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Abstract: Congestion pricing is an important component of urban intelligent transport system. The efficiency, equity and the 
environmental impacts associated with road pricing schemes are key issues that should be considered before such schemes are 
implemented. This paper focuses on the cordon-based pricing with distance tolls, where the tolls are determined by a nonlinear 
function of a vehicles’ travel distance within a cordon, termed as toll charge function. The optimal tolls can give rise to: 1) higher 
total social benefits, 2) better levels of equity, and 3) reduced environmental impacts (e.g., less emission). Firstly, a deterministic 
equilibrium (DUE) model with elastic demand is presented to evaluate any given toll charge function. The distance tolls are 
non-additive, thus a modified path-based gradient projection algorithm is developed to solve the DUE model. Then, to quantitatively 
measure the equity level of each toll charge function, the Gini coefficient is adopted to measure the equity level of the flows in the 
entire transport network based on equilibrium flows. The total emission level is used to reflect the impacts of distance tolls on the 
environment. With these two indexes/measurements for the efficiency, equity and environmental issues as well as the DUE model, a 
multi-objective bi-level programming model is then developed to determine optimal distance tolls. The multi-objective model is 
converted to a single level model using the goal programming. A genetic algorithm (GA) is adopted to determine solutions. Finally, a 
numerical example is presented to verify the methodology. 
 
Key words: distance-based toll charging schemes; equity; path-based gradient projection algorithm; non-additive; goal programming 
                                                                                                             
 

 
1 Introduction 
 

Congestion pricing, acting as an economic lever for 
traffic demand management in urban metropolises, has 
received substantial interests in recent years both from 
academics and practitioners [1−7]. Existing practical 
implementations of congestion pricing are all 
cordon-based with entry-based tolls or daily licenses that 
are not equitable or efficient. Hence, three alternative toll 
charging schemes (time-based, congestion-based and 
distance-based) have been proposed as extensions [8], 
which can outperform the flat toll charge scheme. 
However, the first two methods encourage aggressive 
driving because less time in the pricing cordon means 
less toll costs. Thus, distance-based schemes are more 
suitable for practical implementation. With distance- 
based schemes, tolls are determined as a function of the 
vehicle’s travel distance in the cordon area, which is 
called the toll charge function. It is worthwhile noting 

that distance-based congestion pricing has already been 
targeted to be the extension of the current electronic road 
pricing system in Singapore, as the new generation of the 
congestion pricing system from 2020. With the 
in-vehicle positioning and communication system, the 
technology for distance-based toll within a pricing 
cordon is ready for implementations. 

Recently, distance-based tolling schemes have 
attracted considerable attention [9−12]. A number of 
these studies assume a linear distance toll charge function. 
The linear toll function is a special case of nonlinear 
function. However, nonlinear distance tolls are not 
sufficiently investigated, which is the target of this paper. 

The nonlinear distance toll is non-additive [7], 
which means that the overall travel cost on a path is not 
the sum of the link costs along that path. To cope with 
this problem in a real-size transport network, a network- 
representation based approach was proposed by MENG 
et al [7], where the possible paths in the cordon are 
enumerated and replaced by dummy links. However, 
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such an approach requires path enumeration and storage, 
and when the size of the cordon area is sufficiently large, 
the computational burden is intensive. This paper 
therefore extends the solution methodology using a 
path-based gradient projection method based on column 
generation. 

Two objectives are usually taken for the optimal 
congestion tolls, which are efficiency (minimize the total 
travel time [13]) and reducing the environmental impacts 
(e.g., the London Congestion Charging Scheme [14]). 
Apart from these two objectives, the issue of equity is 
quite crucial for public acceptance of congestion pricing 
schemes. Although the theoretical soundness of 
congestion pricing has been well recognized by 
researchers, political and public resistance is still major 
hurdles for its practical implementation. Hence, the issue 
of equity has attracted considerable interests. Although 
there are some studies on the equity of congestion 
pricing [15−16], the measurement index used to evaluate 
equity is not at aggregate level. Hence, the Gini 
coefficient is adopted as the indicator to measure the 
equity at network level [17−18]. The quantitative study 
of the equity of distance tolls is still an open question, 
although it has been claimed as a more equitable charge 
to the users [7]. Therefore, addressing these three 
objectives, this paper works on the optimal toll 
determination for cordon-based pricing with distance 
tolls. 

The optimal toll determination problem can be 
formulated as a bi-level model with multiple objectives. 
The existence of multiple objectives has increased the 
challenge of solving this bi-level model. To solve this 
type of problem, a variety of methods and models have 
been developed in Refs. [19−24]. In this work, the goal 
programming method is adopted to convert the multiple 
objectives to a single objective based on the priority 
structure provided by the decision makers. Goal 
programming aims to minimize the deviations between 
actual values and target values according to the priority 
ranking of the goals [22−23]. 

The contributions of this work are twofold. First, 
this work investigates the equity impacts of a nonlinear 
distance toll charge scheme at aggregate level, and uses a 
modified path-based gradient projection algorithm 
evaluate the non-additive distance-based toll. Second, a 
multi-objective bi-level model incorporating new equity 
indicator is developed to achieve a more sustainable toll 
design solution. 
 
2 Distance-based toll design problem 

description 
 
2.1 Notation and assumptions 

Consider a road network denoted by G(N, A) where 

N and A are the sets of nodes and directed links, 
respectively. Due to the presence of cordon-based 
congestion pricing, the network G=(N, A) is divided into 
two parts: an external network denoted by ˆ ˆˆ( , )G N A  
and a cordon network denoted by ( , ),G N A  where 
N̂  and Â  are the sets of external (out of cordons) 
nodes and directed links, respectively and N  and A  
are the sets of internal (within cordons) nodes and 
directed links, respectively. Let W denote the set of OD 
pairs and then travel demand between OD pair w W  
is denoted by qw. Let Rw be set of paths between OD pair 
w W and then w

kf  represents the traffic flow on path 

wk R  between OD pair .w W  The traffic flow on 
link ,a A  is denoted by va, and the link travel time ta 
is defined as a function of va. The link travel time 
function, ta=ta(va) is assumed to be non-negative, 
monotonically increasing and continuously differentiable. 
 
2.2 Distance-based toll charge function 

Let w
kd  denote the length of the portion of path 

wk R  in the pricing cordon and it thus can be 
expressed as follows:  

w w
k a ak

a A

d l 


                                  (1) 

 
where la is the length of link .a A  

Cordon-based congestion pricing with a distance 
toll can be expressed by the distance-based toll charge 
function (d), where d is the distance travelled inside the 
pricing cordon. The distance-based toll charge function is 
allowed to be any increasing non-decreasing and positive 
function. Herein, the toll charge ( )wk   imposed on a 
path wk R  between OD pair w W  is expressed by  

( ) ( )w
wk kd                               (2) 

 
For path k between OD pair w, if link a is a 

component of path k, then w
ak  is 1 and 0, otherwise. 

The travel time of path k can then be defined as 

( ) ( ) ,
w

w
wk a a a ak

k R

c v t v 


   where w
ak  represents the 

link-path incidence matrix. The total generalized path 
travel time on path wk R  thus can be defined as 
 

( , ) ( ) ( ) /wk a wk a wkC v c v                    (3) 
 
where α is the drivers’ value of time (VOT). 
 
2.3 Piecewise-linear approximation function 

Due to the nonlinear toll charge function, the 
generalized path travel time (3) is not equal to the sum of 
generalized link travel time on this path, termed as the 
non-additivity. Note that the toll charge function does not 
follow any particular function form, thus it is difficult to 
formulate and solve this non-additive problem. Hence, 
we adopt a piecewise-linear approximation method to 
approximate the nonlinear toll charge function. Figure 1 
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Fig. 1 An illustration for piecewise-linear approximation function 

 
illustrates the piecewise linear approximation [7], which 
can accurately approximate any particular nonlinear 
function on the left-hand-side. 

The nonlinear toll charge function can be defined as 
follows. Firstly, define the minimum and maximum 
lengths on the path in the pricing cordon and then evenly 
divide the length range into n intervals. 
 

min 2 2 3 1 max[ , ],[ , ], ,[ , ], ,[ , ]i i nd d d d d d d d         (4) 
 

Secondly, based on any toll charge function, tolls on 
any path can be uniquely determined. Note that if the 
interval is set to be n, then there are n+1 vertex values in 
the piecewise-linear approximation function. Thus the 
piecewise-linear approximation function is defined 
accordingly as follows: 
 

1
1

1

( , ) ( ), ,i i
n i i i i

i i

y y
d y d d d d d

d d
 





    


y  

1, 2, ,i n                              (5) 
 
where d1=dmin and dn+1=dmax. The column vector of 
vertex values is defined as y=(y1, y2, … , yn+1)

T. 
Therefore, tolls on any paths wk R  can be calculated 
using Eq. (5), as an approximation of Eq. (2). 
 
3 Path-based toll user equilibrium 

formulation 
 
3.1 Mathematical model 

With a given toll charge function, the network users’ 
route choice behavior is assumed to follow the DUE with 
elastic demand [25]: 
 

,
w

w
k w

k R

f q w W


                           (6) 

 
,

w

w w
a k ak

w W k R

v f a A
 

                        (7) 

 
0, ,w

k wf k R w W                        (8) 
 
where the travel demand is determined by the demand 
function ( ),w w wq D u  which is a non-increasing and 
nonnegative function of the minimum generalized OD 

travel costs uw. Hence, the path flows are optimal if and 
only if the following conditions hold: 
 

( ) ( ) / , 0, ,w
wk wk w k wc v u if f k R w W          (9) 

 
( ) ( ) / , 0, ,w

wk wk w k wc v u if f k R w W         (10) 
 

1( ), 0,w w w wu D q if q w W                                  (11) 
 

1( ),  0,w w w wu D q if q w W                  (12) 
 

Note that the generalized path travel time 
expression on the left hand side of Eqs. (9) and (10) is 
non-additive, thus the traffic equilibrium problems 
should be solved in the path-flow domain. For each path 

,wk R  its travel distance within the tolling area, 

,a k

w
aa A

l 
  is fixed, implying that the toll τwk, for path 

k is also fixed. Then, the DUE problem with elastic 
demand in terms of a given toll charge pattern 

, ,wk wk R w W    can be formulated in terms of path 

flows as follows: 
 

DUE  
 

 0
min ( )da

w

v w
a wk k

a A w W k R

Z t v v f
  

      

 1

 0
( )dwq

w
w W

D w w


                             (13) 

 
s.t.  

,
w

w w
k

k R

f q w W


                          (14) 

 
,

w

w w
a k ak

w W k R

v f a A
 

                                  (15) 

 
0, ,w

k wf k R w W                       (16) 
 

It can be easily seen that this model is convex, 
which has unique optimal link flow solution. The 
Karush-Kuhn-Tucker (KKT) conditions show that the 
solution of this model can fulfill the DUE conditions 
(9)−(12). Therefore, the optimal solution of this model 
gives the UE flows in terms of the distance tolls τ. 
 
3.2 Path-based solution algorithm 

The nonlinear distance tolls have introduced 
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non-additivity to the path travel costs. Hence, it is 
suitable to adopt the path-based traffic assignment 
algorithms as solution methods. There are various sound 
path-based traffic assignment algorithms in the literature 
[26−30], including the gradient projection (GP) and 
simplicity decomposition algorithms. In this section, the 
GP is taken as the solution method. Previous GP 
algorithms are mostly used to solve additive traffic 
assignment problems [26−27]. In order to solve the 
non-additive problem in this work, the k-shortest 
algorithm and column generation algorithm have been 
combined into the GP algorithm to generate new shortest 
path based on the generalized path travel time. The steps 
for this algorithm are given as follows. 

Initialization: 
Step 1) Set (0) 0,ax   [ (0)],a a at t x  and define 

the path set .wK    
Step 2) Set iteration counter n=1. 
Step 3) Solve the shortest path problem to generate 

an initial path set ( ), ( ) .w w w wk n K k n K   
Step 4) Load the travel demand to the shortest path 

( ) ( ) .
w

w
wk nf n q  

Step 5) Assign path flows to links ( )ax n   

( ) .
w

w w
k ak

w W k K

f n 
 
   

Column generation: 
Step 6) Increment iteration counter n=n+1. 
Step 7) Update link travel time ( ) [ ( 1)].a a at n t x n   
Step 8) In the case with path-specific costs 
Solve the k-shortest path problem based on the 

additive path time; 
Compute the distance of each k-shortest path and 

corresponding specific path toll; 
Add the path-specific path toll to each of the 

k-shortest paths; 
Identify the one with the smallest generalized travel 

time to be the new path ( ).wk n  
Step 9) If ( ) ( 1),w wk n K n   update path set 

( ) ( ) ( 1);w w wK n k n K n    otherwise, tag the shortest 
path among the paths in wK  as ( ).wk n  

Equilibration: 
Step 10) Compute the generalized path travel time 

( )  ( ), ( )wk w wC n k K n k k n    and ( ) .wwk nC  

Step 11) Compute the second derivative costs 
2( ) ( )( )   ,  .

w

w w w
k a a ak w wak

a

s n t v k K k k       

Step 12) Direction finding ( ( )w
k wkf C n     

( ) ) / ( ).
w

w
kwk nC s n  

Step 13) Set the new path flows:  
( 1) max{ ( ) ( ) ,0} ( ),w w w

k k k wf n f n n f k K n       

( )wk k n                             (17) 

( )

( )

( 1) ( 1)
w

w

w

w w
w kk n

k K
k k n

f n q f n



                 (18) 

where λ(n) is a scalar step-size modifier and usually 
defined as 1. However, a step size of 1 might be 
inappropriate. The step-size was improved by using the 
following equation [31]: 
 

( ) min min 0 ,1
w

w
wk

kwk K
k

f
n f

f




            
          (19) 

 
Setp 14) If ( 1) 0,w

kf n   drop path 
:  ( ) \ .wk K n k  

Convergence: 
Setp 15) If 

( )

( )

( )( )
max

( )
w

w

w

w
wk wk nk

w w wkk K
k k n

C n Cf n

q C n





 
  

 
       (20) 

 
then stop; otherwise, go to step 6 (column generation). 
 
4 Bi-level model 
 
4.1 Goal programming 

There are a number of studies in the literature 
integrating the various objectives into the decision 
making problem in transportation planning and 
management [19−23]. By reviewing these studies, the 
widely used goals are categorized into three classes: 
efficiency, environment and equity. As discussed in the 
introductions section, this work adopts all the three 
objectives for the optimal toll determination. To cope 
with the multi-objective problem, the goal programming 
technique is used here. Due to the space limit, rationale 
and detailed mechanism of goal programming are not 
covered here, and the readers are recommended to some 
outstanding papers in this field for reference [22−23]. 

We proceed to introduce the quantitative definitions 
of the three objectives. 

1) Efficiency. 
Total travel time or social welfare could be used as 

an efficiency measure of the transport network. Here, we 
use the total social welfare, defined as 
 

1

0
( ) ( )w q w

w wk k 
w k

sw D x dx C f              (21) 

 
A social welfare improvement constraint requiring 

that the change from before to after congestion pricing 
should reach a targeted level, which can be represented 
as 
 

after

1 1 1before

sw
d d

sw
                           (22) 

 
where 1d  and 1d   are the negative and positive 
deviation variables of the social welfare with associated 
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with the stated goal value, respectively. Note that the 
subscripts “after” and “before” shown in the Eq. (22) 
respectively refer to the case of after and before 
implementing the congestion pricing scheme, which are 
also used in the following equations. The parameter β1 is 
a target value from the transport authority that defines 
the threshold of the change in social welfare. 

2) Environment. 
Transportation system actually poses a huge 

challenge on the environment protection. Fumes, dust 
and harmful gases generated from automobiles affect the 
environment to some extent and even the emission 
pricing has been proposed to reduce these harmful 
emissions [32]. Therefore, in order to investigate the 
effect of congestion pricing on the environment, 
evaluation models need to be formulated. For simplicity, 
this paper only considers the effects of emissions since 
they are typically a major factor contributing to the 
deterioration of the environment. Here, a nonlinear 
macroscopic model is adopted to estimate vehicular 
emissions [33]. Based on the related literature, carbon 
monoxide (CO) was chosen as the indicator to model 
vehicular emissions. The vehicular CO emissions model 
[33] is shown as follows:  

2
1( ) ( ) exp

( )
a

a a a a
a a

l
e v t v

t v




 
    

 
              (23) 

 
where ( )a ae v  means the amount of CO pollution 
generated from link .a A  Based on the regression 
result, ρ1 and ρ2 are 0.2038 and 0.7962, respectively. 
Note that the unit of la is kilometers; ta(va) and ea(va) are 
measured in minutes and grams per hour, respectively. 
According to the disaggregated vehicular CO emissions 
model, the total CO emissions on a network can be 
formulated as an environmental objective function:  

( ) ( )a a a a
a

E v e v v                         (24) 

 
The environment constraint requires that the change 

after the congestion pricing should reach a desired level, 
which can be represented as  

after

2 2 2before

E
d d

E
                          (25 ) 

 
where 2d   and 2d   are the negative and positive 
deviational variables of the vehicular CO emissions with 
associated with stated goal value, respectively. The 
parameter β2 is a target value obtained from the transport 
authority that defines the threshold of the change in 
vehicular CO emissions. 

3) Equity. 
The most controversial problem of congestion 

pricing is its potential impacts on the equity. Many 
studies that have investigated equity and congestion 
pricing have focused on the impact of congestion pricing 

on the change of OD travel times. To measure the equity 
at an aggregate network level, the Gini coefficient is 
taken as an equity index. The Gini coefficient [16−17] is 
shown as follows: 
 

2

2

w w w w
w w

w
w

q q SWI SWI

Gini

q SWI

 





 
 
 




              (26) 

 
where wSWI  represents the social welfare improvement 
compared to the do-nothing scenario between OD pairs 

.w W  The equity constraint requires that the change in 
the Gini coefficient after congestion pricing should reach 
a desired level, which can be represented as 
 

after

3 3 3before

Gini
d d

Gini
                           (27) 

 
where 3d   and 3d   are the negative and positive 
deviational variables of the equity with associated with 
stated goal value, respectively. The parameter β3 is a 
target value obtained from the transport authority that 
defines the threshold of the change in Gini coefficient. 
 
4.2 Multi-objective bi-level model formulation 

The transport authority desires to make each 
objective achieve the expected value provided by 
decision makers. Using goal programming, the multi- 
objective bi-level model for seeking the optimal distance- 
based toll charge function is formulated as follows. 

Upper level: 
 

1 1 1 2 2 2 3 3 3min ( ( , ))nF Pd T P d T P d T     d y    (28) 
 
s.t.  

after

1 1 1before

sw
d d

sw
                           (29) 

 
after

2 2 2before

E
d d

E
                           (30) 

 
after

3 3 3before

Gini
d d

Gini
                          (31) 

 
min 1y y                                    (32) 

 
1 1i i iy y y                                  (33) 

 
maxny y                                (34) 

 
Lower level:  

  
  0

min ( )da

w

v w
a wk k

a A w W k R

Z t v v f
  

      

 1

 0
( )dwq

w
w W

D w w


                         (35) 

 
s.t. 
 

,
w

w w
k

k R

f q w W


                          (36) 
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,
w

w w
a k ak

w W k R

v f a A
 

                      (37) 

 
0, ,w

k wf k R w W                           (38) 
 
where 1 2 3( )iP P P P   is the preemptive priority 
factor representing the order of each objective that needs 
to be satisfied according to the priority structure. Due to 
the inconsistent units among the different goals, the 
relative deviation value /i id T  is used to reach an 
agreement on the units, in which Ti is the target value 
provided by the decision maker. Then, the combined 
deviation in Eq. (28) with preemptive priority factor is 
taken as the fitness function in the genetic algorithm. 
Note that the objective function Eq. (28) is to minimize 
the total positive deviation, implying that the target value 
of each goal constraint is only slightly exceeded, where 
functions Eq. (29)−(31) are the goal constraints. 
 
5 Solution algorithm 
 

The proposed multi-objective bi-level model is 
actually a non-convex program. Due to the complexity of 
the proposed model, it is difficult to use any 
gradient-based algorithm. However, in view of the 
discrete property of ( , ),n d y  genetic algorithms (GA) 
are convenient for solving the proposed bi-level model. 
GA is based on the science of genetics to describe the 
process of natural growth of organisms. GA has been 
successfully applied to network design problems [34]. 
Since each objective constraint shown by Eqs. (29)−(31) 
needs to be satisfied according to the priority ranking of 
the goals, GA is revised by incorporating a rearranging 
module. The entire GA procedure for solving the 
multiple objective network design problem is 
summarized as follows: 

Step 1) (initialization): The GA starts with a group 
of chromosomes known as the population. Set the size of 
population to be k. Randomly generate an initial 
population representing the piecewise-linear function, 
and each population carries a feasible chromosome, 
which contains the toll fare. Then let the number of 
generations, k=1. 

Step 2) (evaluation): based on the generated 
chromosome, the traffic assignment in the lower level is 
performed by the path-based algorithm and then based 
on the results of the traffic assignment, each of actual 
objectives in the upper level can be calculated. The 
deviation of each objective between the actual and target 
values can be obtained simultaneously. The fitness 
function is then evaluated using Eq. (28). 

Step 3) (rearranging module): After the 
chromosome evaluation procedure, any deviation value 
for a given toll charge scheme can be obtained. The 
rearrangement of chromosomes is based on the pre- 

defined priority level. Chromosomes should be sorted 
and ranked based on the deviation value in priority 1. If 
there are some chromosomes with same deviation value 
in priority 1, record them and sort and rank these 
chromosomes according to the deviation value in priority 
2; otherwise, terminate the rearranging step. In the same 
way, the rearranging module is preformed until the 
termination. 

Step 4) (crossover): Randomly choose parents from 
all the survivors, and conduct pairing between each 
parent, denoted by 1Y  and 2 ,Y  which yields two new 
chromosomes, defined by the following function: 
 

1 1 2

2 2 1

ˆ (1 ) , (0,1), 0.5

ˆ (1 ) , (0,1), 0.5

Y Y Y   

Y Y Y   

   

   

     


    
          (39) 

 
Step 5) (mutation): With lower probability, 

randomly choose genes from all the chromosomes in 
current generation, and then modify the value of these 
genes randomly in min max[ , ],y y  then proportionally 
change the value of other genes of this chromosome in 
the interval min[ , ]iy y  and max[ , ].iy y  This process 
also generates new chromosomes. 

Step 6) (selection): Among all the existing 
chromosomes, choose the top k  chromosomes with 
lower total deviation values as survivors for current 
generation and discard the rest. 

Step 7) (stop test). If max ,k k  then stop and 
record the chromosome representing the toll charge 
function with the minimal total deviation, where kmax is a 
predetermined upper-bound for the number of 
generations; otherwise, set k=k+1 and go to step 2). 
 
6 Numerical example 
 
6.1 Network C description and parameter setting 

To validate the proposed methodology, a simple 
network is adopted, which is Network C in the previous 
study [35] consisting of 14 nodes, 46 links and 8 OD 
pairs. This network has one pricing cordon, defined by 
the dashed line and shown by Fig. 2. Links in the cordon 
are listed by 
 

 33,34,35,36,37,38,39,40,41,42,43,44,45,46A   
 

Nodes 4, 5, 6 and 7 are entries as well as exits to the 
pricing cordon. These links in the pricing cordon 
constitute pricing paths in the network. Drivers are 
charged using the distance-based toll charge function 
when using these paths. If the drivers do not pass through 
this cordon, nothing needs to be paid regardless of 
distance travelled. Since one of objectives relates to the 
environment, the evaluation of which is related with link 
distance, each link distance needs to be pre-confirmed 
and shown in Table 1. It is used to calculate the vehicular 
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Fig. 2 Structure of Network C 

 
Table 1 Length of links in network C 

Link No. Length/m  Link No. Length/m  Link No. Length/m

1 1300  17 650  33 790 

2 1300  18 650  34 1050 

3 700  19 1200  35 250 

4 700  20 1200  36 400 

5 1600  21 800  37 850 

6 1600  22 800  38 892 

7 1000  23 800  39 85 

8 1000  24 800  40 38 

9 1000  25 1200  41 35 

10 1000  26 1200  42 78 

11 1000  27 500  43 82 

12 1000  28 500  44 66 

13 1000  29 1200  45 85 

14 1000  30 1200  46 26 

15 1600  31 600    

16 1600  32 600    

 
CO emission levels. Other parameters are same as those 
in Ref. [15]. Theoretically, two links with same 
connected nodes have the same road length. Most of the 
pricing paths in the cordon have the same length when 
generating pricing paths for this example, which may 
hinder the generality of this example. Herein, the length 
of each link in the pricing cordon is modified slightly. It 
can be used to measure the drivers’ distance travelled in 
the pricing cordon. When determining the distance-based 
toll charge function shown by Eq. (5), the maximum and 
minimum path lengths in the pricing cordon need to be 

determined initially. Using Table 1, it is detected that the 
maximum and minimum path lengths in the pricing 
cordon are 405 and 2453 m, respectively. 

For this numerical example, the link travel time 
function on link a A  is determined by the standard 
BPR function, defined as follows: 
 

4
0( ) 1 0.15 ,  a

a a a
a

v
t v t a A

h

      
   

              (40) 

 
where 0

at  is the free flow travel time on link a A  
and ah  is the capacity of link flow. Here, the travel 
demand between OD pair w W  is assumed to follow 
the function:  

exp( ),  w w wq q u w W                   (41) 
 
where wq  is the upper bound of the travel demand 
between OD pair ,w W  and γ is a constant parameter, 
set as 0.01. 

Parameters associated with the link travel time 
function and OD demand function, such as the upper 
bound of OD demand ,wq  free flow travel time 0

at  
and capacity ha on each link, are identical to Ref. [35], 
which are not provided here. Lower and upper bounds of 
the toll charges are set to be ymin=1 and ymax=20. 

In terms of the GA algorithm, the population 
(chromosome), number of generations, crossover 
probability and mutation probability are set to be 30, 100, 
0.8 and 0.15, respectively. In addition, as mentioned 
earlier, the value of intervals are set to be constant. In 
this example, interval n is chosen to be n=8, which 
means that there are 9 bound values for piecewise-linear 
approximation function. Each bound value represents 
one gene in the GA. When computing the fitness value in 
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the evaluation step of the GA, the preemptive priority 
factor Pi needs to be set based on the priority structure. 
Following [23], Pi is defined in the following manner: 
 

2 (3 )10 ,  1,2,3i
iP i                          (42) 

 
Equations (28) and (42) are combined as the fitness 

function in the GA. After describing the network 
attributes and defining the parameters, the proposed 
solution algorithm was coded in the programming 
language C with the aid of Visual Studio 2010 software 
on a personal computer to solve distance-based toll 
charge optimization problem. 
 
6.2 Numerical results 

Different policy makers may have different 
requirements for the priority of each evaluation objective. 
Thus based on the different goals, there are totally 6 
scenarios that can be compared. In the multi-objective 
problems proposed in this work, the leading objective 
can be completely satisfied and second objective can be 
mostly reached while the third objective only can be 
completed in part. Hence, leading objective plays a 
determining impact on the optimal tariff. In the end, 
three scenarios with completely different leading 
objectives are chosen as an explanation to investigate the 
effect of distance-based congestion pricing on the 
performance of the transportation system. These three 
scenarios are shown in Table 2. 
 
Table 2 Description of different priority structure 

Scenario Priority structure P1 P2 P3

1 Efficiency>>environment>>equity 104 102 100

2 Environment>>efficiency>>equity 104 102 100

3 Equity>>efficiency>>environment 104 102 100

 
When using goal programming to formulate the 

multi-objective problem, the target value provided by the 
decision maker has to be pre-defined. In this example, 
firstly three bi-level models with a single objective from 
Section 4.1 are developed to obtain the optimal objective 
results in the upper level (social welfare, vehicular CO 
emissions and Gini coefficient), regardless of the other 
two objective functions. These three optimal objective 
results are considered the target value that needs to be 
achieved in the multi-objective bi-level problem as much 

as possible. In Table 3, column S0 shows the optimal 
results of each objective in solving the single objective 
bi-level model with distance-based toll charge function. 
After that, the multi-objective bi-level model is solved 
using the proposed solution algorithm based on the 
different priority structure and calculated results with 
each corresponding scenario are summarized in Table 3. 
Rows 2, 3 and 4 represent each objective value with 
different scenarios when the multi-objective bi-level 
model has been solved. Moreover, rows 5, 6 and 7 
present the relative deviation, where positive numbers 
represent underachievement and negative numbers 
represent overachievement. Final row shows the 
objective function result in the upper level. 

Taking scenario 1 (S1) as example to illustrate the 
meaning of each row specifically, here, S1, the leading 
goal is efficiency, followed by environment and equity. 
As mentioned earlier, social welfare is used instead of 
total travel time as the measurement of efficiency. The 
final result for social welfare is 5120909 and relative 
deviation is −0.01%, which means the target value is 
overachieved slightly. In the same way, the relative 
deviation of total vehicular CO emissions is 0.67%, 
which indicates that the target of environment 
improvement has been largely attained. However, when 
achieving the last goal, it is implied that nearly half of 
deviation from the target has not realized based on the 
value of 53.57%. From Table 3, it is concluded that the 
different priority structures will result in distinct 
solutions, which implies that the ranking structure of the 
goals has a significant effect on the model solutions. 
Comparing the solution with the rankings S1 and S2, we 
can observe that when the equity goal is placed in the last 
position, the efficiency and environment goals can nearly 
be achieved, but equity is still far away from the target 
value. However, comparing the solution of the S1 and S3 
or S2 and S3, it is evident that the equity goal has been 
overachieved largely and simultaneously other goals are 
quite close to the targets, which is a more sustainable 
solution achieved by placing the equity goal into the 
leading position. 

We now proceed to investigate the pattern of the 
optimal distance-based toll charge function. Figure 3 
depicts the optimal chromosome outputs from three 
scenarios, which has 8 intervals and 9 boundary values. 
From Fig. 3, it is evident that the optimal distance-based  

 
Table 3 Computational profile of different scenarios to network C 

Scenario No. Efficiency Environment Equity d1/T1 d2/T2 d3/T3 F 

S1 5120909 519194 0.5098 −0.01% 0.67% 53.57% 0.047 

S2 5117613 517100 0.4944 0.24% 0.05% 48.90% 24.204 

S3 4998872 542942 0.2818 −15.13% 2.37% 5.65% −1510.383 

S0 5120313 515971 0.332 / / / / 
 



J. Cent. South Univ. (2016) 23: 1273−1282 

 

1281

 

 
toll charge function of each scenario is highly nonlinear. 
Additionally, when analyzing the results in Table 3, the 
toll charge function from S1 and S2 is slightly different 
from S3 as a result of the ranking of equity. The toll 
charges from the S1 and S2 both increase sharply as the 
distance traveled inside the pricing cordon is increased 
and the starting price is slightly higher when it is for 
short travel. In addition to short travel, the toll charge of 
S2 also increases distinctly when it is long travel. This 
kind of toll charge pattern can reduce the demand to help 
to improve the environment because a higher starting 
price and increase of tolls in long trips can stimulate road 
users forgoing the use of private cars and proceed to take 
public transport or make no trip. This can further 
alleviate total vehicular CO emissions. It proves that this 
toll charges scheme is more reasonable. Correspondingly, 
the toll charge pattern from S3 is opposite to S1 and S2. 
The toll charge with S3 increases mildly as the travel 
distance increases and is relatively close to the linear 
function because in S3 the leading goal is equity. It is 
prone to make public users accept this toll charge 
scheme. 
 

 
Fig. 3 Optimal toll charge function for network C with three 

scenarios 

 
The convergence results of the GA solution 

procedure are shown in Figs. 4 and 5. Figure 4 shows the 
convergence of the combined deviation of the three goals 
in the goal programming model. From Fig. 4, we can see 
that the combined deviations of S1 and S2 converge to a 
stable value in the 27th and 84th generations, 
respectively. S3 has a faster convergence rate compared 
with S1 and S2. Taking scenario 2 as example, Fig. 5 
shows the effect of the user-specified priority structure in 
the GA. According to Fig. 5, the first and second goals 
are nearly achieved in the 83rd generation, while the 
third goal is largely not satisfied. The best goal obtained 
value in terms of the relative deviation for the third goal 
is 48.90% in the 18th generation. The first two goals 
(environment and efficiency) can be nearly satisfied, but 
the third goal (equity) is not fulfilled completely with a 

positive deviation of 48.90%. Moreover, when goals 1 
and 2 approach to the target value simultaneously, the 
deviation value of goal 3 is initially decreased and then 
increased, which implies that when determining the 
multi-objective problem, the value of some goals may 
conflict with each other. Although the interval value in 
determining the nonlinear toll charge function is set to be 
constant in this work, different interval values can also 
have a great impact on the optimal distance-based toll 
charge function [7]. 
 

 
Fig. 4 Convergence curve of combined deviation 

 

 
Fig. 5 Convergence curves of three goals in scenario 2 
 
7 Conclusions 
 

1) This work addresses the optimal distance-based 
toll charge design problem for the cordon-based 
congestion pricing scheme by considering three 
objectives. For the equity issue, Gini coefficient is 
adopted as the index of network equity level. A goal 
programming model is embedded into the bi-level model 
to convert the multi-objective problem into a single 
objective. 

2) With the distance-based toll charge, a path-based 
DUE model with elastic demand is adopted for the users’ 
travel behavior. The distance-based toll charge function 
is allowed to be any positive and non-decreasing 
functional form, which makes the distance-based toll 
charge non-additive. Therefore, a path-based algorithm 
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with k-shortest path is developed and a modified GA is 
designed to solve the multi-objective bi-level model. The 
methodology is verified by the numerical example. The 
output from the optimal distance-based toll charge 
function is distinctly nonlinear and it can fulfill the 
targets of the first and second goals provided by the 
decision-maker. The system deviation can be reduced to 
the minimum when the equity goal is placed in the first 
goal. 

3) This work presents a multi-objective model for 
the optimal nonlinear distance tolls. Further works are 
needed to extend these methods to consider other 
practical issues such as dynamic traffic networks, 
heterogeneous or continuous values-of-time and 
multi-vehicle types. 
 
References 
 
[1] MAY A D, LIU R, SHEPHERD S P, SUMALEE A. The impact of 

cordon design on the performance of road pricing schemes [J]. 
Transport Policy, 2002, 9(3): 209−220. 

[2] HO H W, WONG S C, YANG H, LOO B P Y. Cordon-based 
congestion pricing in a continuum traffic equilibrium system [J]. 
Transportation Research Part A: Policy and Practice, 2005, 39(7): 
813−834. 

[3] LIU Zhi-yuan, WANG Shuai-an, MENG Qiang. Toll pricing 
framework under logit-based stochastic user equilibrium constraints 
[J]. Journal of Advanced Transportation, 2013, 48(8): 1121−1137. 

[4] LIU Zhi-yuan, WANG Shuai-an, MENG Qiang. Optimal joint 
distance and time toll for cordon-based congestion pricing [J]. 
Transportation Research Part B: Methodological, 2014, 69: 81−97. 

[5] LIU Zhi-yuan, MENG Qiang, WANG Shuai-an. Speed-based toll 
design for cordon-based congestion pricing scheme [J]. 
Transportation Research Part C: Emerging Technologies, 2013, 31(2): 
83−98. 

[6] LIU Zhi-yuan, MENG Qiang. Bus-based park-and-ride system: a 
stochastic model on multimodal network with congestion pricing 
schemes [J]. International Journal of Systems Science, 2014, 45(5): 
994−1006. 

[7] MENG Qiang, LIU Zhi-yuan, WANG Shuai-an. Optimal distance 
tolls under congestion pricing and continuously distributed value of 
time [J]. Transportation Research Part E: Logistics and 
Transportation Review, 2012, 48(5): 937−957. 

[8] MAY A D, MILNE D S. Effects of alternative road pricing systems 
on network performance [J]. Transportation Research Part A: Policy 
and Practice, 2000, 34(6): 407−436. 

[9] JOU R C, CHIOU Y C, CHEN K H, TAN H I. Freeway drivers’ 
willingness-to-pay for a distance-based toll rate [J]. Transportation 
Research Part A: Policy and Practice, 2012, 46(3): 549−559. 

[10] LAWPHONGPANICH S, YIN Y. Nonlinear pricing on transportation 
networks [J]. Transportation Research Part C: Emerging 
Technologies, 2012, 20(1): 218−235. 

[11] MENG Qiang, LIU Zhi-yuan. Impact analysis of cordon-based 
congestion pricing on mode-split for a bimodal transportation 
network [J]. Transportation Research Part C: Emerging Technologies, 
2012, 21(1): 134−147. 

[12] JOU R C, YEH Y C. Freeway passenger car drivers’ travel choice 
behaviour in a distance-based toll system [J]. Transport Policy, 2013, 
27: 11−19. 

[13] YANG Hai, HUANG Hai-jun. Mathematical and economic theory of 
road pricing [M]. Elsever, 2005. 

[14] SANTOS G. The London congestion charging scheme [M]// 
RICHARDSON H W, BAE C H C. Chapter 8: Road congestion 
pricing in Europe—Implications for the United States. Edward Elgar 
Publishing, 2008: 159−175. 

[15] MENG Qiang, YANG Hai. Benefit distribution and equity in road 
network design [J]. Transportation Research Part B: Methodological, 
2002, 36(1): 19−35. 

[16] YANG Hai, ZHANG Xiao-ning. Multiclass network toll design 
problem with social and spatial equity constraints [J]. Journal of 
Transportation Engineering, 2002, 128(5): 420−428. 

[17] SUMALEE A, MAY T, SHEPHERD S. Comparison of judgmental 
and optimal road pricing cordons [J]. Transport Policy, 2005, 12(5): 
384−390. 

[18] MARUYAMA T, SUMALEE A. Efficiency and equity comparison of 
cordon and area-based road pricing schemes using a trip-chain 
equilibrium model [J]. Transportation Research Part A: Policy and 
Practice, 2007, 41(7): 655−671. 

[19] YIN Y. Multiobjective bilevel optimization for transportation 
planning and management problems [J]. Journal of Advanced 
Transportation, 2002, 36(1): 93−105. 

[20] CHEN A, SUBPRASOM K, JI Z. A simulation-based multi-objective 
genetic algorithm (SMOGA) procedure for BOT network design 
problem [J]. Optimization and Engineering, 2006, 7(3): 225−247. 

[21] SHARMA S, MATHEW T V. Multiobjective network design for 
emission and travel-time trade-off for a sustainable large urban 
transportation network [J]. Environment and Planning B: Planning 
and Design, 2011, 38(3): 520−538. 

[22] CHEN A, XU X D. Goal programming approach to solve the 
stochastic multi-objective network design problem [M]. Network 
Reliability in Practice. New York: Springer, 2012: 151−170. 

[23] YIN Y, LI Z C, LAM W H K, CHOI K. Sustainable toll pricing and 
capacity investment in a congested road network: A goal 
programming approach [J]. Journal of Transportation Engineering, 
2014, 140(12): 04014062. 

[24] WANG Shuai-an, MENG Qiang, YANG Hai. Global optimization 
methods for the discrete network design problem [J]. Transportation 
Research Part B: Methodological, 2013, 50(4): 42−60. 

[25] SHEFFI Y. Urban transportation networks: Equilibrium analysis with 
mathematical programming methods [M]. Prentice-Hall, 1985. 

[26] JAYAKRISHNAN R, TSAI W T, PRASHKER J N, 
RAJADHYAKSHA S. A faster path-based algorithm for traffic 
assignment [J]. Transportation Research Reord, 1994, 1443: 75−83. 

[27] CHEN A, JAYAKRISHNAN R. A path-based gradient projection 
algorithm: effects of equilibration with a restricted path set under two 
flow update policies [M]. Irvine: University of California, 1998. 

[28] DIAL R B. A path-based user-equilibrium traffic assignment 
algorithm that obviates path storage and enumeration [J]. 
Transportation Research Part B: Methodological, 2006, 40(10): 
917−936. 

[29] LO H K, CHEN A. Traffic equilibrium problem with route-specific 
costs: formulation and algorithms [J]. Transportation Research Part B: 
Methodological, 2000, 34(6): 493−513. 

[30] CHEN A, ZHOU Z, XU X. A self-adaptive gradient projection 
algorithm for the nonadditive traffic equilibrium problem [J]. 
Computers & Operations Research, 2012, 39(2): 127−138. 

[31] CHENG L, IIDA Y, UNO N, WANG W. Alternative quasi-newton 
methods for capacitated user equilibrium assignment [J]. 
Transportation Research Record, 2003, 1857: 109−116. 

[32] SHARMA S, MISHRA S. Intelligent transportation systems-enabled 
optimal emission pricing models for reducing carbon footprints in a 
bimodal network [J]. Journal of Intelligent Transportation Systems, 
2013, 17(1): 54−64. 

[33] WALLACE C E, COURAGE K, REAVES D, SCHOENE G, EULER 
G. TRANSYT-7F user's manual [M]. Gainesville: University of 
Florida, 1984. 

[34] SHEPHERD S, SUMALEE A. A genetic algorithm based approach 
to optimal toll level and location problems [J]. Networks and Spatial 
Economics, 2004, 4(2): 161−179. 

[35] YANG Hai, ZHANG Xiao-ning, MENG Qiang. Modeling private 
highways in networks with entry–exit based toll charges [J]. 
Transportation Research Part B: Methodological, 2004, 38(3): 
191−213. 

(Edited by YANG Hua) 


