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Abstract: This work presented the development and validation of an analytical method to predict the transient temperature field in 
the asphalt pavement. The governing equation for heat transfer was based on heat conduction radiation and convection. An 
innovative time-dependent function was proposed to predict the pavement surface temperature with solar radiation and air 
temperature using dimensional analysis in order to simplify the complex heat exchange on the pavement surface. The parameters for 
the time-dependent pavement surface temperature function were obtained through the regression analysis of field measurement data. 
Assuming that the initial pavement temperature distribution was linear and the influence of the base course materials on the 
temperature of the upper asphalt layers was negligible, a close-form analytical solution of the temperature in asphalt layers was 
derived using Green’s function. Finally, two numerical examples were presented to validate the model solutions with field 
temperature measurements. Analysis results show that the solution accuracy is in agreement with field data and the relative errors at a 
shallower depth are greater than those at a deeper one. Although the model is not sensitive to dramatic changes in climatic factors 
near the pavement surface, it is applicable for predicting pavement temperature field in cloudless days. 
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1 Introduction 
 

As a viscoelastic material, the properties of asphalt 
concrete vary due to temperature changes and 
subsequently the stress conditions of asphalt concrete 
under vehicular loading are affected [1–2]. On the other 
hand, thermal stress could be generated in the asphalt 
pavement, which may cause thermal cracking when the 
temperature decreases [3]. Therefore, pavement 
temperature is one of the most important factors that 
need to be considered in the design and analysis of 
asphalt pavement. 

In the natural environment, pavement structure 
exchanges heat with the external environment on the 
pavement surface, and the pavement temperature field is 
significantly influenced by climatic factors such as solar 
radiation, air temperature and wind speed [4]. Many 
researches were conducted on predicting pavement 
temperature with climatic data input. Some studies were 
focused on predicting the maximum temperature in the 
pavement using analytical methods [5–6]; while others 

focused on predicting pavement transient temperature 
fields [7–9]. YAN [10] proposed an analytical solution of 
temperature field in a layered pavement system with an 
assumption that the variations of climate factors were 
represented by trigonometric series. LIU and YUAN [11] 
presented an analytical solution of pavement temperature 
field in a three-layer pavement system on the basis of 
Fourier-Biot heat conduction equation. The statistical 
regression method was used by DIEFENDERFER and 
AL-QADI [12] to express the variation of pavement 
temperature when solar radiation and air temperature 
were known. Recently, WANG and ROESLER [13] 
derived an analytical solution of one-dimensional 
pavement temperature field through Laplace transform 
and inverse Laplace transform. Moreover, based on the 
assumption of the uniform initial pavement temperature, 
WANG [14] obtained an analytical solution of one- 
dimensional pavement temperature field with the 
measured pavement surface temperature. 

Generally, pavement surface temperature is treated 
as the boundary condition in the heat conduction 
equation to calculate the transient temperature field  
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within the pavement structure. In previous studies, 
different methods were used for estimating the pavement 
surface temperature. WANG and ROESLER [13] 
presented the analytical expression of surface boundary 
condition based on the conservation of energy on the 
pavement surface. Since heat exchange on the pavement 
surface is complex, some researchers developed methods 
to simplify the calculation model. For instance, LIU and 
YUAN [11] assumed that the pavement surface 
temperature could be expressed as a trigonometric series. 
WANG [14] used the measured pavement surface 
temperature as the boundary condition. Although these 
simplified methods showed reasonable accuracy, they 
could not reflect the influence of climatic factors on 
pavement temperature due to the ignorance of climatic 
data. 

In this work, an analytical method was developed to 
predict the asphalt pavement temperature field using 
dimensional analysis, field measurements, and regression 
analysis. Through analyzing the relationship between 
climatic factors and time, an innovative time-dependent 
function was proposed to represent the pavement surface 
temperature, which was used as the boundary condition 
for solving the one-dimensional heat conduction problem. 
On the assumption that the initial pavement temperature 
distribution is linear and the influence of base course 
materials to the upper asphalt layers is negligible, a 
close-form analytical solution of the temperature field in 
the asphalt layers was obtained through the Green’s 
function. Finally, two numerical examples were 
presented to validate the model solutions with field 
temperature measurements. 
 
2 Establishment of prediction model for 

pavement temperature field 
 
2.1 Heat transfer modes 

There are three heat transfer modes (i.e., radiation, 
convection and conduction) in terms of the heat transfer 
theory. In the natural environment, pavement exchanges 
heat with the external environment through thermal 
radiation and thermal convection on the pavement 
surface. At the same time, pavement layers exchange 
heat through heat conduction. 

Thermal radiation between pavement surface and 
the natural environment mainly includes solar radiation, 
atmospheric down welling long wave radiation, and 
radiation outgoing from the pavement surface [15]. Solar 
radiation and atmospheric down welling long wave 
radiation can increase pavement temperature, while 
radiation outgoing from the pavement surface will 
decrease pavement temperature. 

Solar radiation is the main heat source for pavement. 
Generally, the daily solar intensity changes with time. In 

a cloudless day, solar radiation intensity changes from 
zero to positive values at the time of sunrise, reaches the 
peak at noon, and then gradually decreases and becomes 
zero at the time of sunset [16]. In this work, the daily 
solar radiation intensity is expressed as a function of time 
as  

 
)(tQQ                                     (1) 

 
where Q is the solar radiation intensity, W/m2; Q(t) is a 
function of time t. 

The atmospheric down welling long wave radiation 
and radiation outgoing from the pavement surface are 
related to the temperature and can be expressed as Eq. (2) 
and Eq. (3), respectively [6]. 
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where qa is the atmospheric down welling long wave 
radiation, W/m2; qr is the radiation outgoing from the 
pavement surface, W/m2; εa is the atmosphere emission 
coefficient; εr is the pavement surface emission 
coefficient; σ is Stefan-Boltzman constant, 5.68×     
10–8 W/(m2·K4); Ta is the air temperature, K; Ts is the 
pavement surface temperature, K. 

Convective heat transfer between pavement surface 
and the external environment follows the Newton 
cooling formula [6] expressed as 

 
)( asc TTBq                               (4) 

 
where qc is loss energy to the air, W/m2; B is convective 
heat exchange coefficient related to the wind speed, 
W/(m2·K). 

The major heat transfer mode inside the pavement 
structure is conduction, which follows Fourier law. The 
governing equation for one-dimensional heat conduction 
model in a layered pavement can be expressed as [13] 
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where x is the depth under the pavement surface, m; t is 
time, s; i represents the i-th layer of the layered pavement 
system; Ti(x,t) represents the pavement temperature at 
time of t and depth of x, °C; αi represents the thermal 
diffusivity of layer i, m2/s. 

Accordingly, the one-dimensional pavement 
temperature field can be calculated by solving Eq. (5) 
when proper boundary conditions and initial conditions 
are applied. 
 
2.2 Dimensional analysis for pavement surface 

temperature 
Heat exchange modes on pavement surface include 

radiation and convection. According to Eq. (1) to Eq. (3), 
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the main climatic factors that influence the radiation heat 
transfer on pavement surface include solar radiation 
intensity (Q), and air temperature (Ta). The solar 
radiation intensity is an instantaneous value, which is 
influenced by the cloud cover. When the cloud cover is 
considerable, the solar radiation intensity will decrease 
dramatically [16]. On the contrary, in a cloudless day, the 
influence of accidental cloud is little. If the cloud only 
blocks the sun for a short time, the instantaneous solar 
radiation intensity may drop dramatically, but it has little 
influence on the total amount of solar radiation since the 
time is very short. Therefore, the cumulative solar 
radiation is more stable and is used to predict the 
pavement surface temperature in this work. The 
cumulative solar radiation is defined as 
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where QΔt is the cumulative solar radiation from time 
t–Δt to time t, J/m2. 

According to Eq. (4), the main climatic factors that 
influence the convection on the pavement surface include 
the wind speed and the air temperature. Because the 
variation of wind speed with time is irregular, it is 
impossible to import time-dependent wind speed in the 
analytical prediction. Therefore, wind speed is treated as 
a constant in this work. In addition, the convective heat 
exchange coefficient B can be expressed as a function of 
air properties (thermal conductivity, Prandtl number, and 
kinematic viscosity), pavement dimension, and wind 
speed [17]. When air properties and pavement dimension 
are fixed, the wind speed is the only influence factor of 
the convective heat exchange coefficient B. In this case, 
the convective heat exchange coefficient B is treated as a 
constant (i.e., the wind speed remains the same) in this 
work. 

Since the solar radiation only influences the 
pavement surface heat exchange during the daytime, the 
variation of pavement temperature during the day is 
different from that at night. In order to identify this 
difference, an innovative function shown in Eq. (7) is 
created to express the relationship between the pavement 
surface temperature and the climatic factors: 
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where F1 and F2 are undetermined functions which 
represent the climate-dependent variation of pavement 
temperature during the nighttime and daytime, 
respectively; t is time, h; t1 is the sunrise time, h; t2 is the 
sunset time, h; t3 is the length of time throughout the day, 
24 h; H(t) is Heaviside function, which is defined as 
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Considering the dimensions of temperature, mass 
and time are Θ, M, and t, respectively, the dimensions of 
the physical quantities in Eq. (7) are as follows: dim 
Ts=Θ, dim QΔt=MT–2, dim Ta=Θ. And the dimension of 
the convective heat exchange coefficient B is MT–3Θ–1. 
Based on the principle that the dimensions are uniform 
on both sides of the equation, we have 
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After the dimensionless coefficients are determined, 
the prediction equation of pavement surface temperature 
is given by 
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where k1, k2 and k3 are the coefficients, which are 
dimensionless; Ta1 is the air temperature at a certain 
time, °C. 

At t=t1, the solar radiation starts to influence the 
pavement surface temperature, and meanwhile the value 
of cumulative solar radiation is still zero. In order to 
ensure the continuity of Eq. (10), the values of k3·Ta1 
should be equal to k1·Ta at t=t1. Therefore, Ta1 represents 
the air temperature at the time of t1, and k3=k1. Thus,  
Eq. (10) can be reduced to Eq. (11) as 
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where BΔt is the definite integral of B from the time of 

t–Δt to the time of t, namely, 
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2.3 Parameter determination with field data and 

regression analysis 
In order to obtain the parameters of k1, k2 in Eq. (11) 

and validate the prediction model of pavement surface 
temperature, field test was conducted to measure the 
related data, including pavement surface temperature, 
pavement temperature at different depths, cumulative 
solar radiation, and air temperature. 

The field test site locates at the G225 highway 
(109.8° east longitude, and 19.8° north latitude) in 
Hainan Province of China. The pavement structure is 
listed in Table 1. The annual average temperature varies 
from 24.2 ºC to 25.0 ºC and the local annual average 
wind speed varies from 1.5 m/s to 2.5 m/s, respectively. 
The annual total solar radiation is about 5790 MJ/m2. 

Three pavement cross-sections were included in the 
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Table 1 Pavement structure pattern 

Layer No. Material variation Thickness/cm

1 Asphalt concrete (AC-13) 4 

2 Asphalt concrete (AC-20) 8 

3 Modified graded gravel 15 

4 Cement stabilized crushed stone 30 

5 Soil — 

 
field measurement. For each cross-section, seven 
platinum resistance temperature sensors (with a range of 
0–80 ºC and the accuracy of ±0.5 ºC) were used to 
measure the pavement temperature at different depths, 
and the TBQ-2 solar radiation intensity meter (with a 
range of 0–2000 W/m2 and the accuracy of ±2%) was 
used to measure the cumulative solar radiation. The 
measured data were automatically stored once every    
5 min and 10 min for temperature and cumulative solar 
radiation, respectively. The depths of the temperature 
sensors were at 0 (pavement surface), 4, 6, 8, 10 and   
12 cm from the pavement surface. 

The cumulative solar radiation QΔt can be measured 
in the field test. CHEN et al [18] analyzed the correlation 
between cumulative solar radiation and pavement surface 
temperature when the cumulative time (Δt in Eq. (6)) 
changes, and found that the maximum correlation 
coefficient could be reached when Δt=4 h. Therefore, the 
Δt=4 h was used in this work. Since the wind speed is 
assumed to be constant in this work, BΔt is only related to 
Δt, and is a constant for Δt=4 h. When the wind speed is 
equal to the average wind speed (i.e. 2 m/s) in the field 
test site, the convective heat exchange coefficient B is 
equal to 12.9 W/(m2·ºC) [19]. Accordingly, BΔt is 1.9× 
105 J/(m2·ºC). 

Based on Eq. (11), the values of parameters k1 and 
k2 can be obtained through field test and regression 
analysis. According to the field test results from July, 
2011 to February, 2012, the values of k1, k2 were valued 
as 1.13 and 0.28 respectively in cloudless days. 
 
3 Derivation of analytical solutions 
 

The temperature inside the pavement structure is not 
directly influenced by the external environment. 
Different parts of pavement structure exchange heat 
through heat conduction. Neglecting the heat transfer in 
the horizontal direction of the pavement, the governing 
equation for one-dimensional heat conduction model in a 
layered pavement can be expressed by Eq. (5). The 
interlayer thermal contact conditions and different 
thermophysical parameters for each layer are needed for 
solving Eq. (5). Therefore, the explicit expression of 
pavement temperature has not been obtained in previous 
studies. 

Previous studies showed that the thermal properties 
of base course materials influence the base course 
temperature obviously, but have little effect on the 
temperature of the upper surface courses [10]. Compared 
with base course materials, thermal properties of asphalt 
layers have controlling impact on temperature field in the 
asphalt layer. Since this work is focused on the 
temperature field of asphalt layer but not base course, the 
difference in thermal properties of base materials is 
neglected to simplify the model. This simplification is 
proved to be acceptable after the calculated temperature 
is validated with the measured data presented in the next 
section. On the basis of the above assumption, the 
governing equation for one-dimensional heat conduction 
model is given by 
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The boundary conditions and the initial condition 

can be given by 
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where f(t) represents pavement surface temperature 
varying with time; g(t) represents the pavement 
temperature at the depth of l varying with time; φ(x) 
represents the pavement temperature varying with the 
depth x for t=0. 

Given the following partial differential equation as 
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and combining the conditions (Eq. (13)–Eq. (15)), 

the solution of Eq. (16) can be obtained through Green’s 
function and variable separation method as 
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where G represents Green’s function and Gξ represents 
the partial derivative of ξ in Green’s function, expressed 
as 
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Equation (17) gives the general form solution for 

the heat transfer model and can be found in some heat 
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transfer textbooks [20]. However, in order to apply it in 
pavement temperature prediction, two issues should be 
solved. First, the detailed functions of boundary and 
initial conditions should be established. These functions 
should actually reflect the pavement heat transfer 
conditions. Second, it should be ensured that when the 
detailed functions of boundary and initial conditions are 
applied, Eq. (17) can be solved, and the detailed solution 
should be derived. These issues are solved by the authors 
in the following sections. 

For the one-dimensional heat transfer model, 
F(x,t)≡0. Thus, Eq. (17) can be simplified as 
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Before calculating Eq. (20), Eq. (13) to Eq. (15) 
should be determined first. 

According to the field test, the variation of QΔt 
(Δt=4 h) in a cloudless day is shown in Fig. 1. 
 

 
Fig. 1 Variation of cumulative value of solar radiation in a 

cloudless day 

 
The variation of QΔt can be expressed with a 

function that is similar to the normal distribution 
function, expressed as [18] 
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where a, b and c are parameters needed to be determined. 

During most of time at night, the cumulative solar 
radiation value is zero (Fig. 1). However, the function 
shown in Eq. (21) is greater than zero during the whole 
day, which is inconsistent with the actual situation. 
Moreover, since Eq. (21) is not a periodic function, the 
periodic variation of solar radiation cannot be simulated. 
Therefore, the variation of QΔt with time is expressed 
with a half-sine function, and Heaviside functions are 
used to ensure QΔt to be zero during a certain period. 
This function is expressed as 

 
)]()()[(sin 211 tttHttHttAQ t         (22) 

where A is the peak value of the cumulative solar 
radiation, which is theoretically equal to the cumulative 
solar radiation when t=0.5(t1+t2+Δt), J·m–2; ω is angular 
frequency and ω=2π/[2(t2+Δt–t1)]=π/(t2+Δt–t1). 

According to field test results, the variations of air 
temperature Ta with time are shown in Fig. 2 and Fig. 3. 
 

  
Fig. 2 A typical variation of air temperature with time (0<t< t1) 

 

  
Fig. 3 A typical variation of air temperature with time (t2<t<t3) 

 
According to Fig. 2 and Fig. 3, during the time 

periods of t–t1 and t2–t3, the air temperature can be 
expressed as linear functions of time. However, the 
parameters are different in each period. Based on the 
regularity mentioned above, Eq. (23) and Eq. (24) are 
used to simulate the relationships between air 
temperature and time in different periods.  

141a )0( btkttT                          (23) 
 

2532a )( btktttT                         (24) 
 

where k4, k5, b1 and b2 are parameters. 
Substituting Eq. (22) to Eq. (24) into Eq. (11), the 

variation of pavement surface temperature with time can 
be obtained. Considering [H(t–t1)–H(t–t2–Δt)]·[H (t–t1)– 
H(t–t2)]=[H(t–t1)–H(t–t2)], the boundary condition in  
Eq. (13) can be expressed as 
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With the increasing of depth, the influence of the 
natural environment to the pavement temperature 
decreases, and the pavement temperature becomes more 
stable. Therefore, at a certain depth (critical depth), the 
road structure (not necessarily asphalt layer) temperature 
can be treated as constant within a day [14]. It is 
assumed that the depth l in Eq. (14) is the critical depth, 
and the boundary condition in Eq. (14) can be given by 
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where Tl is the constant temperature at the critical depth 
of l, °C. 

According to Eq. (15), pavement temperature at t=0 
should be expressed as a function of depth. The field test 
shows that the variation of pavement temperature with 
depth is approximately linear at t=0. It demonstrates that 
the assumption of expressing Eq. (15) with linear 
functions is reasonable. Accordingly, by combining   
Eq. (25) and Eq. (26), Eq. (15) can be expressed as  
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All the boundary conditions and initial conditions 

required to solve Eq. (12) have been determined (i.e.  
Eq. (25) to Eq. (27)). Here, three equations are 
introduced as 
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Thus, Eq. (20) can be expressed by 
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Substituting Eq. (18) and Eq. (27) into Eq. (28),  
Eq. (28) can be expressed by 
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Substituting Eq. (19) and Eq. (25) into Eq. (29),  

Eq. (29) can be expressed as Eq. (33) for 0≤t<t1.  
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For t1≤t<t2, Eq. (29) can be expressed by  
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For t2≤t<t3, Eq. (29) can be expressed by  
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Therefore, the expression of T2(x,t) during different 

time periods can be expressed as follows: 
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Substituting Eq. (19) and Eq. (26) into Eq. (30),  
Eq. (30) can be expressed by 
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Thus, substituting Eq. (32) and Eq. (36) to Eq. (41) 

into Eq. (31), the analytical solution of pavement 
temperature field can be obtained. 
 
4 Model validations with field measurements 
 

The developed solution method and calculation 
results were compared with field measurements for 
model validation. The air temperature and solar radiation 
collected on August 6, 2011 and November 13, 2011 was 
taken for analysis. Parameters needed in the calculation 
of pavement temperature on surface and at various 
depths are listed in Table 2 and Table 3. 

The pavement surface temperature was calculated 
using Eq. (11) and the calculated temperature values 
were compared with the measured values, as shown in  
Fig. 4(a). The calculated and measured pavement 
temperatures at different depths are shown in Figs. 4(b)– 
(f). 
 
Table 2 Parameters for calculating pavement surface 

temperature 

Parameter Date Value Source 

BΔt/(MJ·m–2·ºC–1) — 0.19 Ref. [18] 

k1 — 1.13 Regression

k2 — 0.28 Rregression

t1/h 2011–08–06 6.8 Field test 

t1/h 2011–11–13 7 Field test 

t2/h 2011–08–06 18 Field test 

t2/h 2011–11–13 17.7 Field test 

Table 3 Parameters for calculating pavement temperature at 

various depths 

Parameter Date Value Source 

α/(m2·s–1) — 0.0021 Ref. [14] 

b1 2011–08–06 29.5 Field test 

b1 2011–11–13 21.6 Field test 

b2 2011–08–06 50.6 Field test 

b2 2011–11–13 52.7 Field test 

k4 2011–08–06 -0.52 Field test 

k4 2011–11–13 -0.4 Field test 

k5 2011–08–06 -0.94 Field test 

k5 2011–11–13 -1.3 Field test 

A 2011–08–06 18.7 Field test 

A 2011–11–13 13.8 Field test 

Tl/ºC 2011–08–06 28 Ref. [21] 

Tl/ºC 2011–11–13 26 Ref. [21] 

 

The relative errors between the calculated and 
measured pavement surface temperatures are listed in 
Table 4 in terms of the maximum relative errors and the 
average relative errors. It can be seen from Table 4 that 
the maximum relative errors in the two examples are 
8.84% (total error 3.8 ºC) and 5.68% (total error 1.3 ºC), 
respectively, and the average relative errors are 1.93% 
and 1.91%, respectively. This indicates that the predicted 
pavement surface temperature in each time period (0–t1, 
t1–t2, t2–t3) is in agreement with field measurements. 

The calculated and measured pavement 
temperatures at different depths are shown in Figs. 4(b)– 
(f). It can be seen from Fig. 4(b) to Fig. 4(f) that the 
calculated pavement temperature profile is segmented for 
any given depth because the pavement surface 
temperature is expressed as a piecewise function. 
Therefore, selecting a proper function such as Eq. (25) to 
express the variation of pavement surface temperature 
with time is very important to ensure calculation 
accuracy of pavement temperature at given depths. 
Moreover, since the pavement temperature profiles are 
segmented, at the junctions of different periods, such as 
t1 and t2 in this work, the fluctuation of calculated 
temperature is relatively obvious. However, this 
fluctuation becomes negligible with the increasing of 
depth. This is because the pavement temperature at a 
deeper depth is not influenced by the solar radiation 
directly; therefore, the segmented feature of the 
temperature profile at a deeper depth is not observed. 

The results in Figs. 4(b)–(f) show that for the 
temperature data on August 6, the maximum temperature 
at the depth of 4 cm was observed at 14:00–14:30, while 
the maximum temperature at the depth of 12 cm was 
observed at 16:00–17:00. The similar trend was observed 
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Fig. 4 Calculated and measured pavement temperatures: (a) Surface; (b) 4 cm; (c) 6 cm; (d) 8 cm; (e) 10 cm; (f) 12 cm 

 
Table 4 Relative errors of pavement surface temperatures 

Date Time 
Maximum 

relative error/% 
Average 

relative error/%

2011–08–06 0:00–7:00 2.52 1.31 

2011–08–06 7:00–18:00 8.84 2.55 

2011–08–06 18:00–24:00 4.19 1.85 

2011–08–06 0:00–24:00 8.84 1.93 

2011–11–13 0:00–7:00 3.24 1.54 

2011–11–13 7:00–18:00 5.68 1.40 

2011–11–13 18:00–24:00 4.88 3.70 

2011–11–13 0:00–24:00 5.68 1.91 

for the temperature data on November 13. It indicates 
that the heat transfer process needs a period of time, 
which causes the delay of the maximum temperature at a 
deeper depth. This trend is captured by the model 
presented in this work. 

The maximum and average relative errors between 
calculated and measured temperatures at different depths 
are compared in Table 5. 

It can be seen that the results calculated from the 
developed analytical method agree well with field 
measurements. For both cases, the maximum relative 
errors between the measured and calculated temperatures  
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Table 5 Relative errors of pavement temperatures 

Date Depth/cm 
Maximum 

relative error/% 
Average 

relative error/%

2011–08–06 4 7.1 2.3 

2011–08–06 6 6.3 2.0 

2011–08–06 8 4.7 1.9 

2011–08–06 10 3.3 1.6 

2011–08–06 12 2.6 1.6 

2011–11–13 4 8.0 2.9 

2011–11–13 6 7.6 2.8 

2011–11–13 8 6.9 2.9 

2011–11–13 10 5.6 2.6 

2011–11–13 12 4.1 2.8 

 
range from 2.6% to 8.0% (total error 2.3 ºC), and the 
average relative errors range from 1.6% to 2.9%. This 
result shows that the assumptions in this work are 
acceptable for predicting temperature field in asphalt 
layer. Compared with the temperature at deeper depths, 
the relative temperature errors at the depth of 4 cm are 
greater. This is reasonable because the natural 
environment has a greater influence on the temperature 
in the upper pavement layer, which makes the pavement 
temperature vary more irregularly due to accidental 
change of climatic factors. 
 
5 Conclusions 
 

This work presents an analytical method for 
predicting the asphalt pavement temperature field with 
measured climatic data. An innovative model is 
established for predicting the asphalt pavement surface 
temperature through dimensional analysis, field tests and 
regression analysis. By analyzing the variation 
characteristics of solar radiation and air temperature with 
time, the variation of pavement surface temperature 
within a day is expressed as a function of time, which is 
used as boundary condition for solving the pavement 
temperature model. Based on the assumption that the 
influence of the temperature field in the upper asphalt 
layer on the base course materials can be neglected, a 
close-form solution is obtained based on the Green’s 
function. Finally, the developed method is validated 
using field measurements and the comparisons between 
the calculated and the measured temperatures show good 
agreements. 

The introduction of the pavement surface 
temperature in the proposed time-dependent function 
simplified the complex heat exchange conditions on the 
pavement surface. The dimensions are consistent in the 
governing equation of the pavement surface temperature 
prediction model, which ensures a clear physical 

meaning to understand the model. Moreover, the derived 
solution of pavement temperature is explicit and can be 
easily implemented. Field validation shows that selecting 
a proper function to represent the pavement surface 
temperature is critical to ensure the calculation accuracy 
of pavement temperature at given depths. The relative 
temperature errors at a shallower depth are greater than 
those at a deeper one because the natural environment 
has greater influence on the temperature in the upper 
pavement layer. 

Although the developed analytical method cannot 
make a rapid response to the irregular dramatic changes 
in climatic factors, the method is useful in predicting 
pavement temperature with given climatic data. 
Therefore, it can be used to analyze the variation of 
pavement temperature according to the variation of 
climatic factors throughout the year, and predict the 
effect of certain climatic factors on pavement 
temperature. 
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