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Abstract: Based on nonlinear failure criterion, a three-dimensional failure mechanism of the possible collapse of deep tunnel is 
presented with limit analysis theory. Support pressure is taken into consideration in the virtual work equation performed under the 
upper bound theorem. It is necessary to point out that the properties of surrounding rock mass plays a vital role in the shape of 
collapsing rock mass. The first order reliability method and Monte Carlo simulation method are then employed to analyze the 
stability of presented mechanism. Different rock parameters are considered random variables to value the corresponding reliability 
index with an increasing applied support pressure. The reliability indexes calculated by two methods are in good agreement. 
Sensitivity analysis was performed and the influence of coefficient variation of rock parameters was discussed. It is shown that the 
tensile strength plays a much more important role in reliability index than dimensionless parameter, and that small changes occurring 
in the coefficient of variation would make great influence of reliability index. Thus, significant attention should be paid to the 
properties of surrounding rock mass and the applied support pressure to maintain the stability of tunnel can be determined for a given 
reliability index. 
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1 Introduction 
 

Because of its practical importance, the analysis of 
tunnel stability has received great attention in the 
literature. Limit analysis theory have been successively 
applied to the study of this problem. FRALDI and 
GUARRACINO [1−3] firstly introduced an exact 
solution for the evaluation of collapse mechanisms in the 
cross-section tunnel. The collapse mechanism of tunnel 
vault established under three-dimensional condition. The 
works are of significant importance but they ignored the 
supporting pressure when the virtual work equation 
performed. YANG et al [4−7] extended this collapse 
mechanism and other factors were considered in their 
researches. Based on the previous studies and through a 
detailed analysis, this work presents a more practical 
collapse mechanism of tunnel vault under three- 
dimensional condition. 

Over the decades, reliability assessments have been 
widely used to evaluate the stability of tunnels. In 
reliability analysis, the first-order reliability method 
(FORM) and Monte Carlo method are frequently applied. 
MOLLON et al [8−10] studied the failure probability of 

tunnel face stability via the FORM with reference to 
Mohr-Coulomb failure criterion. This work presents an 
analysis of the possible collapse of tunnel roof in Hoek- 
Brown rock mass. Random variables are considered as 
independently distributed to compute the reliability index 
and the probability of failure of the tunnel. Sensitivity 
analysis and the study of the coefficient of variation and 
partial safety factors are also performed. 
 
2 Three-dimensional limit analysis of tunnels 

with nonlinear criterion 
 
2.1 Nonlinear Hoek−Brown criterion 

Hoek and Brown introduced their failure criterion 
which links the equation to the actual characteristics of 
the rock mass in 1980. The criterion started from the 
research of intact rock so it was generally used to 
evaluate tightly interlocked hard rock mass. Factors were 
then introduced to Hoek−Brown criterion on the basis of 
the characteristics of joints in a rock mass. Through 
decades of development, the latest Hoek−Brown 
criterion defined by [11−12] 

 

1 3 ci b 3 ci( / )am s                          (1) 
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where σ1 and σ3 are the major and minor effective 
principal stresses at failure; σci is the uniaxial 
compressive strength of the intact rock material; mb , s 
and a are material constants, where s=1 for intact rock. 
On the other hand, Hoek−Brown criterion can also be 
used to relate normal and shear stresses. In this situation, 
Hoek−Brown criterion can be defined by  
 

n t
ci

ci

B

A
 

 


 
  

 
                          (2) 

 
where A and B are material constants; σn is the normal 
effective stress, and σt is the tensile strength of the rock 
mass. Hoek-Brown failure criterion was widely used to 
analyze the property of rock mass [13−15]. In applying 
the Hoek-Brown failure criterion, expressed in effective 
stress terms, to practical design problems it is necessary 
to determine the property of the rock mass. There is no 
preferred failure direction in Hoek−Brown criterion and 
the rock mass is treated as isotropic. For these features, 
Hoek-Brown criterion can be used to incorporate real 
rock properties in a limit analysis procedure. 
 
2.2 Limit analysis theory 

Limit methods, including limit analysis method, 
limit equilibrium method, and slip line method are based 
on closely simple model of soil, and their major 
advantage is to solve the stability problem of rock−soil. 
In these methods, both limiting equilibrium method and 
slip line method focus on stress equilibrium and yield 
condition rather than on the fact that stress-stain 
relationship is the fundamental element in continuum 
theory of solid. As a matter of fact, the main difficulties 
arising in these methods lie in modeling and validation of 
results. Essentially, the boundary condition of rock-soil 
should include both stress and strain in order to get 
relatively precise consequence. Limit analysis was 
studied as a subtopic in metal plastic theory. Unlike the 
methods given above, limit analysis method regards 
rock-soil as ideal elastic-plastic material and the 
relationship between stress and strain was introduced to 
the stability analyses of rock-soil in the associated flow 
rule. YANG et al [16−19] had extensively applied limit 
analysis in stability analysis of tunnels and rock slopes. 
Specifically, limit analysis theory is composed of two 
parts as upper bound theorem and lower bound theorem 
and the upper bound theory could be concluded. In a 
kinematically admissible velocity field which satisfies 
the velocity boundary condition and the compatibility 
between the strain rates and velocity, according to virtual 
work-rate equation [20−22]: 

 
* *d d dij ij i i i iV S V

v TV s X V v                      (3) 
 
where 

*
ij  and 

*
ij  are the rate of stress and the rate of 

train in a kinematically admissible velocity field 
respectively; Ti and Xi are the surface force and the body 
force of studied object, respectively; Vi is the velocity 
vector in a kinematically admissible velocity field. The 
determined load Ti and Xi are not lower than the collapse 
load. 
 
2.3 Three-dimensional failure mechanism 

FRALDI and GUARRACINO [1−3] firstly 
introduced an exact solution in the realm of the plasticity 
for the evaluation of collapse mechanisms in the cross- 
section of a rectangular tunnel. The advantage of the 
procedure lies in the extreme simplicity of the 
calculations required, which can give a meaningful 
physical insight into the parameters that hold the 
problem at hand. This method focuses on the kinematic 
of collapse rather than on the onset of plasticity, so it is 
precisely correspond to the actual collapse mechanism. 
Besides the Hoek−Brown criterion, other nonlinear 
failure criterion [23−26] was also applied in the analysis 
of failure mechanism. With reference to previous 
achievements, the collapse mechanism of tunnel vault 
was established in three-dimensional condition. Their 
works are of significant importance but they ignored the 
supporting pressure when equating the rate of external 
work with the rate of internal dissipation of energy. In 
tunnel engineering, supporting pressure offered by tunnel 
lining is a significant factor which may greatly influence 
the collapse mechanism. 

Based on the previous studies [27−29] and through 
a detailed analysis, this work presents a more practical 
collapse mechanism of tunnel vault under three- 
dimensional condition. In this work, a deep buried 
rectangular tunnel was taken into analysis and the work 
rate of supporting pressure was used in the virtual work 
equation. Additional, the surrounding rock mass is 
supposed to be completely uniform. 

With reference to Hoek−Brown failure criterion, 
plastic potential, ξ, can be written in the form as 

 
1

n c n t c[( ) ]BA                            (4) 
 
where A and B are dimensionless parameters 
characterizing the rock mass; τn and σn are shear stress 
and principal effective stress, respectively; σc and σt are 
the compressive and tensile stresses at failure, 
respectively. 

According to flow rule and the physical equation of 
collapse surface, the dissipation density of the internal 
forces on the detaching surface at impending collapse is 
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Fig. 1 Profile of three-dimensional collapse 

 
where f ′(x) is the first derivative of the unknown 
detaching curve in X−Z plane; v is the velocity of 
collapse rock mass. A dot denotes differentiation with 
respect to time. The lateral area of collapsing rock mass 
is: 
 

2

0
2π 1 ( ) d

L
S x f x x                        (6) 
 

The rate of internal dissipation of energy in 
collapsing surface is 
 

1
11

c t0
2 { [ ( )] (1 ) } d

L
B

DP x ABf x B v x          (7) 
 

Gravity power is: 
 

0 2π ( ) d
L

P x f x v x                             (8) 
 
where ρ is the weight per unit volume of the rock mass; 
L is the radius of the collapsing underside. The power of 
supporting pressure is 
 

2πq qP L v                                 (9) 
 

The rate of internal dissipation of energy minus the 
rate of external work so a function is defined as 

 
[ ( ), ( ), ] D qf x f x x P P P                     (10) 

 
It can also be written as 
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where
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2
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   The first variation of the total dissipation 

[ ( ), ( ), ]f x f x x  can be written as  
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that is 
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After twice integrations, the form of collapsing 

curves f(x) is 
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where h is the maximum height of the collapsing block. 
By equating the total dissipation Eq. (11) to zero and by 
means of some algebraic manipulations: 
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Let f(L)=0, there is 

 

t
1 2

( )q
B

h
B

 



                            (16) 

 
The collapsing curve f(x) in cross-section is then 

obtained as 
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Expanding previous work to three-dimensional 

collapse mechanism, the equation of detaching curve is 
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3 Reliability analysis of tunnels based on 

principle of maximum entropy 
 
3.1 Principle of maximum entropy 

The entropy of random variables means its 
uncertainty in the whole definition region. The greater 
value of entropy indicates the greater uncertainty of 
random variables. This is the so called principle of 
maximum entropy. According to the principle of 
maximum entropy, we can pick up such a distribution 
whose entropy could reach its maximum in order to 
obtain a distribution which is closer to the real 
distribution of random variables [30−34]. 

For continuous random variable X, entropy can be 
defined as 

 
( ) ln ( )d

R
H f x f x x                         (19) 
 
where H is the entropy of random variable X; f(x) is the 
possibility density function of random variable X; R is 
the domain of definition. In order to get the maximum of 
target function H, Lagrange multiplier method could be 
used to construct Lagrange function. 
 

0
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where λi is Lagrange multiplier. In order to obtain the 
maximum of Eq. (20), the following equation must be 
satisfied: 
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After a purely mathematic computation, the 

function of maximum entropy can be written as 
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The constraint condition of function Eq.(7) is 
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By substituting Eq.(8) into Eq.(9), there is 
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n

i i
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( 0,  1,  2,  ,  )i n                       (24) 
 

Equation (24) could be solved via Newton iteration 
method, probability density function f(x) can be obtained 
by substituting λi into Eq. (22). 

According to recent research achievement, it can be 
concluded that: 1) when the mean value and the variance 
of random variable X are constant, the probability density 

function (PDF) of X obeys the normal distribution; 
2)when the geometric mean and the logarithmic standard 
deviation of random variable X are constant, the PDF of 
X obeys the lognormal distribution. In later discussion, 
the PDF of rock-soil parameters is assumed to be 
normally distributed or lognormally distributed with 
regard to the principle of maximum entropy. 
 
3.2 Reliability analysis of tunnels 

The first order reliability method (FORM) was 
firstly proposed, and was found of high acceptance as an 
approximation technique to assess the reliability of 
structure. Design point method was recommended by 
joint committee on structural safety (JCSS) so it is also 
called JCSS method. 

In order to apply Rackwitz and Flessler method (RF 
method), non-normal random variables should generally 
transformed into standard normal ones through 
equivalent normalize transformations. According to 
equivalent normalization conditions, mean value 

iX   
of equivalent normal distribution is: 

 
' '

* 1 *[ ( )]
ii i

i X iX X
x F x                       (25) 

 
And standard deviation '

iX
  of equivalent normal 

distribution is 
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where Φ(·) is the standard normal distribution function; 
and f(·) can be obtained from the table of standard 
normal distribution. After the equivalent normalization, 
the calculation steps of reliability index β can be 
calculated by following procedures. 

Firstly, let the limit state equation be composed of 
several mutually independent random variables. 
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* * *
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The new value of 

*
iX should be substituted into 

computation steps (Eqs. (27) to (31)) until a constant 
*
iX occurred. In fact, errors may happen through 
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equivalent normalize transformations so that Monte- 
Carlo simulation method (MCSM) was also widely used 
in engineering. 

In MCSM, large amounts of samples are generated 
according to the probability density of each variable. 
MCSM was supposed to be a relatively accurate method. 
According to the law of large numbers, we assume x1, 
x2, …, xn as individual random variables that obey to the 
same distribution. In another word, x1, x2, …, xn have the 
same mathematic expectation of μ and variance σ2. So, 
for any ε>0, there is 

 

1

1
lim 0

n

i
n i

P x
n

 
 

     
  
                    (32) 

 
Supposing in the n-times individual experiments, 

the frequency that event A occurs is m/n. For any ε>0, 
there is: 

 

lim ( ) 1
n

m
P P A

n




 
   

 
                    (33) 

 
where P(A) expresses the possibility that random 

event A occurred. In order to employ Monte-Carlo 
method to calculate the reliability index, we should 
presume the distribution type of random variables which 
influence the reliability of structure; use rational 
procedure to sample these random variables and 
substitute them to structure function; and count the 
number of times that structure failed to fing the 
frequency that structure failed is nf in the n-times 
individual experiments. The reliability of structure could 
be regard as 

 
s f f1 1 /R P n n                             (34) 

 
The reliability index obtained by MCSM could be 

seen as a precise value when the sample size of MCSM 
is big enough. The key to MCSM procedure lies in the 
generation of random variables. In this work, several 
small procedures based on MATLAB have been coded to 
calculate the reliability index according to MCSM. 
 
3.3 Reliability analysis model of supporting pressure 

According to the failure mechanism given above, it 
is easy to figure out the pressure caused by collapse 
block, so the minimum support pressure can be 
determined with reference to the degree of reliability. By 
following a purely geometry calculation, the weight of 
collapse block can be written as 
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Assuming the support pressure in the area of 
collapsing rock mass is 
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Let the weight of collapse block equals the 
corresponding support pressure, then 

 
2πq L G                                   (37) 

 
After necessary simplification, one can get 
 

t /(1 )q B                                (38) 
 

With reference to calculations above, the minimum 
support pressure that rectangular tunnel needed to 
maintain stability depends on the parameters of 
surrounding rock mass. It can also be written in the form 
as t( , ).q f B   

The aim of this paper is to perform a reliability 
analysis of the vault of deep buried rectangular tunnel. 
Due to the fact that the properties of rock mass are 
generally varied within a relatively wide range, objective 
function t( , )q f B  was solved by deterministic 
reliability requirement in different surrounding rock 
mass. The minimum results obtained are the necessary 
support pressure that rectangular tunnel needed to avoid 
collapse. 

The deterministic failure model is based on the 
upper-bound method of the limit analysis theory. 
According to the objective function t( , ),q f B   
scalar parameter B and tensile strength σt are assumed as 
random variables in the calculations. The performance 
function utilized in reliability analysis is given as  

0q gig                                 (39) 
 

where σq is the support pressure and σgi  is the weight of 
collapsing rock mass. 

One may use another form of performance function 
/ 1 0.q gig      However, this leads exactly to the 

same value of the reliability index. In summary, the 
reliability model of deep buried rectangular tunnel can be 
defined as  

 s ( ) 0R P g X                             (40) 

 
4 Probabilistic numerical results 
 

For the analysis above, the minimum support 
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pressure to maintain stability has significant correlation 
to the properties of surrounding rock mass. In particular, 
the difficulty of finding acceptable parameters for the 
given rock mass has been a problem since the publication 
of the Hoek-Brown criterion in 1980. In order to 
guarantee the accuracy of reliability index, both RF 
method and MCSM were adopted to analyze complex 
random variables, and the results obtained by these 
methods were then used for mutual authentication. In the 
following calculations, supporting pressure was 
substituted in the computation of reliability index as a 
random variable. By varying the applied support pressure, 
different reliability index and partial safety factors are 
calculated. 

In the calculation to determine the reliability index 
corresponding to the given failure mechanism, the basic 
random variables should be identified firstly. As 
discussed above, the necessary supporting force given by 
tunnel lining only associated with tensile strength σt and 
dimensionless coefficient B of rock mass. In realistic 
geological environments, those parameters generally 
varied within a relatively wide range. For the probability 
distribution of those random variables, two cases are 
studied in the later discussion. In the first case, referred 
as to normal variables, σt and B are considered as normal 
variables. In the second case, referred to as non-normal 
variables, σt and B are considered to be lognormally 
distributed and these cases are listed in Table 1 in detail. 
It is also necessary to point out that the value of those 
two parameters are slightly lower than the typical 
properties for the average quality rock mass given by 
HOEK et al [11] and all the random variables are 
assumed to be independent. However, σq is regarded as 
normal variables in the calculation of both cases and the 
coefficient of variation is defined as 0.1 according to 
engineering data. 
 

Table 1 Statistical values of random variables used in analysis 

Parameter Case 1  Case 2 

Random 
variable 

σt/kPa B  σt/kPa B 

Mean value 100 0.7  100 0.7 

Coefficient 
of variation 

0.15 0.1  0.15 0.1 

Distribution 
type 

Normal 
distribution 

Normal 
distribution 

 
Lognormal 
distribution 

Lognormal 
distribution

 
In order to determine the reliability index by the 

proposed algorithm, several small computer procedures 
have been coded to handle the repeatedly computation 
and iteration. In these calculations, support pressures are 
varied from 60 to125kPa to assess the influence of 
support pressure on the reliability results. Results are 
listed in Table 1. 

For the failure mechanism given above, the collapse 
pressure of rock mass corresponding to normal variables 
was 58.823 kPa. On the other hand, for the lognormal 
variables, the collapse pressure was found to be   
58.944 kPa. 

Figure 2 shows that the plot of the reliability index 
versus the support pressure σq for both normal and 
non-normal rock parameters. It is easily observed that the 
reliability index increases with an increasing support 
pressure. One can also conclude that the results of 
non-normal variables are smaller than the one of normal 
variables so that supposing parameters to be lognormally 
distributed is conservative. For instance, results show 
that, when the support pressure is 120 kPa, the reliability 
index based on normal distributed parameters is 4.0 
while the one based on lognormally distributed 
parameters is 3.75. It is also necessary to point out that 
the difference of reliability index between case 1 and 
case 2 is growing greater with the increase of support 
pressure. These results are of great importance, one can 
determine a target reliability index and then the 
minimum supporting pressure to maintain stability is 
able to be obtained. 
 

 
Fig. 2 Reliability index versus σt for normal and non-normal 

variables 

 
The values of the design points corresponding to 

increasing applied support pressure can give results of 
the partial safety factors of rock parameters σt and B as 
follows: 

 

t

*
t t /F                                  (41) 

 

B B/F B                                 (42) 
 

Table 2 shows the Rackwitz-Fiessler reliability 
index and the corresponding design point for increasing 
applied support pressure. All these results for normal and 
non-normal rock parameters are presented. In both cases, 
the partial safety factors increases with the applied 
support pressure varies from 60 to 125 kPa. This table 
also presents the tendency of partial factors according to 
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increasing support pressure. In both case, the value of Ft 
is increasing with the increase of applied support 
pressure, while the value of FB is slightly decreases. The 
value of Ft varies from 1 to 1.5, and the value of FB is 
always slightly less than 1. As can be seen from the 
different values of reliability index β in two cases, it is 
clear that supposing σt and B as lognormally distributed 
variables is conservative to assuming as normally 
distributed variables. For partial safety factors, FB 
obtained in case 1 is always smaller than the one in case 
2; to the contrary, Ft obtained in case 2 is always smaller 
than the one in case 1. 
 
Table 2 Reliability index, design point, and partial safety 

factors 

Case σq/kPa β B* /*
t kPa FB Ft 

1 

58.823 0 0.7 100 1 1 

60 0.1074 0.698 101.299 0.997 1.0129

70 0.9647 0.684 111.058 0.977 1.1105

80 1.7267 0.671 118.769 0.958 1.1876

90 2.4023 0.659 124.781 0.942 1.2478

100 3.0012 0.649 129.405 0.928 1.2940

110 3.5323 0.642 132.906 0.917 1.3290

120 4.0043 0.636 135.503 0.908 1.3550

125 4.2205 0.6335 136.519 0.905 1.3651

2 

58.944 0 0.7 100 1 1 

60 0.143 0.6901 100.613 0.985 1.006

70 0.972 0.678 111.004 0.968 1.110

80 1.680 0.6683 120.386 0.954 1.204

90 2.295 0.6604 128.835 0.943 1.288

100 2.836 0.654 136.410 0.934 1.364

110 3.318 0.6486 143.158 0.926 1.431

120 3.750 0.6442 149.117 0.920 1.491

125 3.950 0.6423 151.812 0.917 1.518

 

5 Influence factor analysis and result 
discussions 

 
5.1 Influence of coefficient of variation 

An additional practical problem is that the 
coefficient of variation (COV) of rock parameters always 
varies in a large range. For the better understanding of 
the influence of COV on reliability index, different 
statistical properties of random variables have been 
employed in the following research. In these researches, 
different values of COV of σt and B were used in the 
calculation of reliability index. As can be seen in Figs. 3 
and 4, the COV of σt (or B) varies from 0.05 to 0.25 with 
a constant value of B (or σt) in case1 and case 2 to 
compute the reliability index. 

Figures 3 and 4 show that the increase of COV of σt 
and B would cause the decrease of reliability index. For 
instance, with an applied support pressure of 120 kPa in 
case 1, the reliability index decreases from 4.839 to  

 

 
Fig. 3 Influence of coefficient of variation on reliability in Case 

1: (a) COV of σt; (b) COV of B 

 

 
Fig. 4 Influence of coefficient of variation on reliability in Case 

2: (a) COV of σt; (b) COV of B 
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3.154 when the COV of σt varies from 0.05 to 0.25. 
The decreases occur in case 2 by the change of 

COV are even more amazing. With the applied support 
pressure equals to 120 kPa, the reliability index 
decreases by 44.2% (4.84 to be compared to 2.70) if the 
COV of σt changes from 0.05 to 0.25. One can also 
observe that the same change happens in the COV of σt 
makes greater influence of reliability index than that of 
dimensionless parameter B in both case 1 and case 2. We 
can conclude that the COV of random variables 
(especially σt) would result in huge impact on reliability 
index so that great attention should be paid to the tensile 
strength. 
 
5.2 Sensitivity discussions 

The sensitivity factors give the importance of 
different variables in valuing reliability so that sensitivity 
analysis plays an increasingly vital role in reliability 
based design. Since KIUREGHIAN firstly indicated how 
to compute the sensitivity of the random variables, many 
approaches came up in recent studies. This paper chooses 
cosθXi to assess the relative importance of different 
affecting parameters, as shown in Eq.(28). The 
calculation results are listed in Table 3, where γt and γB 
represent the sensitivity of σt and B, respectively. 

 
Table 3 Sensitivities and design points for different support 

pressures 

σq/kPa 
Case 1  Case 2 

γt γB  γt γB 

60 0.8061 −0.2244  0.8082 −0.2207

70 0.7642 −0.2352  0.7965 −0.2152

80 0.7247 −0.2404  0.7847 −0.2102

90 0.6877 −0.2413  0.7726 −0.2055

100 0.6532 −0.2391  0.7601 −0.2010

110 0.6211 −0.2346  0.7473 −0.1966

120 0.5911 −0.2285  0.7341 −0.1923

 
As expected, the absolute value of γt is nearly three 

times larger than γB so it can be easily concluded that 
tensile strength σt plays a much more important role in 
reliability index. In both two cases, γt generally decreases 
with the increasing value of applied support pressure 
while γB only changes a little. With the support pressure 
increases from 60 to 120 kPa, the value of γt decreases by 
26.7% (0.8061 to be compared to 0.5911), and the value 
of γB only changes from −0.2244 to −0.2285. It means 
that the influence of σt on reliability index is growing 
down on the condition of higher support pressure. One 
can also observe that the decreasing rate of γt in case 1 is 
faster than that in case 2, so great attentions should also 

be paid when variables are assumed as lognormally 
distributed. 
 
5.3 Failure probability 

In recent study of reliability problems, Monte-Carlo 
simulation method (MCSM) was considered as an 
efficient and accurate tool. In this work, MCSM was also 
selected to evaluate failure probability Pf according to 
different applied support pressure, but also to check the 
accuracy of RF method. As mentioned above, the 
accuracy of results obtained by MCSM based on the 
number of Monte-Carlo sample size. At first, a small 
research has been taken to test whether the sample size 
of Monte-Carlo simulation method is enough. In this 
research, the coefficient of variation (COV) of the failure 
probability versus the different sample sizes of MCSM 
was obtained when the applied support pressure equals to 
80 kPa. Some computer programs have been written in 
MATLAB for these computations. In these procedures, a 
large amount of samples can be generated for the 
estimation of failure probability. Figure 5 plots the 
convergent tendency of COV of the failure probability. 

 

 
Fig. 5 Coefficient of failure probability versus number of 

samples for correlated variables as given by MCSM 

 

In both two cases, COV of the failure probability 
generally decreases with the increasing number of 
Monte−Carlo sample size. As can be seen from Fig. 5, 
the value of COV becomes smaller than 2% in both cases 
when the sample size increases to 20×104. What’s more, 
with the sample size comes to 40×104, the corresponding 
value of COV of failure probability was smaller than 
1%.In the following calculations, failure probability is 
obtained from MCSM with a sample size of 100×104, so 
the result can be supposed as an exact value. 

By varying the applied support pressure on tunnel 
lining, the failure probability was calculated by using RF 
method and MCSM for both two cases and the results are 
plotted in Fig. 6. As seen from Fig. 6, the plots of failure 
probability obtained by different methods are all in good 
agreement. For instance, the failure probability obtained 
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by RF method is found to be 1.3×10−4 in case 1 with an 
applied support pressure of 100 kPa, while the failure 
probability obtained by MCSM equals to 1.6×10−4. This 
observation could be a demonstration for the accuracy of 
these two methods. For this reason, both RF method and 
MCSM can be seen as accuracy tool to analyze the value 
of reliability index. With an applied support pressure of 
120 kPa, the failure probability of tunnel was less than 
1×10−4 and the corresponding reliability index is found to 
be 3.719. This value of failure probability may be seen as 
safe enough in tunnel engineering. 
 

 
Fig. 6 Comparison of failure probability obtained by RF 

method and MCSM 

 
6 Conclusions 
 

1) Based on the achievements of predecessors, the 
effective shape of the collapsing block is determined by 
equating the rate of external work with the rate of 
internal dissipation of energy. A rectangular tunnel is 
taken into three-dimensional analysis with the aim to 
construct a more practical collapse failure mode for the 
consideration of support pressure. 

2) In the consideration of the randomness of soil 
parameters and its influence, reliability theory is utilized 
to calculate the failure probability of pressurized tunnel. 
The reliability index increases with the increasing of the 
applied support pressure. According to the reliability 
analysis, acceptable reliability index can be selected and 
the minimum supporting force of tunnel to maintain 
equilibrium was then obtained. For the failure 
mechanism, the collapse pressure of rock mass 
corresponding to different parameters of surrounding 
rock mass is obtained. 

3) The small changes occurred in the coefficient of 
variation (COV) would greatly influence the reliability 
index. In the sensitivity analysis of random variables, the 
increase of COV of σt and B would result in the decrease 
of reliability index. One should also notice that tensile 
strength σt plays a much more important role in 
reliability index than dimensionless parameter B. In 

order to obtain a more precise result, the properties of 
surrounding rock should be well studied. 

4) MCSM with a sample size of 100×104 is 
employed to calculate the reliability index. The reliability 
indexes obtained by RF method and MCSM are in 
satisfactory agreement, so these methods can be seen as 
accuracy tools to analyze the value of reliability index. 
For higher applied support pressure, the collapse 
reliability index becomes more acceptable. 
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