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Abstract: A micromechanical investigation on simple shear behavior of dense granular assemblies was carried out by discrete 
element method. Three series of numerical tests were performed to examine the effects of initial porosity, vertical stress and particle 
shape on simple shear behavior of the samples, respectively. It was found that during simple shear the directions of principal stress 
and principal strain increment rotate differently with shear strain level. The non-coaxiality between the two directions decreases with 
strain level and may greatly affect the shear behavior of the assemblies, especially their peak friction angles. The numerical 
modelling also reveals that the rotation of the principal direction of fabric anisotropy lags behind that of the major principal stress 
direction during simple shear, which is described as fabric hyteresis effect. The degrees of fabric and interparticle contact force 
anisotropies increase as particle angularity increases, whereas the orientations of these anisotropies have not been significantly 
influenced by particle shape. An extended stress–dilatancy relationship based on ROWE-DAVIS framework was proposed to 
consider the non-coaxiality effect under principal stress rotation. The model was validated by present numerical results as well as 
some published physical test and numerical modelled data. 
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1 Introduction 
 

Behavior of soil under simple shear is often 
required for analyzing the stability of many geotechnical 
structures, such as stability of soil slopes and 
embankments on soft soils. Simple shear test has been 
widely used to study the stress−strain−strength 
relationship of soils under simple shear. The major 
advantage of simple shear tests over direct shear tests is 
the uniform stress and deformation distributions within 
the soil samples [1]. Since the first simple shear 
apparatus (SSA) was invented by Swedish Geotechnical 
Institute [2], many researchers have examined the 
drained and undrained simple shear behaviors of sands 
and clays by different typed SSAs [3−5]. Different from 
triaxial compression and plane strain tests, one of the 
distinctive features of simple shear tests is the rotation of 
principal stress direction during shear. Although the 
overall stress and strain can be directly measured from 
the boundaries of SSA, the main shortcoming of 
conventional simple shear tests is that the internal stress 
and strain, as well as the soil fabric, cannot be easily 

captured even by advanced measurement techniques. To 
overcome this deficiency, some ideal granular materials 
such as aluminum rods and photoelastic substances have 
been adopted in simple shear tests [6−7], but the 
application is limited as it is time-consuming to prepare 
samples and expensive to run the tests. 

Many researchers used discrete element method 
(DEM) to simulate laboratory tests including simple 
shear, to investigate the macroscopic behavior of 
granular assemblies on micro scale. LIU and LU [8] 
investigated the simple shear behavior of an assembly of 
two-dimensional aluminum rods using DEM, and a 
stress-fabric relationship was suggested by analyzing 
fabric anisotropy during shear. THORNTON and 
ZHANG [9] performed simple shear simulations using 
DEM to study the non-coaxiality effect, i.e. the deviation 
between the directions of principal stress and principal 
strain increment, and the influences of initial stress ratio 
on non-coaxiality were intensively investigated. SHEN  
et al [10] examined the effects of boundary conditions on 
simple shear behavior of granular systems using DEM. 
In the analysis the authors simulated the simple shear in 
laminar and rigid boxes to compare the effect of rigid 
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and flexible boundaries. It was found that the strain 
distribution within the samples is affected by the rigidity 
of the walls. Recently, QIAN et al [11] explored the 
relationship between shear strength anisotropy and fabric 
anisotropy under simple shear. The effects of non- 
coaxiality on the stress-dilatancy behavior of numerical 
samples were analytically discussed. However, the 
published results are mostly achieved from DEM 
simulations using circular particles, and few attempts 
have been made on the investigations of particle shape 
factor. Meanwhile, the non-coaxial flow rules and the 
corresponding macro-micro relationships due to principal 
stress rotation also need to be further studied. 

In this work, three series of simple shear tests were 
simulated using PFC2D on both circular and non-circular 
particle samples to study the effects of initial porosity, 
vertical stress and particle shape on the simple shear 
behavior. An extended stress–dilatancy relationship 
under simple shear condition on the basis of ROWE- 
DAVIS framework was proposed to consider the non- 
coaxiality effect. Stress-induced fabric and contact force 
anisotropies were primarily examined, and the fabric 
hyteresis effect between the orientation of fabric 
anisotropy and the major principal stress direction was 
explored. Finally, an empirical stress–force–fabric 
relationship based on ROTHENBURG and 
BATHURST’s equation was suggested to consider the 
fabric hyteresis effect induced by principal stress 
rotation. 
 
2 Numerical sampling 
 
2.1 DEM simulated simple shear tests 

Simple shear tests were simulated in PFC2D on 

polydisperse granular materials with particle diameter 
ranging from 0.15 mm to 0.2 mm. Both circular and 
non-circular particle elements were introduced in the 
present simulations. A linear contact-stiffness model with 
Coulomb sliding criterion was adopted to describe the 
interaction between particles. Local damping mechanism 
was introduced to ensure the quasi-static equilibrium of 
granular assemblies. The micromechanical parameters of 
interparticle contact model were calibrated on the basis 
of a drained triaxial compression test on dense Fujian 
standard sand [12], which is a standard sand used in 
China by most researchers. The material parameters used 
for DEM analyses are listed in Table 1. 

The particles were encased in a simple shear box 
simulated with four rigid walls as illustrated in Fig. 1(a), 
in which the solid lines indicate the initial position of the 
walls and the dashed lines show the position of walls 
after shearing. The size of the two-dimensional sample is 
5 mm5 mm. After the sample being generated, isotropic 
consolidation stress was applied to the sample by 

 
Table 1 Material parameters for DEM simulations 

Parameter Value 

Normal contact stiffness between particles/(Nm−1) 2108 

Tangential contact stiffness between 
particles/(Nm−1) 

1108 

Local damping coefficient 0.7 

Friction coefficient between particles 0.5 

Particle density/(kgm−3) 2650 

Normal contact stiffness between particle and 
wall/(Nm−1) 

4108 

Tangential contact stiffness between particle and 
wall/(Nm−1) 

2108 

Friction coefficient between particle and wall 0.5 
 

 

 
Fig. 1 Scheme for DEM simulations of simple shear: (a) Sample boundaries and measurement circles; (b) Sample deformation and 

internal stress state 
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servo-control mechanism in PFC2D. Then, the two lateral 
walls were rotated about their centroids with an angular 
velocity of 8.0×10–5 rad/s, which is a very low velocity 
to minimize the dynamic effect between the elements. 
The bottom wall was fixed and the samples were sheared 
at constant vertical stresses. 

Figure 1(b) presents the schematic diagram of 
simple shear deformation and the stress state of soil 
element within the sample. Since there is no lateral 
normal strain (xx) in simple shear, the shear strain () 
and volumetric strain (v) can be calculated as 

 
tan                                     (1) 

 

v xx yy yy
0

dh

h
                             (2) 

 
where  is the rotational angle of the lateral walls, and 
yy is the vertical normal strain component, which is the 
ratio between the change of height (dh) and the initial 
height of the sample (h0). The volumetric strain v is 
positive for contraction and negative for dilation. 

As indicated by QIAN et al [11], the distribution of 
shear stress at the top boundary in simple shear sample is 
generally non-uniform. To study this, four zones with a 
diameter of 1 mm each were assigned near the top plate 
to measure the internal stress and strain increment, as 
shown in Fig. 1(a). The average values of stress 
components (xy, xx, yy) and strain increment 
components (dxy, dxx, dyy) can be obtained to derive 
the geomechanical properties of the samples. The shear 
stress ratio is defined as xy/v. The simple shear friction 
angle (ss) and dilation angle () can be calculated as 
 

xy
ss
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where dv and d represent the volumetric strain and 

shear strain increment, respectively; and dv/d denotes 
the dilation ratio of the sample during shear. 

The orientations of major principal stress () and 
major principal strain increment () relative to the 
horizontal direction can be expressed as 
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2.2 Programs of DEM simulations 

Seven soil samples were generated in the simulated 
tests, with five of them made of circular particles (D1 to 
D5), and two of them made of non-circular particles (A1 
and A2). Table 2 summarizes the properties of the 
samples. The samples A1 and A2 were composed of 
non-circular particles with four different shapes as shown 
in Fig. 2(a). The non-circular particles were generated 
using CLUMP logic in PFC2D. The main advantages of 
CLUMP logic are that the agglomerates created by this 
method act as a rigid body, so there is no relative  
 

Table 2 A summary of DEM sample profiles 
Numerical 

sample 
Initial 

porosity, n0

Vertical stress, 
v/kPa 

Number of 
particles 

Discs-1 (D1) 0.12 200 935 

Discs-2 (D2) 0.14 200 898 

Discs-3 (D3) 0.16 200 873 

Discs-4 (D4) 0.12 150 935 

Discs-5 (D5) 0.12 100 935 

Agglomerates-1 
(A1, sole C3)

0.12 200 935 

Agglomerates-2 
(A2, a random 
combination of 

C3-C6) 

0.12 200 
935 (C3: 253; 
C4: 228; C5: 
222; C6: 232)

 

 
Fig. 2 Numerical sampling: (a) Agglomerates created by CLUMP logic in PFC2D; (b) Numerical model of A1 sample 
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movement between internal particles, and the calculation 
efficiency can be significantly improved by neglecting 
the interaction between internal particles. As shown in 
Fig. 2(a), C3 represents the agglomerates composed of 
three circular discs. The naming rules apply to C4–C6 as 
well. The A1 sample is generated using C3 agglomerates 
only, while the A2 sample is a random combination of 
C3 to C6. For the purpose of demonstration, the 
numerical model of A1 sample is shown in Fig. 2(b). 

As listed in Table 2, the programs were divided into 
three simulation series to consider the effects of initial 
porosity, vertical stress and particle shape, respectively. 
In the first series, the same vertical stress was applied to 
samples of circular particles with different initial 
porosities (D1, D2 and D3). In the second series, 
different vertical stresses were applied to circular particle 
samples with the same initial porosity (D1, D4 and D5). 
The effects of particle shape were exclusively discussed 
in the third series with D1, A1 and A2 samples at the 
same vertical stress and initial porosity. 
 
3 Macromechanical properties 
 
3.1 Macroscopic response to simple shear 

Figure 3 presents the behavior of the samples from 
the first simulation series with different initial porosities.  

 

 
Fig. 3 Macroscopic behavior of numerical samples with 

different initial porosities: (a) Shear stress ratio–shear strain 

curves; (b) Volumetric strain–shear strain curves 

It is apparent from Fig. 3 that the dense granular 
assemblies exhibit typical volume dilation and strain- 
softening characteristics, which are very similar to those 
of dense sands under simple shear loading reported by 
THAY et al [1] and PRADHAN et al [13]. The stress− 
strain curves of all three samples can be distinctly 
divided to two stages: pre-peak and post-peak stages, as 
shown in Fig. 3(a). The sample reaches the peak shear 
stress ratio in the range of  from 8 to 12. After peak, 
the shear stress ratio gradually decreases with increasing 
volume, as illustrated in Fig. 3(b). The shear stress ratio 
reaches to a residual value once the dilation stops at large 
shear strain, i.e.   25. This value observed in the 
numerical modelling agrees well with the test results on 
dense sand samples as reported in Refs. [14−15]. 

As shown in Fig. 3, initial porosity (n0) significantly 
affects the macroscopic behavior of the sample. The peak 
shear stress ratio decreases from 0.42 to 0.32 as n0 
increases from 0.12 to 0.16, whilst more significant 
volume dilation will exhibit with the decreasing of n0, 
which can be seen in Fig. 3 (b) that under the same 
vertical pressure, the lower the initial porosity, the higher 
the maximum dilation rate, i.e. the maximum slope of the 
curve. The samples with different n0 values reach the 
same residual shear strength at large shear strain as part 
of the critical state behavior of the material. 

Figure 4 illustrates the shear behavior of the 
samples with same initial porosity under different 
vertical stresses. It can be seen from Fig. 4(a) that the 
peak shear strength is affected by vertical stress (v). As 
v increases from 100 kPa to 200 kPa, the peak stress 
ratio increases from 0.32 to 0.42, whilst the residual 
shear strength at large shear strain is almost independent 
of v. As illustrated in Fig. 4(b), at lower vertical stress 
levels, the samples contract less but swell more during 
shear. The figure also shows that the lower the vertical 
stress is, the earlier the swelling stage starts. During the 
dilation stage, the dilation curves in Fig. 4(b) are nearly 
parallel, which suggests that the samples dilate at almost 
the similar rate. 

The shear behavior of the samples with different 
particle shapes with the same initial porosity and vertical 
stress is depicted in Fig. 5. As shown in Fig. 5(a), the 
particle shapes have great effect on the shear behavior of 
the samples. It can be seen from the figures that the 
higher the angularity of the particles is, the higher the 
peak shear strength and the sample dilation are. The 
highest peak shear stress ratio (0.59) was observed in the 
sample A2, which is about 40% higher than that (0.42) of 
D1 with circular particles. Figure 5(a) also shows that at 
the strain level 25%, the residual shear strength of the 
non-circular particle samples is significantly higher than 
that of the circular ones. 
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Fig. 4 Macroscopic behavior of numerical samples under 

different vertical stresses: (a) Shear stress ratio–shear strain 

curves; (b) Volumetric strain–shear strain curves 
 

 
Fig. 5 Macroscopic behavior of numerical samples with 

different particle shapes: (a) Shear stress ratio–shear strain 

curves; (b) Volumetric strain–shear strain curves 

3.2 Non-coaxiality effect 
The non-coaxiality effect induced by principal stress 

rotation in simple shear condition is studied in this 
section. The variation of major principal stress direction 
() and major principal strain increment direction () 
with shear strain () during shear is investigated. For 
brevity, only the results achieved from D1 circular and 
A2 non-circular particle samples are presented, as 
illustrated in Figs. 6(a) and (b), respectively. The non- 
coaxiality angle () is defined as  

 
                                       (7) 

 
It can be seen from Figs. 6(a) and (b) that the major 

principal stress and strain increment directions rotate 
quickly as shear strain increases and stabilize at lower 
shear strain values. Nearly 90% of the principal strain 
increment direction rotation finished at less than 3% 
shear strain and 90% of principal stress direction rotation 
finished at less than 5% shear strain. The rotation of 
principal stress direction lags behind the rotation of 
principal strain increment direction. Figure 6(c) describes 
the variation of  and  of Toyoura sand from drained 
torsional simple shear test performed by PRADHAN   
et al [13]. The sand has initial porosity of 0.44 and was 
sheared at vertical stress of 98.1 kPa. It is shown that the 
overall trend of the variation of the non-coaxial curves of 
the simulated samples and tested sand agree well with 
each other. 

Figure 6(d) compares the non-coaxiality angles of 
the samples A2, D1 and Toyoura sand. The figure shows 
that the non-coaxiality angle can be as large as nearly 
25°, and the value decreases rapidly with the increment 
of shear strain. From the curves it can be seen that the 
change of non-coaxiality angle can be divided into three 
stages: the first stage is during the shear strain range of 
less than 5% when the orientation of the particles has 
been rearranged due to shear, which results in the rapid 
drop of non-coaxiality angle; the second stage is a 
“turbulence” stage or “transition” stage during the strain 
range of 5%–15% or even 20% when the non-coaxiality 
angle increases slightly, which results in the reach of 
peak strength; and the last stage is the “residual” stage 
when the non-coaxiality angle reduces to nearly zero at 
large strain levels, i.e. 20%, which indicates the residual 
stage of the samples. The curve of A2 in Fig. 6(d) shows 
that the non-coaxiality angle increases largest during the 
turbulence stage, which agrees with the observation of 
higher peak shear strength shown in Fig. 5. The figure 
also shows that the non-coaxiality angle of A2 sample 
reaches its residual stage at the largest strain level 
comparing with the samples of D1 and Toyoura sand. 
 
3.3 Non-coaxial stress–dilatancy relationship 

Based on the assumption of coaxiality between 
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Fig. 6 Non-coaxiality between  and  during shear: (a) D1 sample (circular); (b) A2 sample (non-circular); (c) Toyoura sand [13]; (d) 

variation of non-coaxiality angle  with  
 
principal stress and principal strain increment, ROWE 
[16] presented the classical stress–dilatancy relationship 
for granular soils under plane strain condition, which can 
be expressed as  

cr
ps

cr

sin sin
sin

1 sin sin

 


 





                       (8) 

 
where ps is the plane strain friction angle, and cr is the 
critical state friction angle. The plane strain friction angle 
can be derived from simple shear friction angle (ss) 
using the equation proposed by DAVIS [17]:  

ss
ps

ss

tan
sin

tan sin cos



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


                    (9) 

 
By rearranging Eqs. (8) and (9), we have  

cr
ss

sin sin
tan

cos

 





                        (10) 

 
At residual state,  is generally assumed to be 0. 

Then, Eq. (10) becomes  
r
ss crtan sin                                (11) 
 

where 
r
ss  represents the residual friction angle in simple 

shear. 
Substituting Eq. (11) into Eq. (10) yields  

r
ss

ss
tan sin

tan
cos

 





                        (12) 

Equation (12) is the ROWE-DAVIS stress–dilatancy 
equation for simple shear condition without considering 
non-coaxiality. Figures 7(a) and (b) describe the stress 
and strain increment states by Mohr’s circles for coaxial 
condition, while Fig. 7(c) illustrates the superimposed 
Mohr’s circles describing the non-coaxiality effect, in 
which the stress circle and the strain increment circle are 
coincided. As described above, non-coaxiality effect 
cannot be neglected during shear, especially before the 
peak state. As shown in Fig. 7(c), the dilation angle will 
reduce from  to 2 when non-coaxiality effect is 
considered. Therefore, Eq. (12) is extended to account 
for non-coaxiality effect:  

 
 

r
ss

ss

tan sin 2
tan

cos 2

  


 
 




                  (13) 

 
At peak state, Eq. (13) can be rewritten as  

 
 

r
ss p pp

ss
p p

tan sin 2
tan

cos 2

  


 

 



               (14) 

where p
ss  is the peak friction angle of the samples in 

simple shear, and p and p are the dilation angle and 
non-coaxiality angle at peak state, respectively. 

The numerical results of the samples are listed in 
Table 3, and some published data are used to validate the 
proposed non-coaxial stress–dilatancy relationship in 
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Fig. 7 Description of non-coaxiality effect by Mohr’s circles: (a) Stress circle; (b) Strain increment circle; (c) Superimposed circles of 

stress and strain increment considering non-coaxiality 

 

Table 3 Analyses of non-coaxial stress-dilatancy relationship 

Sample )/(r
ss   p/(°) p/(°)

)/(p
ss    Deviation/% 

Simulated/tested Eq. (12) Eq. (14)  Eq. (12) Eq. (14)

D1 (Circular) 12.4 13.2 1.5 22.8 24.7 22.0  8.3 -3.5 

D2 (Circular) 12.4 11.3 1.5 20.8 23.0 20.2  10.6 -2.9 

D3 (Circular) 12.4 9.2 1.2 17.7 21.1 18.8  19.2 6.2 

D4 (Circular) 12.4 10.8 1.5 18.8 22.5 19.8  19.7 5.3 

D5 (Circular) 11.3 10.6 1.2 17.7 21.3 19.1  20.3 7.9 

A1 (Non-circular) 19.3 14.5 2.2 27.5 31.8 28.1  15.6 2.2 

A2 (Non-circular) 20.8 18.1 2.5 30.5 36.0 31.9  18.0 4.6 

DEM ellipses [18] 

(n0 = 0.175, v = 200 kPa) 
24.2 7.7 1.5 28.8 30.5 28.1  5.9 -2.4 

DEM discs [11] 

(n0 = 0.21, v = 130 kPa) 
20.7 7.5 2.5 21.7 27.2 22.9  25.3 5.5 

DEM discs [9] 

(Dense, v = 10 MPa, K0 = 2.0)
15.1 15.5 5.0 23.3 29.1 20.2  24.9 -13.3 

Photoelastic rods [19] 

(n0 = 0.18, v = 130 kPa) 
22.0 14.8 5.0 27.7 34.3 26.1  23.8 -5.8 

Toyoura sand [13] 

(n0 = 0.41, v = 98.1 kPa) 
34.7 12.6 3.5 35.5 43.0 38.5  21.1 8.5 

Leighton Buzzard sand [20] 

(n0 = 0.35, v = 14 kPa) 
41.2 9.2 2.0 45.0 46.4 44.2  3.1 -1.8 

Note: No information of initial porosity was referred in Ref. [9], and K0 is the ratio of initial horizontal stress to vertical stress. 
 

Eq. (14). The data cover a large range of materials, such 
as DEM simulated circular [9, 11], non-circular particles 
[18] and photoelastic rods [19], and test results from 
Toyoura sand [13] and Leighton Buzzard sand (LB sand) 
[20]. In Table 3, the simulated/tested data of peak simple 

shear friction angle 
p
ss  are compared with the values 

calculated from Eqs. (12) and (14). It should be noted 
that the data reported by SHI et al [18] in Table 3 are 
from simulated direct shear tests using DEM on planar 
elliptical particles with an aspect ratio of 1.4. It is 
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normally accepted that the deformation pattern within the 
shear band under direct shear can be considered a simple 
shear mode [21]. It can be seen that using the results 
from direct shear test also gives good estimation of peak 
friction angle of soils in simple shear. 

It can be found in Table 3 that the non-coaxiality 
angle of the selected materials ranges from 1.2° to 5° at 
peak state, which is considerably high compared with the 
degrees of peak friction angle (4% to 20% of the peak 
friction angle). The calculated values by Eq. (12) with no 
consideration of non-coaxiality will maximally 
overestimate the simulated/tested values up to 25%. 
However, when Eq. (14) is adopted, the absolute 
deviations are reduced to under 15%, and 90% of the 
estimated values with an absolute deviation less than 
10%. It can be further seen in Fig. 8 that Eq. (14) better 
describes the peak shear strength of dense granular 
assemblies under simple shear incorporating 
non-coaxiality. 
 

 
Fig. 8 Validation of non-coaxial stress-dilatancy relationship 

 
4 Stress-induced anisotropy 
 

In this section, the evolution of fabric anisotropy, 
which can be described using anisotropy of contact 
normal [22−23], and contact force anisotropy subjected 
to principal stress rotation are investigated. For brevity, 
only the results from D1 and A2 samples, which 
represent the circular and non-circular particle samples, 
are discussed in detail. The frequency distribution 
functions suggested by ROTHENBURG and 
BATHURST [24] are used to quantitatively describe the 
anisotropic distributions of contact normal and contact 
force: 

 

     a2cos1
2π

1   aE                  (15) 

 
     nn0n 2cos1   aff                 (16) 

 
    tt0t 2sin   aff                     (17) 

 
where E(), fn() and ft() represent the orientation 

distributions of contact normal, contact normal force and 
contact tangential force, respectively; a, an and at are the 
coefficients of contact normal anisotropy, normal contact 
force anisotropy and tangential contact force anisotropy, 
respectively; a, n and t are the principal directions of 
contact normal anisotropy, contact normal force 
anisotropy, and contact tangential force anisotropy 
respectively; f0 is the average value of contact normal 
force over all contacts in the assembly. 

Figures 9(a)−(c) illustrate the orientation 
distributions of contact normal and contact force of D1 
sample at initial state (=0), peak state (=8) and 
residual state (=25), respectively. The solid line in  
Fig. 9 represents the DEM results and the dashed line 
denotes the Fourier approximation given by Eqs. (15)– 
(17). The nephograms of interparticle contact force chain 
are also demonstrated in Fig. 9. Figure 9 shows that at 
the initial state, the contact normal and contact force 
distributions are uniform as the sample was isotropically 
consolidated and the contact force between the particles 
acted dominantly on normal direction. At peak state, the 
dominant directions of contact normal and normal 
contact force anisotropies rotate, to an angle of 32° to 
34° and remain almost unchanged till residual state. 
Whilst the anisotropic direction of tangential contact 
force rotated to an angle of 27.1° at peak state and 
slightly increased to 29.4° at residual state. The 
coefficients of anisotropies of contact normal and contact 
forces (a, an, at) increased dramatically from nearly zero 
at initial stage to (0.31, 0.42, 0.13) at peak state and 
reduced to (0.24, 0.31, 0.11) at residual state. This 
suggests that from peak to residual state, the major 
directions of contact normal and contact force 
anisotropies remain almost unchanged, whilst the extent 
of these anisotropies reduces. 

Figure 10(a) describes the variation of anisotropic 
coefficients (a, an, at) of D1 sample with the shear strain 
() during shear. It can be seen from Fig. 10(a) that the 
evolution of fabric and contact force anisotropies follows 
the same trend with the development of the shear 
resistance. At the beginning of shear, anisotropic 
coefficients increase with shear strain, and reach their 
maximum values at the peak shear stress ratio. Thereafter, 
anisotropic coefficients gradually decrease as the sample 
reaches post-peak strain softening stage. It should be 
noted that, among a, an, at, an is significantly larger than 
a or at at all strain levels. Therefore, it is obvious that the 
macroscopic shear strengthening of a granular assembly 
is primarily caused by the development of contact 
normal force anisotropy, which supports the findings 
from direct shear simulations reported by WANG et al 
[25] and SHI et al [18]. 

Figure 10(b) depicts the variation of the principal 
directions of contact normal anisotropy, normal and 
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Fig. 9 Evolution of fabric and contact force anisotropies of D1 sample: (a) =0 (initial state); (b) =8% (peak state); (c) =25% 

(residual state) 

 
tangential contact force anisotropies (a, n, t) with the 
shear strain (). To explore the potential macro–micro 
relationships, the variation of major principal stress 
direction () with  is plotted in Fig. 10(b) as well. As 
illustrated in Fig. 10(b), the rotation of anisotropic 

directions of contact normal and contact forces nearly 
finishes at the peak state, and gradually stabilities after 
that. The rotation of the principal directions of contact 
normal anisotropy (a) and normal contact force 
anisotropy (n) follows almost the same curve as shear  
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Fig. 10 Variation of fabric and contact force anisotropies with 

shear strain of D1 sample: (a) Anisotropic coefficients (a, an, 

at); (b) Principal direction angles of anisotropies (a, n, t) and 

 

 
strain increases, which suggests that normal contact force 
rotates with the direction of the contacts or vice versa. 
The principal direction of contact tangential force 
anisotropy (t) is slightly less than that of a and n. 

Figure 10(b) also shows a clear fabric hysteresis 
effect during shear, which suggests that the orientation of 
fabric (contact normal) anisotropy (a) lags behind the 
evolution of the major principal stress direction (α). It 
can be seen that: 1) the direction of major principal stress 
(α) stabilized at relatively lower strain levels (5%) 
comparing to the principal direction of fabric anisotropy 
(a) which stabilized at the strain level of 8%; and 2) the 
maximum angle of fabric anisotropy (a) is almost 10° or 
25% less than that of the major principal stress (α) during 
the steady state. This phenomenon has not been explored 
in direct shear simulations conducted by WANG et al  
[25] and SHI et al [18]. This discrepancy is mainly due 
to the significant non-uniform stress and deformation 
fields within the direct shear sample. 

Figure 11 describes the evolution of fabric and 
contact force anisotropies of the non-circular particle 
sample A2. It can be seen from Figs. 10 and 11 that the 
overall trends of the evolution of the parameters with  

 

  
Fig. 11 Variation of fabric and contact force anisotropies with 

shear strain of A2 sample (non-circular): (a) Anisotropic 

coefficients (a, an, at); (b) Principal direction angles of 

anisotropies (a, n, t) and  

 
strain of the two samples are similar, but the maximum 
values of anisotropic coefficients (a, an, at) increase from 
(0.31, 0.42, 0.13) for D1 to (0.4, 0.53, 0.22) for A2, 
which indicates that the higher the angularity of particles, 
the higher the anisotropy. Among the three coefficients, 
an is still the largest as seen in the results of D1 in Fig. 
10(a), which supports the claim that the development of 
shear resistance is mainly affected by the evolution of the 
anisotropy of the contact normal force rather than the 
shape of the particles. 

Figure 11(b) shows that the fabric hysteresis effect 
also exists for samples with non-circular particles. The 
angle of the major principal stress (α) is greater than that 
of fabric anisotropy (a) during the steady state, but is 
only about 5° greater, which is only half of the value 
observed in D1. This may suggest that the hysteresis 
effect is less in samples with angular particles. By 
comparing Figs. 10(b) and 11(b), we can see that the 
maximum values of the major principal stress direction 
(α) of the two samples are almost the same, in the range 
of 41°. The decrease of hysteresis effect observed in the 
sample with non-circular particles is mainly due to the 
increase of the angle of fabric anisotropy. 
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5 Stress–force–fabric relationship 
 

Since the pioneering work by ODA [26], many 
studies have been carried out on the topic of stress– 
force–fabric relationship for granular materials [27−28]. 
Nevertheless, the previous studies mainly focus on the 
proportional loading condition, and few attentions have 
been paid to the stress condition involving principal 
stress rotation. LI and YU [29] investigated the stress– 
force–fabric relationship for non-proportional loading, 
and the authors suggested that a more general expression 
should be proposed for the stress–force–fabric 
relationship when the principal directions of stress and 
fabric anisotropy are non-coaxial. In this study, an 
empirical stress–force–fabric relationship incorporating 
the fabric hysteresis effect induced by principal stress 
rotation will be discussed. 

Based on DEM simulations of biaxial tests, 
ROTHENBURG and BATHURST [24] presented a 
stress–force–fabric relationship for plane strain condition 
subjected to proportional loading expressed as  

ps n t
1

sin ( )
2

a a a                           (18) 
 

where sinps is the mobilized shear strength of the 
sample. 

As mentioned before, non-coaxiality effect should 
be considered when the stress–dilatancy behavior is 
analyzed under the condition of principal stress rotation. 
Considering the reduction of dilation angle from  to 
2, an extended form of DAVIS equation (Eq. (9)) is 
proposed to calculate the mobilized shear strength (sinps) 
to consider non-coaxiality effect by replacing  in Eq. (9) 
with 2:  

   
ss

ps
ss

tan
sin

tan sin 2 cos 2




    


  
       (19) 

 
With respect to the fabric hysteresis effect, the angle 

of fabric hysteresis (a) can be defined as  
a a                                     (20) 

 
A new stress–force–fabric equation based on     

Eq. (18) to incorporate a can be expressed as 

 2 2 2
ps a n t a

1
sin cos(2 ) sin (2 )

2
a a a a        

 

(21)  
When a=0, Eq. (21) reduces to Eq. (18) under 

proportional loading. 
Figure 12 compares the computed results of sinps 

using Eqs. (18)–(21) on circular (D1) and non-circular 
(A2) particle samples. It is illustrated in Fig. 12 that yet 
there exist some deviations at large shear strain level (i.e. 
20) due to strain localization taking place within the 
samples and the calculated values of sinps given by   

Eq. (21) is very close to the simulated mobilized shear 
strength achieved using Eq. (19), while those calculated 
with ROTHENBURG and BATHURST’s equation   
(Eq. (18)) give higher mobilized shear strength due to the 
ignorance of the fabric hysteresis effect. It clearly 
indicates that the deviation between the principal 
directions of stress and fabric anisotropy will lead to 
shear strength reduction of granular samples, which 
favorably agrees with the findings reported by QIAN   
et al [11]. 
 

 
Fig. 12 Validation of stress–force–fabric relationship: (a) D1 

sample (circular); (b) A2 sample (non-circular) 

 
6 Conclusions 
 

1) Some of the major macroscopic behaviors of 
dense granular assemblies under simple shear can be 
successfully captured in DEM simulations, such as 
dilation and strain-softening. Particle shape will affect 
both macro and microscopic behaviors of numerical 
samples. For circular particles, the critical state behavior 
is observed to be independent of initial porosity and 
vertical stress. Higher peak and residual friction angles 
have been observed in non-circular particle samples due 
to the higher angularity of the particles and the 
anisotropic coefficients. 

2) Non-coaxiality between the directions of 
principal stress and principal strain increment has been 
observed in numerical samples, which agrees with the 
finding from Toyoura sand. The non-coaxiality angle is 
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slightly affected by the shape of the particles but mainly 
by the strain level. Non-coaxiality is the largest at the 
start of the shear then reduces with the shear strain and 
almost diminishes as the sample reaches the residual 
state. 

3) The non-coaxiality effect greatly affects the shear 
behavior of the assemblies. Using the results from the 
simulated and published data, an equation (Eq. (14)) is 
proposed to consider the non-coaxiality effect in 
describing the stress–dilatancy behavior of the 
assemblies. The proposed equation better describes the 
peak friction angles of granular materials than the current 
ROWE-DAVIS model. 

4) During the course of simple shear, the evolution 
tendencies of fabric and contact force anisotropies are in 
good agreement with the development of shear resistance. 
The maximum degrees of fabric and contact force 
anisotropies occur when shear stress ratio reaches its 
peak value. Nevertheless, no coincidence has been 
observed between the rotation of principal stress 
direction and the orientation of fabric anisotropy during 
shear. 

5) Fabric hysteresis effect has been observed in the 
simulations. The fabric hysteresis effect is less in 
samples with angular particles. The decrease of 
hysteresis effect observed in the sample with non- 
circular particles is considered due to the increase of the 
angle of fabric anisotropy. An equation (Eq. (21)) is 
proposed to describe the fabric hysteresis effect on 
stress–force–fabric relationship. The proposed model 
well captures the stress–force–fabric relationship of the 
samples with circular and non-circular particles. 
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