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Abstract: The radial deformation design of turbine disk seriously influences the control of gas turbine high pressure turbine (HPT) 
blade-tip radial running clearance (BTRRC). To improve the design of BTRRC under continuous operation, the nonlinear dynamic 
reliability optimization of disk radial deformation was implemented based on extremum response surface method (ERSM), including 
ERSM-based quadratic function (QF-ERSM) and ERSM-based support vector machine of regression (SR-ERSM). The mathematical 
models of the two methods were established and the framework of reliability-based dynamic design optimization was developed. The 
numerical experiments demonstrate that the proposed optimization methods have the promising potential in reducing additional 
design samples and improving computational efficiency with acceptable precision, in which the SR-ERSM emerges more obviously. 
Through the case study, we find that disk radial deformation is reduced by about 6.5×10–5 m; δ=1.31×10–3 m is optimal for turbine 
disk radial deformation design and the proposed methods are verified again. The presented efforts provide an effective optimization 
method for the nonlinear transient design of motion structures for further research, and enrich mechanical reliability design theory. 
 
Key words: turbine disk; radial deformation; reliability-based transient design optimization; extremum response surface method; 
support vector machine regression 
                                                                                                             
 
 
1 Introduction 
 

Blade-tip radial running clearance (BTRRC) 
impacts the performance and reliability of gas turbine so 
that the BTRRC has to be controlled to keep a reasonable 
clearance in all working conditions. In fact, of directly 
determining BTRRC variation under working conditions, 
the disk radial deformation is one important factor [1−4]. 
Hence, the optimal design of disk radial deformation is 
executed expectantly to keep a reasonable radial 
deformation subject to constraints on reliability and some 
other practical conditions. Along with the growth in 
computing power of current computers, expensive finite 
element (FE) method has become a common and 
important technique in the product development program. 
A large number of FE codes have been mainly applied to 
stress analysis, thermal analysis, vibration analysis, 
fatigue life estimates and design of gas turbine typical 
components [5−7]. The turbine disk bears vast 
mechanical and thermal loads under the working 
conditions with high temperature and high rotational 
velocity [8]. Thus, for the transient optimization design 
of turbine disk excessive computational cost and 
impractical runtime emerge by FE method. 

One alternative is to construct a simple surrogate 
model (also called response surface method, RSM) to 
approximate the response of FE solvers [8]. The use of 
surrogate model often only requires a small number of 
FE analyses and therefore is able to significantly reduce 
the computational cost in reliability optimal design. 
Classic surrogate models for engineering design 
problems include polynomial-based response surface 
model, support vector machine (SVM) model, etc [9]. A 
polynomial-based response surface model is widely used 
due to its simplicity and effectiveness [10−12]. SVM is a 
kind of intelligent statistical learning method and is 
suitable for small sample [13]. Currently, SVM as an 
implicit performance function has been employed in 
reliability analysis and optimal design [14−15]. However, 
the two RSMs are not suitable for the nonlinear dynamic 
optimization analysis of complex structure because their 
response surface function can only approximate 
performance function around one design point [14]. 
Under the circumstances, the idea of extremum response 
surface method (ERSM) was proposed and the 
ERSM-based quadratic function (QF-ERSM) was 
developed for the reliability analysis of flexible robot 
manipulator [16], the nonlinear dynamic probabilistic 
design of aeroengine typical components [17] and 
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mechanical dynamic assembly reliability analysis [18]. 
Meanwhile, the ERSM-based support vector machine of 
regression (SR-ERSM) has been presented for the 
nonlinear dynamic probabilistic analysis of turbine 
casing radial deformation [14]. However, no relative 
achievement on the ERSM in the application of structure 
optimization has been published so far. 

The objective of the present work is to present two 
optimization methods of QF-ERSM and SR-ERSM to 
reduce computing time for reliability-based nonlinear 
dynamic design optimization. The presented methods are 
employed to the nonlinear dynamic multi-disciplinary 
reliability optimization of disk radial deformation with 
respect to nonlinear dynamic loads, such as thermal load 
and centrifugal force. 
 
2 Extremum response surface method 
 

In dynamic reliability analysis, the ERSM is used to 
consider a single extreme value as the response rather 
than a series of dynamic output responses under the 
different input vectors within a time domain [0, T], 
which is equivalent to transform a stochastic process of 
output response into a random variable [16−17]. The 
ERSM is promising to reduce computing cost and 
enhance calculation efficiency. With the jth group of 
input samples xj, the extremum of output response Yj(t, xj) 
is Yj,max(xj) within the time domain [0, T]. The data set 
{Yj,max(xj): j=1, 2, …, l} consisting of the maximum 
output responses is used to fit the extremum response 
curve Y(x):  

},,2,1:)({)()( max, ljYfY jj === xxx           (1) 
 
where f(x) is an extremum response surface function 
(ERSF); l is the total number of input samples. 

ERSF is a key factor for dynamic reliability design 
because a valid ERSF is beneficial to directly enhance 
the efficiency and precision of reliability design. If the 
ERSF is applied to dynamic reliability optimization, the 
method is called the ERSM of reliability optimal design, 
which belongs to the global response surface method. 
This work is to introduce QF-ERSM and SR-ERSM. 
 
2.1 Extremum response surface method-based 

quadratic function (QF-ERSM) 
According to Ref. [16], the ERSF-based quadratic 

function(QF-ERSF) YQF(x) can be written as  
T

QF 0( ) ( )Y f a= =x x + Bx + x Cx                (2) 
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in which r is the number of random variables. 
If the QF-ERSF is applied to the dynamic optimal 

design of complex machine replacing the FE model, this 
method is called QF-ERSM. 
 
2.2 Extremum response surface method–based 

support vector machine of regression 
This work takes the SR as an ERSF for nonlinear 

dynamic optimal design. For a certain kind of assumed 
distribution P(x, y) where x∈Rn and y∈R as well as the 
sampling points {(xi, yi)}i=1,2,… ,l (l is the number of 
samples), when a set of functions maps a point in the 
space Rn onto the space R, i.e.  

}:|),,({ RR →∈= nfΛfF ωωx                (3) 
 
where Λ  is a set of parameters and ω is an 
undetermined parameter vector. 

The regression object of support vector machine is 
to find a function f∈F to make Eq. (4) have the lowest 
expected risk:  

( ) ( ( , ))d ( , )R f l y f P y= −∫ xωx                  (4) 
 
where l(y−f(x, ω)) is an error function [15] and expressed 
as  

{ }( ( , )) max 0,| ( , ) | , 0l y f y f ε ε− = − − >xωxω     (5) 
 

For the nonlinear regression, function f is calculated 
as follows. 

Each sampling point is mapped onto higher 
dimensional space by a nonlinear function φ in order to 
conduct linear regression in the higher dimensional space, 
and then the original space nonlinear regression is 
attained. Thus, the function f is rewritten as  

( , ) ( )f b= ⋅ +xωωφx                          (6) 
 

From the above equation, the problem of solving the 
regression function is transformed to obtain the 
following optimal solution:  

21min
2

ω                                   (7) 
 
subject to  
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Considering the possible errors, two slack variables 
are introduced as , 0, 1, 2, , .i i i lξ ξ ∗ ≥ = L  The 
optimization function is  
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where γ is a penalty coefficient. 
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For obtaining the optimal solution, the Lagrange 
function is adopted by  
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where , 0, 1, 2, , .i ia a i l∗ ≥  = ⋅⋅ ⋅  

In the optimization process, a kernel function ψ(xi, 
xj) is applied to replacing the inner product <φ(xi), φ(xj)> 
in higher dimensional space, where the Lagrange duality 
problem is expressed by  
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subjected to the constraints: 
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Therefore, the regression estimating function is  
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where SV is a set of support vectors for a given sample 
set; ,i ia a∗  and b  and the optimized solution in line 
with ERSM. The mathematical model of SR-ERSF YSR(x) 
is  

∑
∈

+−==
SV

*
SR ),()()()(

i

baafY iii
x

xxxx ψ         (15) 

Equation (15) is the SR-ERSF, where x and xi are 
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where i=1, 2, …, l; l is the number of sample values; r is 
the number of random variables. 

Similarly, when the SR-ERSF is applied to the 
dynamic reliability design of complex machine replacing 
the FE model, this method is called SR-ERSM. 
 
2.3 Optimization process based on ERSM 

For structural reliability optimal design, it is 
difficult that the limit state function cannot be expressed 
by specific explicit form. To overcome this issue, the 
ERSM is employed to the reliability optimized design of 
disk radial deformation. The optimization design of 
complex structure needs many times loop computing 
(repeatedly analysis). The flow diagram of reliability 
optimization based on ERSM is shown in Fig. 1. 

 
3 Optimization model of turbine disk radial 

deformation 
 
3.1 Implementation of turbine disk radial deformation 

An HPT of an aeroengine was selected in Fig. 2 to 
study the radial deformation of the disk. The disk 
structure is modeled as a rotating disk of uniform 
thickness. Considering the disk radial deformations due 
to both centrifugal load and thermal load, the simplified 
model δ(t) of disk radial deformation at time t [3] is  

2 2
0 0

1( ) ( ) (1 ) ( )
4

t T t r t r
E

δ α ν ρω= + −              (16) 
 
where δ(t), T(t) and ω(t) are the time-varying functions 
of disk’s radial deformation, surface temperature and 
rotor angular speed, respectively; α, ρ, v and E are the 
convection heat transfer coefficient, density, Poisson 

 

 
Fig. 1 Flowchart of reliability-based dynamic design optimization with ERSM 



J. Cent. South Univ. (2016) 23: 344−352 

 

347 

 

 
 

 
Fig. 2 Geometry configuration 
 
ratio and elastic modulus of the disk, respectively; r0 is 
the unstressed radius of the disk. 
 
3.2 Reliability calculation 

For an aeroengine, the BTRRC changes inversely 
with the radial deformation of turbine disk. To ensure the 
safety of BTRRC, the disk radial deformation should be 
less than a maximum allowable value δmax. Therefore, the 
limit state functions of QF-ERSM and SR-ERSM are, 
respectively,  

T
QF max QF max 0( ) ( )H = Y = a B Cδ δ− − − −x x x x x   (17) 
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where H≥0 denotes the system secure while H≤0 
indicates the failure of system. In the light of the limit 
state functions, the system during transient process is 
secure when the maximum radial deformation of turbine 
disk Y(x) is less than the maximum allowable value δmax. 
Hence, the ERSM can be employed to the reliability 
optimization of disk radial deformation. When μ=[μ1, 
μ2, …, μr], D=[D1, D2, …, Dr] and the random variables 
(x1, x2, …, xr) are mutually independent, H, x, μ and D 
meet  
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when H obeys a normal distribution and its reliability 
index β and probability (reliability degree R) are 
represented by  
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3.3 Optimization model 
In order to weigh the performance and reliability of 

gas turbine, the disk radial deformation should 
potentially close to the allowable value δmax to keep an 
acceptable performance, subjected to a reasonable 
reliability degree R which should be large than a 
minimum value R0 [1]. Therefore, we consider the 
reliability degree R of disk radial deformation as the 
performance constraints to minimize the two limit state 
functions (Eqs. (17) and (18)), also called as the 
objective functions of disk radial deformation 
optimization. Hence, based on the mean value model of 
reliability optimization, the standard reliability 
optimization models of QF-ERSM and SR-ERSM can be 
formulated as follows: 
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         (21)  
where x is design variables vector; a and b are the lower 
bound vector and upper bound vector of design variable 
vector x respectively, which are defined by the variable 
coefficient v and the mean value vector μ; μ0 and δ0 are 
the presupposed mean and standard deviation vectors, 
respectively; μ and δ are the mean and standard 
deviation vectors after optimization, respectively; Φ−1(•) 
is the inverse normal distribution function; R0 is the 
possible minimum reliability degree; g(X, t) is the 
equality constraint that the design variables should meet. 

In Eq. (21), the correlative parameters (µ, δ, g(x, t), 
R0) are denoted the random design variables x and then 
the repression of output response YSR(x) is gained based 
on these design variables in each iteration. In line with 
Monte Carlo method (MCM), the mean value µ and 
standard deviation δ (δ=vµ, v is the variable coefficient 
of design variables) of design variable vector are input 
into Eq. (21) to obtain the mean value model of 
reliability optimal design of structural response. 
 
4 Numerical experiment 
 

In this section, three nonlinear or/and dynamic 
numerical test functions are employed to assess the 
accuracy and efficiency of QF-ERSM and SR-ERSM in 
optimal design. 

The first test problem, denoted by P1, is a mystery 
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nonlinear function (Haupt function) [8], defined as 
 

2 2 2 2
2 1 1 2min ( ) 2 0.01( ) (1 ) 2(2 )f x x x x x  = − − + − + − +  

1 1 27sin(0.5 )sin(0.7 )x x x             (22) 
 
where x1, x2∈[0,5]. It has three local optimal solutions. 
One of them is the global solution with a value of 
−1.4565 as x*=(x1, x2)=(2.5044,2.5778). 

The second test problem, denoted by P2, is a 
nonlinear dynamic function with semi-infinite and 
multi-variable constraints, defined as 
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where the semi-infinite time-varying constraints Ki(x,t) 
(i=1,2; t∈[0, 100 s]) is  
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(24)  
It has a optimal solution x*=(x1, x2, x3)=(4.2302, 

5.0559, 1.5093) with a function value of 157.7923. 
The third test problem, denoted by P3, is the 

nonlinear dynamic quadratic function defined as 
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where t∈[0, 215 s], g1(t) and g2(t) are two time-varying 
functions. The curves of which are shown in Fig. 3. g1(t) 
and g2(t) reach the maximum values of 1168 and 1050 
respectively at t=181.3 s. The function has a global 
solution at x*=(x1, x2, x3, x4, x5)=(1156.9, 1034, 0.0278, 
1.4×10–5, 0.00152) with a optimal value 1.2925 at 
t=181.3 s. 
 

 
Fig. 3 Time-varying curves of g1(x) and g2(x) 
 

Our optimization approaches were employed to 
fulfill the optimization of each problem. The comparison 
of results for QF-ERSM and SR-ERSM on the three test 
problems is listed in Table 1. 

As shown in Table 1, the objective values obtained 
by two optimization methods are quite close for each test 
problem. All relative errors between objective values and 
theoretic optimal values are very small(less than 0.6%), 
namely, the optimization precision reaches 99.4%. Hence, 
the proposed QF-ERSM and SR-ERSM possess high 
computing accuracy for these problems. Furthermore, the 
number of needed samples, function evaluations, number 
of iterations and elapsed time for the SR-ERSM are far 
less than the QF-ERSM for the three test problems. 
Hence, the result indicates that the approximate 
optimization method ERSM is efficacious for the 
nonlinear dynamic optimal design with acceptable 
computational efficiency and accuracy; and the 
SR-ERSM has quite lower computational cost and higher 
efficiency. 

 
Table 1 Comparison between results from QF-ERSM and SR-ERSM 

Problem Method Objective value Relative error/% Sample number Function evaluation Iteration Time elapsed/s 

P1 
QF-ERSM −1.455 91 0.041 19 35 5 53.7 

SR-ERSM −1.456 53 0.002 7 12 3 22.3 

P2 
QF-ERSM 158.183 75 0.567 31 117 19 269.7 

SR-ERSM 156.392 87 0.572 10 29 8 87.8 

P3 
QF-ERSM 1.296 23 0.289 57 529 88 954.5 

SR-ERSM 1.295 62 0.241 13 98 14 189.8 
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5 Optimization design of turbine disk radial 

deformation 
 

In this section, the optimization of the disk radial 
deformation is to be completed by using our proposed 
methods on an Intel Pentium 4 desktop computer   
(2.13 GHz CPU and 4 GB RAM). 
 
5.1 Finite element (FE) model 

The turbine disk is simplified as an axi-symmetric 
rotating disk with a centric bore. The circular cylindrical 
coordinates (r, h, z) are adopted for the convenience of 
description and analysis, where the symmetric axis z is 
consistent with the axial direction of the turbine disk. 
The half-axial cross section (FE model) of the turbine 
disk is shown in Fig. 4, where different areas of disk are 
defined as A1, A2, A3, B1, B2 and B3. 
 

 
Fig. 4 Finite element model of turbine disk 
 
5.2 Parameters selection 

The radial deformation of disk is determined by 
many factors, including rotor speed ω, disk surface 
temperature Tdisk, material properties (i.e. density ρ, 
thermal expansion coefficients κ, thermal conductivity λ), 
and convection heat transfer coefficients (α1, α2, α3, α4, α5 

and α6) respectively corresponding to the locations of A1, 
A2, A3, B1, B2 and B3. The convection heat transfer 
coefficients on different locations in the disk are assumed 
to be different and nonlinear shown in Table 2. 
Meanwhile, the thermal expansion coefficient κ and 
thermal conductivity λ listed in Table 3 are also 
obviously nonlinear with the surface temperature of disk. 
In addition, the surface temperature of disk is 
predetermined by the compressor discharge temperature 
T, convection heat transfer coefficient and thermal 
conductivity [19]. Under aeroengine operation, the rotor 
speed ω and the temperature T are dynamic with time 
(time-varying). Hence, the flight profile parameters (ω 

and T) of load spectrums were selected from aeroengine 
[20] in Fig. 5. For the convenience of disk radial 
deformation reliability analysis, the maximum values of 
aforementioned nonlinear and dynamic parameters were 
selected as random variables according to the extremum 
selection method [21]. Therefore, the distribution 
characteristics of the aforementioned parameters are 
shown in Table 4, where the variable coefficient v is 
0.03. 
 
Table 2 Convection heat transfer coefficients of different 
locations on disk 

Location A1 A2 A3 B1 B2 B3 
Convection heat transfer 
coefficients/(W·m−2·°C−1) 1820 1360 580 1500 1100 890 

 
Table 3 Heat conductivity and expansion coefficient under 
different temperature (reference 20 °C) 

Temperature/ °C λ/(W·m−1·°C−1) κ /(10–5°C −1) 

100 10.5 1.16 

200 14.2 1.23 

300 17.2 1.26 

400 18.8 1.32 

500 20.5 1.36 

600 22.6 1.41 

700 24.6 1.47 

800 26.4 1.51 

900 27.8 1.57 

 

 
Fig. 5 Load spectra from aeroengine 
 
5.3 Dynamic deterministic analysis 

The dynamic deterministic analysis of disk radial 
deformation was fulfilled by importing the mean values 
of random variables in Table 4 into the FE model by the 
thermosetting coupling method. The time-varying radial 
deformation is gained in Fig. 6. The maximum disk 
radial deformation is obtained at t=187.8 s approximately 
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at which the distributions for temperature and radial 
deformation on disk is shown in Fig. 7. Obviously, the 
temperature and radial deformation on the outside of disk 
reach the maximum, approximately 540 °C and   
1.3693 mm, respectively, while the hub of turbine disk 
has low surface temperature and small radial 
deformation. 
 
Table 4 Numerical characteristic of extremum random 
variables 

Random 
variable 

Mean 
value 

Standard 
deviation 

Lower 
bound 

Upper 
bound 

ω/(rad·s–1) 1168 35.04 1150 1200 

T /°C 540 16.2 480 600 

α/(W·m−2·°C−1) 1820 54.6 1792.7 1847.3 

ρ/(kg·m−3) 8210 246.3 8100 8350 

κ/°C−1 1.57×10−5 0.0471×10−5 1.54×10−5 1.6×10−5 

λ/(W·m−1·°C−1) 27.8 0.834 27.4 28.2 

 

 
Fig. 6 Variation of disk radial deformation (Y) 
 

Note that the maximum of disk radial deformation 
determines whether the system is safe in [0, 215 s], 
because the limit state function is secure in whole 
analysis process when the extremum of disk radial 
deformation is less than the maximum deformation δmax 
in [0, 215 s]. Therefore, the ERSM is suitable for the 
reliability optimized design of disk radial deformation. 
 
5.4 Fit and validate ERSFs 

A small quantity of samples of each random 
variable in Table 4 were extracted by MCM, and 
afterwards input into the FE model of turbine disk to 
gain the corresponding extremum output response. In 
this process, we obtain many groups of samples (or 
called fitting samples) containing input samples and 
output samples, which are used to construct the 
SR-ERSF and QF-ERSF where the QF-ERSF is shown 
in Eq. (26). The number of required sample and the 

 

 
Fig. 7 Distribution of temperature (°C) (a) and (b) distribution 
of radial deformation 
 
fitting time of QF-ERSF and SR-ERSF are listed in 
Table 5. And then, the QF-ERSF and SR-ERSF are tested 
by 200 groups of samples again. The analysis results are 
listed in Table 5.  

5 50.2564 1.408 10 9.235 10 0.2382Y T aω− −= − × + × + +  
31 142.1705 10 6.0471 8.6906 10kρ λ− −×  − − × +  
7 2 7 2 25.2886 10 2.8665 10 4.4104T aω− −× + × −  (26) 

 
Table 5 Optimization results of three methods (SR-ERSM, 
QF-ERSM and MCM) 

Method 
Fit ERSFs  Test ERSFs 

Sample 
number 

Fit 
time/s  

Sample 
number 

Computational 
time/s Precision 

MCM ― ― 

 

200 2014 1 

SR-ERSM 20 211.9 200 6.183 0.99905 

QF-ERSM 49 538.2 200 10.926 0.97931 
        
As listed in Table 5, fitting ERSFs (SR-ERSM) 

consumes fewer samples and less runtime than 
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QF-ERSM. From the test results, the SR-ERSM saves 
4.743 s in computing time and improves by 1.974% in 
precision relative to QF-ERSM. Thus, the SR-ERSM has 
higher computing efficiency and accuracy. Besides, the 
conclusions also validate the QF-ERSM and SR-ERSM 
with acceptable computational efficiency and accuracy. 
 
5.5 Optimization design-based reliability degree for 

turbine disk radial deformation 
Based on QF-ERSM and SR-ERSM, the reliability 

optimal design of disk radial deformation is enforced by 
each iteration with 10000 times simulations and the 
assumption of R0=0.99, δmax=1.31 mm, μ0=1.369 3×10–3 
m and δ0=0 in the optimization model of disk radial 
deformation in Eq. (21). In the last time of iteration, the 
probabilistic distributions of disk radial deformation Y by 
QF-ERSM and SR-ERSM are shown in Fig. 8. From the 
optimization, the optimal solutions of QF-ERSM and 
SR-ERSM are x*=(1157.6, 526.9, 1836.1, 8210, 
1.54×10–5, 27.92). The optimization results are listed in 
Table 6. The distributions of disk radial deformation after 
optimization with the two approaches are shown in   
Fig. 9. 
 

 
Fig. 8 Radical deformation distributions of extremum output 
response Y based on QF-ERSM and SR-ERSM 
 

As shown in Figs. 8−9, the variation of disk radial 
deformation (or extremum output response) obeys a 
normal distribution with the means and standard 
deviations 1.3045 mm, 1.3007 mm and 2.157×10–5 m, 
2.098×10–5 m, for QF-ERSM and SR-ERSM, 
respectively. 

From Table 6, the disk radial deformation after 
optimization reduces at 6.48×10–5 m and 6.86×10–5 m for 
QF-ERSM and SR-ERSM under the reliability degree 
R>0.995 and the maximum permissible radial 
deformation δmax=1.31 mm. The results are promising to 
preferably control HPT blade-tip clearance and develop 
the performance and reliability of gas turbine. In addition, 
the computational efficiency and precision of the two 
proposed methods are acceptable. It is exciting that 
SR-ERSM is better due to less number of function 
evaluations and iterations, lower computational cost and 
higher efficiency. The results illustrate that the ERSM is 
a promising approach for the nonlinear dynamic 
optimization design of complex structure. 
 

 
Fig. 9 Disk radial deformation distribution after optimization 
based on QF-ERSM (a) and SR-ERSM (b) 

 
Table 6 Optimization results of disk radial deformation based on QF-ERSM and SR-ERSM 

Method 
Objective value, Ymin/m Reliability 

degree 
Function 

evaluation 
Iteration 

Time 
elapsed/s Before optimization After optimization Reduced deformation 

QF-ERSM 
1.369 3×10–3 

1.304 5×10–3 6.48×10–5 0.995 6 159 6 37 823 7 

SR-ERSM 1.300 7×10–3 6.86×10–5 0.998 4 682 13 267 9 
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6 Conclusions 
 

1) The ERSM is effective and feasible in improving 
culculation efficiency with an acceptable precision for 
nonlinear dynamic optimization. 

2) These proposed methods (especially SR-ERSM) 
only require a small number of expensive FE analyses in 
the design optimization process so as to significantly 
reduce the total computational cost and run-time. 

3) The desirable radial deformation and reasonable 
reliability of turbine disk are gained from the optimal 
design. 

4) The SR-ERSF is a more accurate analysis model 
relative to the QF-ERSF. 

5) This work provides a new research field for the 
transient deformation design of gas turbine components 
and even the control of HPT blade-tip clearance based on 
reliability optimization. 
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