectiveness of 
the proposed controller. On the basis of the previous 
studies, REYHANOGLU and BOMMER [11] proposed 
a trajectory tracking controller by constructing the 
switching feedback controller and making use of 
backstepping technique, which ensured the global 
stability of the system. This controller has an advantage 
of avoiding the singularity problem that may arise in the 
process of coordinate transformation made by USV 
second-order kinetic equation. 

Aiming at the difficulty of the trajectory tracking 
for underactuated USV, a trajectory tracking controller 
was developed by using sliding mode control theory in 
Ref. [12]. The twin-propeller was used for a small USV 
to carry on an tank experiment, and the result showed 
that the USV could track a straight line and circular 
trajectory. For avoiding the restrictions that conventional 
sliding mode controller only tracks the initial state on the 
desired trajectory, SOLTAN et al [13] proposed a 
trajectory tracking controller based on the sliding mode 
control and ordinary differential equations (ODE)method. 
Simulation results showed that the underactuated USV at 
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different initial states was able to track the desired 
trajectory. However, these methods only solve the 
position tracking problem because the orientation of 
USV is uncontrolled under them proposed controller. 
LIAO et al [4] proposed a trajectory tracking controller 
via backstepping technique and Lyapunov’s direct 
method, and system have the ultimate boundedness 
property. However, none of these papers take account of 
the system dynamic uncertainties. 

Considering the trajectory tracking problem for 
underactuated USV with uncertain influences and the 
limitations of the above thesis. The trajectory tracking 
error equation of underactuated USV was obtained based 
on Ref. [4]. Aiming at the control problem of this error 
equation, a backstepping adaptive dynamic sliding mode 
controller was developed by combining backstepping 
technique and dynamic sliding mode control method. 
Proposed controller guarantees that trajectory tracking 
errors are ultimately bounded via Lyapunov analysis. 
Moreover, contrastive simulation results show that the 
proposed controller have good control performance and 
robustness. 
 
2 Problem formulation 
 

The motion model of a class of underactuated USV 
is shown in Fig. 1. Clearly, the only control inputs of the 
vehicle are the thrust force Fu and yaw torque Tr. 
Considering the impact of the nonlinear damping in 
mathematical model is included to cover the applications 
from low speed to high speed. Thus, the mathematical 
model of an underactuated USV moving in a horizontal 
plane is described as [4, 13] 
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where x, y and ψ denote the position and orientation of 
USV in the earth-fixed frame ({E}-frame); and u, υ and r 
are the surge, sway and yaw velocities in the body-fixed 
frame ({B}-frame), respectively. The parameters m11, m22 
and m33 are given by vehicle inertial mass and additional 
mass effects; , , , ,  and u r u u r rX Y N X Y Nυ υυ  denote the 
linear and nonlinear hydrodynamic dampings, 
respectively. The unknown parameters du, dυ and dr 
denote respectively the surge, sway and yaw external 

disturbances caused by model perturbation, measuring 
noise, marine environmental disturbance, which satisfy 
the bounded and slow conditions: , ,u ud d d dυ υ≤ ≤  

r rd d≤  and 0, 0, 0.u rd d dυ= = =    
 

 
Fig. 1 Planar motion model of underactuated USV 
 

Generally, in order to deal with the trajectory 
tracking control problems, the trajectory tracking control 
law was proposed to drive the vehicle sail along the 
pre-specified feasible trajectory. This trajectory specifies 
the expectational position and orientation of the vehicle 
in every moment, and it has to meet the dynamic 
equations of the vehicle. REPOULIAS and 
PAPADOPOULOS [9] developed a trajectory planning 
method via the dynamic equation of underactuated AUV, 
which can also be applied to the USV. This method can 
provide the reference speed in body-fixed frame based 
on underactuated USV nominal kinetic equation. 
Moreover, if the mathematical model of USV motion 
does not have any uncertainty or its uncertainty is small, 
this planning approach will be very effective. However, 
if the mathematical model has large uncertainties, the 
reference speed and heading angle via the nominal 
kinetic equation are different from those of the real USV 
dynamics equation, then this planning approach will be 
invalid [4]. Based on the above methods, in order to 
simplify the reference kinetic equation, a simplified 
planning method is developed by neglecting the 
influence of the sway velocity [15]. However, if the 
curvature of reference trajectory is truly large, sway 
velocity should not be ignored. Therefore, this planning 
method cannot be applied to the trajectory tracking 
problems with large curvature. 

LIAO et al [4] proposed a planning method 
combines the advantage of the above two methods. 
Namely, for desired trajectory (xd, yd, ψd), the surge and 
yaw reference velocities ud, rd are given by the kinematic 
equations, which avoid the uncertain influences of the 
kinetic equation. However, the sway velocity υd is given 
based on virtual USV, which considers the impact of the 
USV dynamics. Motivated by Refs. [4, 8], the reference 
trajectory is generated by a virtual USV as 
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where all variables of Eq. (2) have the same meaning as 
in Eq. (1). Moreover, considering the following 
assumptions [8]: 

Assumption 1: The reference velocities ud, rd are 
bounded and differentiable with bounded derivatives 

d d d d, , , .u u r r     
Assumption 2: The reference velocities ud, rd meet 

one of the following conditions: 
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Condition C1 denotes the tracking problem of 

circular path. Condition C2 covers the tracking problem 
of straight-line or way-point. The position and 
orientation errors are defined as x−xd, y−yd, ψ−ψd in the 
{E}-frame, we have  
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Apparently, the convergence of (xe, ye, ψe) to the 

zero can ensures convergence of x−xd, y−yd, ψ−ψd. The 
velocity tracking errors are defined as ue=u−ud, υe=υ−υd, 
re=r−rd in the {B}-frame. Differentiating both sides of 
Eq. (3) along solutions of Eqs. (1) and (2), and 
substituting Eqs. (1) and (2) into it. Then, the trajectory 
tracking error equation of underactuated USV is obtained 
as  
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   (4) 

It is obvious that the tacking problem of 
underactuated USV is equivalent to stabilizing Eq. (4), 
which is an uncertain nonlinear system with dual-input 
and three-output. Therefore, the control objective is 
formally expressed as: designing a control law u=(Fu, Tr) 
to ensure that the system tracking error x=(xe, ye, ψe, ue, 
υe, re) can converge to an arbitrarily small neighborhood 
near zero. 
 
3 Controller design 

 
The sliding mode control method has been widely 

used in nonlinear control systems, but it inevitably 
contains the “chattering” problem. However, the 
“chattering” cannot be eliminated since it means the loss 
of the robustness from the variable structure control to 
the model perturbation and external disturbance. 
Therefore, the “chattering” can only be weaken to a 
certain extent for the sliding mode control. As an 
effective way to eliminate chattering, dynamical sliding 
mode control (DSMC) is applied to nonlinear systems 
such as the robots, arms, nuclear power systems, etc. 
[16−18]. 

In recent years, some researchers have already 
applied backstepping technique to the control problem of 
underactuated marine launch systems [19−20]. By the 
introduction of intermediate controller, backstepping 
makes the controller design procedural and systematical. 
It is a very effective method for sliding mode control for 
non-matching uncertainties and non-minimum phase 
systems. 

Therefore, for the controller design problem of the 
Eq. (4), a backstepping adaptive dynamical sliding mode 
controller (BADSMC) is proposed based on 
backstepping technique with adaptive technology and 
DSMC. The proposed controller has good robustness and 
adaptive capacity by combining the advantages of 
backstepping and DSMC. 
 
3.1 Backstepping adaptive dynamic sliding mode 

controller design 
The controller design consists of four steps as 

follows. 
Step 1: Stabilizing subsystem (xe, ye) 
Considering the subsystem (xe, ye), select the virtual 

control inputs as (ue, υe). Define Lyapunov function as 
 

2 2
1 e e( ) / 2V x y= +                              (5) 

 
Differentiating V1 along the solutions of Eq. (4) 

yields  
[ ]1 e d e d e e(cos 1) sinV u u xψ υ ψ= − − − ⋅ +  

[ ]e d e d e e(cos 1) sinu yυ υ ψ ψ− − + ⋅             (6) 
 

The desired control inputs ed ed( , )u υ  are selected 
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where k1 and k2 are positive constants. Substituting    
Eq. (7) into Eq. (6) yields  
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However, (ued, υed) are not the actual control inputs. 

Thus, the error variables are define as  
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Substituting e e ed e e ed,u u u υ υ υ= + = +  into Eq. (6) 

yields  
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Next, the subsystem eu  is discussed. 
Step 2: Stabilizing subsystem eu  
The Lyapunov function is defined as 
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The switching function is selected as  
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The Lyapunov function is defined as 
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The following dynamical sliding mode control law 

γu is designed 
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where wu and ku are positive constants. Substituting   
Eq. (20) into Eq. (19) yields 
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By choosing the adaptive law of uncertainty term du 
as  
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Substituting Eq. (22) into Eq. (21) yields 
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Step 3: Stabilizing subsystem e e( , )υ ψ  
Considering the subsystem e e( , ),υ ψ  the virtual 

control input is defined as re. Define Lyapunov function 
as 
 

2 2
4 3 e e( ) / 2V V υ ψ= + +                         (24) 
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By choosing the desired control input as 
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However, red is not the actual control input. Then, 
the error variable is define as  
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The switching function is selected as 
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The following dynamical sliding mode control law 
γr is designed  

e 33 5 33 33
ˆˆ / ( / / )r r r r r rr P d m k P T m d mγ = − − − − + + −  

e e e( ) sgn( )r r r r r rr P P w S k Sυ υυ υ+ + − −          (39) 
 
where wr, kr are positive constants. Substituting Eq. (39) 
into Eq. (38) yields  

4

2 2
6 5 e 4 e e2r r r r rVV P k r w S k S k Pυ ψ υ δ= − − − − + +
   

e 5 33
ˆˆ( )( ) /r r r rr k S d d d m+ − −

                (40) 
 

By choosing the adaptive law of uncertainty term dr 
as  

e 5
ˆ
r rd r k S= +

                                (41) 
 

Substituting Eq. (41) into Eq. (40) yields  

4

2 2
6 5 e 4 e e

2 2 2 2 2 2 2
1 e 2 e 3 e 4 e 4 e 5 e

2

   

r r r r rV

r

V P k r w S k S k P

k x k y k u k k P k r

υ

υ

ψ υ δ

ψ υ

= − − − − +

= − − − − − − −


 

 
 

2 2
4 e e2u u u u r r r r rw S k S w S k S k Pυ ψ υ δ− − − − +  (42) 

 
The stability analysis of control system is presented 
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as follows. 
 
3.2 Stability analysis 

Considering the worst conditions, we have 
 

2 2 2 2 2 2 2
6 1 e 2 e 3 e 4 e 4 e 5 e( rV k x k y k u k k P k rυψ υ≤ − − − − − − −    

2 2 2 2
4 e e 1 e 2 e 3 e 4 e

max max2 2 2
4 e 5 e 2 d e e e e

2 ) (r

r e

k P k x k y k u k

k P k r k r r x y

υ

υ

ψ υ δ ψ

υ υ υ

+ ≤ − − − − −

− + + + +

 

  
 

max
4 e e e2 )rk Pυ ψ υ ρ υ+                   (43) 

where max| | max(| |),• = •  and ρ is the expressed as  
max max11

e d e
22 22 22

|  
YYm u r

m m m
υυυρ υ υ υ= + + −  

max
max maxmax

d d d d
22

| 2
d

u
m
υυ υ υ+ + + +   

max max max
2 e 2 d 2 d2k k k uυ υ+ +             (44) 

 
In order to deal with the uncertain variables of 

positive and negative symbols in Eq. (43), the Young’s 
inequality is used for algebraic processing. The worst 
cases caused by these uncertain variables are considered 
in the process. By the Young’s inequality, we obtain  

max max 2 2
2 e d e e 2 e d e 1 1 e

2 2
e e e 2 2 e

max max 2 2
4 e e 4 e 3 3 e

( / ) / 2

( / ) / 2

2 ( / )r r

k r r x k r r x

y y

k P k Pυ υ

υ ε ε υ

υ ε ε υ

ψ υ ψ ε ε υ

 + ≤ + +
 ≤ +


≤ +

 

 

 

 

(45)  
where ε1, ε2, ε3 are positive constants. 

According to the above analysis, Eq. (43) is 
refreshed to be  

2 2 2 2 2 2
6 1 e 2 e 3 e 4 e 5 e 6 e eV k x k y k u k k r kψ υ ρ υ≤ − − − − − − +     

  (46)  
where the expressions of 421 ,, kkk  and 6k  are  

max
1 1 2 e d 1

2 2 2
max

4 4 4 3
max max2

6 4 2 e d 1 2

max
4 3

/(2 )

1/(2 )

/

/ 2 / 2

       

r

r

r

k k k r r

k k

k k k P

k k P k r r

k P

υ

υ

υ

ε

ε

ε

ε ε

ε


= − +

 = −
 = −

 = − + − −




     (47) 

 
It is obvious that if the right positive parameters k1, 

k2, k4, ε1, ε2 and ε3 are choosed, then 421 ,, kkk  and 6k  
are assured positive constants. The system state variables 
of Eq. (4) are expressed as [ ]Te e e e e e, , , , , .x y u rψ υ=x  

Selecting 1 2 3 4 5 6min( , , , , , )k k k k k kλ =  and 0<θ<1, 
Eq. (46) becomes  

2 2 2
6 (1 ) (1 ) ,V λ θ λθ ρ λ θ≤ − − − + ≤ − −x x x x  

/( )ρ λθ∀ >x                           (48) 

 
According to the Lemma 9.2 in Ref. [21], it is 

proved that there exists a certain limited time τ, the 
system state of Eq. (4) satisfies  

0( ) /( ) ,t t tρ λθ τ≤ ∀ ≥ +x                     (49) 
 

In the function of control laws Eqs. (20), (39) and 
adaptive laws Eqs. (22), (41), the trajectory tracking 
errors [ ]Te e e e e e, , , , ,x y u rψ υ=x  will have global 
convergence by remaining in a limited region around 
zero, the size of which can arbitrarily be diminished by 
increasing the control gain 1 2 3 4 5 6( , , , , , ).k k k k k k  
Therefore, the trajectory tracking problem for 
underactuated USV with uncertain impacts has already 
been solved. 

Theorem 1: Selecting the suitably positive 
parameters 1 2 3 4 5 1 2 3( , , , , , , , )k k k k k ε ε ε  to assure that 

1 2 4 6( , , , )k k k k  are positive constants, and choose 
positive parameters ( , , , ),u u r rw k w k  the solutions of 
closed-loop control system defined by Eq. (4) are 
ultimate boundedness in function of control laws Eqs. 
(20) and (39) and adaptive laws Eqs. (22) and (41). 

Theorem 1 is already proved by the controller 
design and analysis of stability above. 
 
4 Numerical simulations 
 

Simulation results are present to verify the 
effectiveness of our proposed method. The following 
nominal model parameters of an USV are selected [20] 
 

0 0 0 2
11 22 33
0 0 0 2

0 0 0 2

25.8 kg,  33.8 kg, 2.76 kg m ,

12 kg/s, 17 kg/s, 0.5 kg m /s,

2.5 kg/m, 4.5 kg/m, 0.1 kg m .
u r

u u r r

m m m

X Y N

X Y N
υ

υυ

= = = ⋅

= = = ⋅

= = = ⋅

 

 
4.1 Trajectory tracking of nominal model 

The condition C1 in Assumption 2 is discussed. The 
reference trajectory is made by the virtual USV with the 
initial conditions as: d d d d(0) (0) (0) (0) 0,x y ψ υ= = = =  
and the desired speeds are choose as: ud=1 m/s, rd=10 °/s. 
Therefore, the reference trajectory is a circular trajectory. 
Initial system states are selected as: (0) 2 m,x =  y(0)= 
−2 m, (0) 45 ,  (0) 0.5 m/s,  (0) 0,uψ υ= ° = = r(0)=0, and 
considering propeller saturation constraint conditions: 
−30 N≤Fu≤30 N, −2 N∙m≤Tr≤2 N∙m. The parameters of 
the proposed BADSMC are selected as k1=0.5, k2=0.4, 
k3=0.3, k4=0.2, k5=1, wu=10, wr=2, ku=0.01, kr=0.01. 

According to the nominal model, by setting the 
uncertain impacts: 0,u rd d dυ= = =  the simulation test 
is done. The simulation results are shown in Figs. 2−4. 

For the USV sailing in the wide water, the straight- 
line tracking is often used. Because the straight-line 
tracking is a simple form of the curve trajectory tracking, 
the proposed method can be apparently applied therein. 
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As space is limited, it will not be discussed here. 
Figure 2 shows that the BADSMC drives the USV 

fast track on the desired circular trajectory, hence, the 
task of trajectory tacking is completed with good 
dynamic performance. Figures 3 and 4 show that the 
system states converge rapidly, smoothly without 
overshoot in the function of BADSMC. The control 
outputs have not the “chattering” phenomenon, which 
avoids harmful mechanical wear and is easy to 
implement in engineering. 
 

 
Fig. 2 Motion trajectory of USV under nominal model 
 

 
Fig. 3 Response curves of system state variables under nominal 
model: (a) For {E}-frame; (b) For {B}-frame 

 

 
Fig. 4 Response curves of control force (a) and torque (b) 
under nominal model 
 
4.2 Trajectory tracking under dynamic influences 

This section, the trajectory tracking problem with 
dynamic uncertainties is discussed in order to validate 
the control performance and robustness of our proposed 
method. Assuming the actual model has a parameter 
perturbation not more than 20%, without the loss of 
generality, an extreme situation is selected in the 
simulation, and the following model parameters of actual 
USV are given  

0 0 0
11 11 22 22 33 33

0 0 0

0 0 0

1.2 ,       0.8 ,   0.8 ,

0.8 ,       1.2 ,      1.2 ,

0.9 ,  1.1 ,  1.1 .
u u r r

u u u u r r r r

m m m m m m

X X Y Y N N

X X Y Y N N
υ υ

υυ υυ

= = =

= = =

= = =

 

 
From the anterior simulation results under nominal 

model, the maximum of surge, sway and yaw 
accelerations are obtained as: 2

max 0.2 m / s ,u =  
2 2

max max0.08 m / s ,  6 ( ) / s .rυ = = °   Hence, setting 
external disturbance force with the same level of 

max max max, ,u rυ   as follows:  
0
22
0
22
0
33

0.1 [sin(10π) rand( 1,1)],

0.1 [sin(10π) rand( 1,1)],

1.0 [sin(10π) rand( 1,1)].

u

r

d m t

d m t

d m t
υ

= ⋅ + −

= ⋅ + −

= ⋅ + −
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The simulation test was done under the above 
uncertain influences. Simulation results are shown in 
Figs. 5−7. 
 

 
Fig. 5 Motion trajectory of USV under dynamic influences 
 

 
Fig. 6 Response curves of system state variables under 
dynamic influences: (a) For {E}-frame; (b) For {B}-frame 
 

Figures 5 and 6 show that the BADSMC can 
similarly drive the trajectory tracking errors quickly 
converge to zero. Therefore, it is obvious that the USV 
with dynamic influences can track the desired trajectory. 
Figure 7 shows that the oscillation of control force 
(torque) is very small, which profited from the control 

 

 
Fig. 7 Response curves of control force and torque under 
dynamic influences 
 
derivative information output of the DSMC method, 
instead of directly output control itself, then integral 
control becomes smoother. Moreover, the output of 
system states is smooth with no chattering, which keep 
the same control performance with the nominal model. It 
is obvious that the proposed BADSMC is not sensitive to 
the uncertain impacts, thereby with strong robustness. 
 
5 Conclusions 
 

1) The reference trajectory is generated by the 
virtual USV to obtain the trajectory tracking error 
equation, which transform the tracking problem of 
underactuated USV into the stabilizing problem of 
trajectory tracking error equation. Moreover, this 
equation is an uncertain nonlinear system with dual-input 
and three-output. 

2) A backstepping adaptive dynamical sliding mode 
controller (BADSMC) is proposed by combining 
backstepping with DSMC method and the adaptive 
technique. Moreover, theoretical analysis shows that the 
solutions of closed loop system are ultimate boundedness 
in the function of proposed controller. 

3) Simulation results show that the BADSMC is not 
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sensitive to the uncertainties, and with good adaptive and 
robustness performance. 
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