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Abstract: An analysis of unsteady boundary layer flow and heat transfer over an exponentially shrinking porous sheet filled with a 
copper-water nanofluid is presented. Water is treated as a base fluid. In the investigation, non-uniform mass suction through the 
porous sheet is considered. Using Keller-box method the transformed equations are solved numerically. The results of skin friction 
coefficient, the local Nusselt number as well as the velocity and temperature profiles are presented for different flow parameters. The 
results showed that the dual non-similar solutions exist only when certain amount of mass suction is applied through the porous sheet 
for various unsteady parameters and nanoparticle volume fractions. The ranges of suction where dual non-similar solution exists, 
become larger when values of unsteady parameter as well as nanoparticle volume fraction increase. So, due to unsteadiness of flow 
dynamics and the presence of nanoparticles in flow field, the requirement of mass suction for existence of solution of boundary layer 
flow past an exponentially shrinking sheet is less. Furthermore, the velocity boundary layer thickness decreases and thermal 
boundary layer thickness increases with increasing of nanoparticle volume fraction in both non-similar solutions. Whereas, for 
stronger mass suction, the velocity boundary layer thickness becomes thinner for the first solution and the effect is opposite in the 
case of second solution. The temperature inside the boundary layer increases with nanoparticle volume fraction and decreases with 
mass suction. So, for the unsteadiness and for the presence of nanoparticles, the flow separation is delayed to some extent. 
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1 Introduction 
 

The study on heat transfer in the flow over a 
stretching/shrinking sheet is very significant in recent 
years. The development of this area of research is 
stimulated by the presence of a variety of real world 
applications in many industrial and engineering 
processes. Extrusion, paper production, glass blowing, 
hot rolling, artificial fibers and extraction of polymer are 
examples of such applications. The qualities of the final 
products depend to a great extent on the rate of cooling. 
So, to get better product the heat transfer should be 
controlled. CRANE [1] first reported the exact solution 
of the boundary layer flow over a stretching sheet. On 
the other hand, the flow over a shrinking sheet was first 
studied by WANG [2]. Later, MIKLAVČIČ and WANG 
[3] established the existence and uniqueness of the 
similarity solution of the equation for the steady flow due 

to a shrinking sheet. The boundary layer flow near a 
stagnation-point towards a shrinking sheet was 
considered by WANG [4]. As reported by MIKLAVČIČ 
and WANG [3] and WANG [4], the flow over a shrinking 
sheet is likely existing in the case of suction or 
considering a stagnation point. Since then many 
researchers are considering the flow over a shrinking 
sheet in many physical aspects. The power law velocity 
of the shrinking sheet was considered by FANG [5] and 
the dual solutions were obtained subject to wall mass 
transfer. BHATTACHARYYA [6] investigated MHD 
boundary layer flow and heat transfer over a shrinking 
sheet in the presence of heat source/sink and mass 
suction. HAYAT et al [7] studied MHD boundary layer 
flow near a stagnation point towards a heated shrinking 
surface in the presence of heat generation/absorption. 
BHATTACHARYYA et al [8] investigated the MHD 
boundary layer stagnation-point flow and mass transfer 
over a permeable shrinking sheet in the presence of 
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suction/blowing and chemical reaction. The boundary 
layer flow with heat transfer near a stagnation point over 
a shrinking sheet with non-uniform heat flux was 
considered by BHATTACHARYYA [9]. MIDYA [10] 
examined the MHD boundary layer flow and heat 
transfer towards a shrinking sheet in the presence of 
radiation and heat sink. MAGYARI and KELLER [11] 
studied the boundary layer flow and heat transfer over an 
exponentially stretching sheet. The steady two- 
dimensional boundary layer flow and heat transfer over 
an exponential shrinking sheet subjected to the suction 
was considered by BHATTACHARYYA [12] and the 
magnetic effect on the flow was reported by 
BHATTACHARYYA and POP [13]. BHATTACHARYYA 
and VAJRAVELU [14] explored some important 
characteristics of the stagnation-point flow and heat 
transfer over an exponentially shrinking sheet. On the 
other hand, the unsteady boundary layer flow over a 
shrinking sheet with suction was examined by FANG  
et al [15]. CORTELL [16] considered the two- 
dimensional and axisymmetric MHD boundary layer 
viscous flow induced by a shrinking sheet with suction. 
Recently, BHATTACHARYYA [17] discussed the 
unsteady boundary layer and heat transfer near a 
stagnation-point towards a shrinking/stretching sheet. 

Considerable efforts have been directed towards the 
study on nanofluid due to its numerous industrial 
applications, such as in nanodrug delivery, thermal 
therapy for cancer treatment, power generation, heating 
and cooling processes, and chemical processes. Most of 
the common heat transfer fluids, such as mineral oil, 
water, and ethylene glycol, have a limitation in heat 
transfer process because of their low heat transfer 
properties. One of the best techniques to increase the 
thermal conductivity of these fluids is by suspending the 
solid nanoparticles into the base fluids, i.e., by making it 
nanofluid, and consequently, the heat transfer 
performance of fluid becomes excellent. The word 
“nanofluid” was proposed by CHOI [18], referring to 
dispersions of nanoparticles in the common fluids. In 
recent times, many investigations regarding nanofluids 
have been reported [19−22]. MANKINDE and AZIZ [23] 
studied the boundary layer flow immersed in a nanofluid 
over a linearly stretching surface. The boundary layer 
flow of a nanofluid near a stagnation-point towards a 
linear stretching surface was discussed by MUSTAFA   
et al [24]. RANA and BHARGAVA [25] investigated 
steady boundary layer flow filled with nanofluid over a 
nonlinear stretching surface. Whereas, HADY et al [26] 
showed the heat transfer analysis of a nanofluid over a 
nonlinear stretching sheet with thermal radiation and 
variable wall temperature. NADEEM and LEE [27] 
examined the boundary layer flow immersed in a 
nanofluid towards an exponential stretching sheet. 

BACHOK et al [28] reported the boundary layer flow 
and heat transfer near a stagnation-point towards an 
exponentially stretching/shrinking sheet filled with 
nanofluid. HAYAT et al [29] studied the MHD boundary 
layer flow of nanofluid past an exponentially stretching 
sheet in a porous medium in the presence of convective 
boundary conditions. NADEEM et al [30−31] 
investigated the MHD three-dimensional boundary layer 
flow of Casson nanofluid over a linearly stretching sheet 
with convective boundary condition and they also 
analyzed the three-dimensional flow of water-based 
nanofluid over an exponentially stretching sheet. 
NADEEM et al [32] illustrated the MHD boundary layer 
flow and the heat transfer of a Maxwell fluid past a 
stretching sheet in the presence of nanoparticles. 
Recently, SHEHZAD et al [33] studied two-dimensional 
boundary layer flow of the third grade nanofluid over a 
stretching surface with Newtonian heating and viscous 
dissipation. 

The unsteady flow over an exponentially shrinking 
sheet in the presence of nanoparticles becomes a very 
important problem when heat transfer is involved in the 
flow. Hence in the present paper, the unsteady boundary 
layer flow of nanofluid and heat transfer over an 
exponentially shrinking porous sheet with suction is 
investigated. Using suitable transformations, the 
governing equations are transformed and then those 
equations are solved numerically using Keller-box 
method. Then, computed results are plotted in graphs and 
discussed in detail. 
 
2 Mathematical formulation 
 

Consider the unsteady two-dimensional 
incompressible fluid over an exponentially shrinking 
porous sheet filled with a nanofluid containing water 
based copper in the presence of suction. The governing 
equations of motion and the energy equation are written 
as [17, 28]  
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where u and v are the velocity components along x and y 
directions, respectively; /e (1 )x L

wU a t   is the 
variable shrinking velocity with a and  being positive 
constants with dimensions LT1 and T1, respectively, 

/ 2
w 0e 1x Lv v t   is the variable suction velocity 

with v0>0 being a constant; T is the temperature of the 
nanofluid; T0 is a reference temperature, L is the 
reference length; μnf is the viscosity of the nanofluid; ρnf 
is the density of the nanofluid; αnf is the thermal 
diffusivity of the nanofluid, which are defined as 
(OZTOP and ABU-NADA [34]) 
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where  is the solid volume fraction of the nanofluid; knf 
is the thermal conductivity of the nanofluid; (ρcp)nf is the 
heat capacity of the nanofluid; μf is the viscosity of the 
base fluid; kf is the thermal conductivity of the base fluid; 
ks is the thermal conductivity of the solid fractions; (ρcp)f 
is the specific heat parameter of the base fluid; (ρcp)s is 
the specific heat parameter of the solid fractions. A 
physical sketch of the flow problem is shown in Fig. 1. 
 

 
Fig. 1 Physical model and coordinate system 

 
The continuity Eq. (1) is satisfied by introducing a 

stream function ψ such that 
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Using Eq. (5), the nonlinear partial differential  

Eqs. (2) and (3) are transformed into the following 
ordinary differential equations:  
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subjected to the transformed boundary conditions:  
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where prime denotes differentiation with respect to η; 
Pr=υf/αf is the Prandtl number; 0 f2 ( ) 0S v L a   is 
the suction parameter; A=γLe−x/L/a is the unsteady 
parameter which is x dependent. Therefore, the solution 
in unsteady flow situation is of non-similar type and the 
similarity solution exists only when A=0. So, for 
unsteady flow of nanofluid due to an exponentially 
shrinking sheet, only non-similar solution is obtained. 

Quantities of physical interest are the local skin 
friction coefficient and the local Nusselt number which 
are defined as  
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where w f/xRe xU   is the local Reynolds number. 
 
3 Numerical method 
 

The transformed Eqs. (6) and (7) subjected to the 
boundary conditions (Eq. (8)) are solved numerically 
using the Keller-box method. This method has been 
found to be very suitable in dealing with nonlinear 
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parabolic problems. By introducing the new dependent 
variables, these equations are first written as a system of 
first-order equations which are then expressed in finite 
difference forms using central differences. Since the 
system of equations is nonlinear, it is linearized by 
Newton’s method before putting them in matrix-vector 
form. The resulting linear system is solved along with 
the boundary conditions by the block-tridiagonal- 
elimination method. In this study, we used Matlab 
software. Here, the grid size in η of 0.01 has been used 
and the convergence criterion was set to 0.5×10−5, which 
gives accuracy to four decimal places. It should be 
mentioned that the dual solutions are obtained by setting 
different values of η depending on the parameters 
involved. 
 
4 Results and discussion 
 

The numerical solutions are obtained using the 
above numerical scheme for some values of the 
governing parameters, namely, unsteady parameter A, 
nanoparticle volume fraction parameter  and suction 
parameter S and non-similar solutions for velocity and 
temperature are obtained. During the computation, 
following HAYAT et al [29] and KHANAFER et al [35], 
the Prandtl number of base fluid is taken as unity and the 
volume fraction of nanoparticles is taken from 0 to 0.2 
(0≤≤0.2) in which =0 corresponds to the viscous or 
regular fluid. The thermophysical properties of the base 
fluid and the nanoparticles are listed in Table 1. 
 
Table 1 Thermophysical properties of fluid and nanoparticles 

Material 
Cp/ 

(J·kg−1·K−1) 
ρ/(kg·m−3) 

k/ 
(W·m−1·K−1) 

α/ 
(10−7m2·s−1)

Fluid phase 
(water) 

4179 997.1 0.613 1.47 

Cu 385 8933 400 1163.1 

 
At first, to ensure the numerical accuracy, the dual 

velocity profiles are compared with the results obtained 
by BHATTACHARYYA [12] in Fig. 2 for A=0, =0, 
S=2.4. Those are found in excellent agreements. 

The variations of f"(0) and −θ'(0) which are related 
to local skin friction coefficient and local Nusselt 
number respectively, with suction parameter S for 
different values of A and  are shown in Figs. 3−6. It is 
observed that the dual non-similar solutions (similarity 
solution for steady case) are obtained for S≥Sc and the 
flow has no solution for S<Sc where Sc is the critical 
value of S. Based on our calculation, the critical values 
are 1.9300, 1.9079 and 1.8755 for A=0, A=0.1 and A=0.2, 
respectively, when =0. While the critical values for =0, 
0.1, 0.2 are 2.2338, 1.9079 and 1.8500, respectively, 
when A=0.1. Hence, the unsteady parameter A and 
nanoparticle volume fraction parameter  widen the 
range of mass suction parameter S for which the non-  

 

 
Fig. 2 Comparison of velocity profiles for A=0, =0, S=2.4 in 

present study (a) and Ref. [12] (b) 

 

 
Fig. 3 Variation of f"(0) with S for different values of A with 

=0.1 
 
similar solution exists. It is also observed from the 
figures that the value of f"(0) increases for the first and 
second solutions, while it increases for fist solution and 
decreases for the second solution with increasing values 
of S and . On the other hand, the value of −θ'(0) and 
consequently the rate of heat transfer enhance with A and 
 for both solution branches. 

The boundary layer velocity and temperature 
profiles for various values of nanoparticle volume 
fraction parameter  are plotted in Figs. 7 and 8. The 
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Fig. 4 Variation of −θ'(0) with S for different values of A with 

=0.1 

 

 
Fig. 5 Variation of f"(0) with S for different values of  with 

A=0.1 
 

 
Fig. 6 Variation of −θ'(0) with S for different values of  with 

A=0.1 
 
profiles of velocity demonstrate conflicting character for 
first and second solutions. Figure 7 shows that the 
velocity of the fluid increases with  for the first solution. 
This is due to the fact that when the volume of copper 
nanoparticles increases, the thermal conductivity 
increases and hence the boundary layer thickness 
decreases. Whereas, the opposite effect is observed in the 
case of the second solution. Figure 8 illustrates that the 

 

 
Fig. 7 Velocity profiles for different values of  with A=0.1 and 

S=2.4 

 

 
Fig. 8 Temperature profiles for different values of  with A=0.1 

and S=2.4 

 
temperature of fluid increases with increasing  for the 
first and second solutions and consequently the thickness 
of thermal boundary layer increases. 

Figures 9 and 10 display the velocity and 
temperature profile for various suction parameter S.  
From Fig. 9, it is observed that the velocity boundary 
layer thickness decreases with increasing suction for the 
first solution, while the opposite effect is observed in the 
 

 
Fig. 9 Velocity profiles for different values of S with A=0.05 

and =0.1 
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Fig. 10 Temperature profiles for different values of S with 

A=0.05 and =0.1 
 
case of the second solution. Figure 10 shows that the 
temperature of fluid decreases with increasing suction for 
the fist and second solutions and consequently, the 
thermal boundary layer thickness decreases for both 
solutions. 

The effect of unsteady parameter A on the velocity 
and temperature profiles is illustrated in Figs. 11 and 12. 
The effect of unsteady parameter A is major in the 
second solution branch. From Fig. 11, it is observed that 
the velocity boundary layer thickness slightly decreases 
with increasing unsteady parameter in the first solution, 
while the opposite effect is observed in the second 
solution. Figure 12 shows that the temperature of fluid 
decreases with increasing of unsteady parameter in the 
case of both solutions near the sheet, but reverse effect 
away from the sheet. Consequently, the thickness of 
thermal boundary layer increases. 

It is also interesting to note that similar to steady 
flow case the velocity and thermal boundary layer 
thicknesses for the second solution are always thicker 
than those of the first solution. Also, all obtained results 
of velocity and temperature satisfy the far field boundary  

 

 
Fig. 11 Velocity profiles for different values of A with =0.1 

and S=2.5 

 

 
Fig. 12 Temperature profiles for different values of A with 

=0.1 and S=2.5 

 
conditions asymptotically, which strongly indicates that 
the computed numerical results are true. In addition, grid 
independence test has been carried out and the values of 
f"(η) and θ(η) for A=0.1, =0.1, S=2.5 by taking the grid 
sizes as 0.005, 0.01, 0.015 are presented in Table 2, 
which shows the results in good agreement. 

 
Table 2 Grid sensitivity analysis with A=0.1, =0.1, S=2.5 

Function Solution h 
 

0.5 1 2 3 4 6 8 

f(η) 

First solution 

0.005 −0.2394 −0.0565 −0.0034 −0.0002 0.0000 0.0000  

0.01 −0.2400 −0.0567 −0.0036 −0.0003 0.0000 0.0000  

0.015 −0.2410 −0.0573 −0.0039 −0.0006 0.0000 0.0000  

Second 

solution 

0.005 −0.9312 −0.6331 −0.2257 −0.0770 −0.0279 −0.0044 0.0000 

0.01 −0.9310 −0.6330 −0.2256 −0.0769 −0.0278 −0.0043 0.0000 

0.015 −0.9305 −0.6325 −0.2251 −0.0762 −0.0274 −0.0038 0.0000 

(η) 

First solution 

0.005 0.4538 0.2066 0.0451 0.0103 0.0024 0.0000  

0.01 0.4545 0.2071 0.0455 0.0105 0.0025 0.0000  

0.015 0.4550 0.2077 0.0457 0.0108 0.0026 0.0000  

Second 

solution 

0.005 0.7159 0.5112 0.2571 0.1314 0.0690 0.0188 0.0000 

0.01 0.7158 0.5111 0.2570 0.1313 0.0689 0.0187 0.0000 

0.015 0.7150 0.5003 0.2561 0.1304 0.0680 0.0179 0.0000 
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5 Conclusions 
 

From the study following remark can be concluded. 
1) Dual non-similar solutions are obtained in certain 

range of the suction parameter. 
2) It is important to note that due to unsteadiness of 

the flow and the presence of nanoparticles in the flow 
field the requirement of mass suction for the existence of 
non-similar solution becomes less, namely, for weaker 
mass suction the solutions exist. 

3) The velocity of fluid increases for the first 
solution and decreases for the second solution with 
increasing nanoparticle volume fraction, while, the 
temperature of fluid increases with nanoparticle volume 
fraction for both solutions. 

4) Due to increase in suction parameter, the velocity 
boundary layer thickness decreases for the first solution 
and increases in case of the second solution. On the other 
hand, the thermal boundary layer thickness decreases for 
both solutions. Whereas, the velocity of fluid increases in 
the first solution and decreases in the second solution and 
the temperature of fluid decreases for both solutions. 

5) Due to the unsteadiness of the flow, the 
temperature inside the boundary layer decreases for both 
solutions near the sheet. 

6) And most importantly, for the presence of 
unsteadiness and the nanoparticles in the flow, the 
boundary layer separation is slightly delayed. 
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Nomenclature 
A 
L 
S 
f 
Cf 
Cp 

k 
Nux 
Pr 
Rex 
t 

Unsteadiness parameter 
Reference length 
Suction parameter 
Dimensionless stream function 
Skin friction coefficient 
Specific heat capacity at constant pressure 
Thermal conductivity 
Local Nusselt number 
Prandtl number 
Local Reynolds number 
Time 

vw 
T 
Tw 
Uw 
T 
u,v 
 
x,y 

Suction velocity 
Fluid temperature 
Surface temperature 
Shrinking velocity 
Ambient temperature 
Velocity components along x- and y- direction, 
respectively. 
Cartesian coordinate along surface and normal 
to it, respectively. 

Greek symbols 
α 
η 
μ 
υ 
 
ρ 
ψ 
θ 

Thermal diffusivity 
Similarity variables 
Dynamic viscosity 
Kinematic viscosity 
Nanoparticle volume fraction 
Fluid density 
Stream function 
Dimensionless temperature 

Subscripts 
f 
s 
nf 
w 
 

Fluid 
Solid 
Nanofluid 
Condition at surface 
Ambient condition 

Superscript 
' Differentiation with respect to η 
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