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Abstract: The extended finite element method (XFEM) is a numerical method for modeling discontinuities within the classical finite 
element framework. The computation mesh in XFEM is independent of the discontinuities, such that remeshing for moving 
discontinuities can be overcome. The extended finite element method is presented for hydro-mechanical modeling of impermeable 
discontinuities in rock. The governing equation of XFEM for hydraulic fracture modeling is derived by the virtual work principle of 
the fracture problem considering the water pressure on crack surface. The coupling relationship between water pressure gradient on 
crack surface and fracture opening width is obtained by semi-analytical and semi-numerical method. This method simplifies coupling 
analysis iteration and improves computational precision. Finally, the efficiency of the proposed method for modeling hydraulic 
fracture problems is verified by two examples and the advantages of the XFEM for hydraulic fracturing analysis are displayed. 
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1 Introduction 
 

Hydraulic fracturing is the propagation of fractures 
in the rock formation through the fluid pressure on crack 
surfaces. It is a commonly used technique in petroleum 
engineering to enhance reservoirs permeability and wells 
efficiency. Modeling of fluid-driven fracture propagation 
is a significant challenging problem in rock mechanics 
and engineering because of the strong nonlinear coupling 
between the viscous flow of fluid inside the fracture and 
fracture propagation (a moving boundary). Plus, the 
coupled hydro-mechanical process has the practical 
importance in design and safety assessment in many 
engineering fields, such as geotechnical engineering and 
environmental engineering. 

The problem of modeling fluid-driven fractures was 
studied by many contributors during the last decades 
from an analytical perspective [1−5]. These solutions 
usually suffer from the limitations of the analytical 
models. To deal with more complex fracture geometries, 
numerical tools were developed to simulate the hydraulic 
fracture problem [6]. These tools applied are finite 
element method (FEM), boundary element method 
(BEM), finite difference method (FDM), distinct element 
method (DEM) and so on. The finite element method has 
been most widely used in modelling the hydraulic 

fracture propagation in homogeneous rocks. For example, 
SIMONI and SECCHI [7] and SECCHI et al [8] modeled 
the hydraulic cohesive crack growth by the finite element 
method with mesh adaptation; SEGURA and CAROL [9] 
proposed a hydro-mechanical formulation for 
geomaterials with pre-existing discontinuities based on 
the finite element method with zero-thickness interface 
elements. However, the standard finite element model 
requires remeshing after crack propagation and the finite 
element mesh needs to conform to the crack geometry, 
and thus is computationally expensive. 

The extended finite element method (XFEM) is a 
numerical method for modeling discontinuities within a 
standard finite element framework. It was first 
introduced by BELYTSCHKO and BLACK [10] at 
Northwest University in 1999. In the XFEM, a Heaviside 
function and the two-dimensional asymptotic crack-tip 
displacement fields are added to the finite element 
approximation to account for discontinuity of the crack 
surface and stress singularity near the crack tip 
respectively. This enables the domain to be modeled by 
finite elements without explicitly meshing the crack 
surfaces, and hence crack growth simulations can be 
carried out without remeshing [10]. The extended finite 
element method (XFEM) is an effective method for 
discontinuous problems in mechanics within a standard 
finite element framework and maintains all advantages of 
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the common finite element method on the basis of the 
partition of unity, so this method facilitates the modeling 
of the propagating crack. Due to the unique advantage of 
XFEM for fracture analysis, it has been employed to 
investigate the hydraulic fracture problems. The method 
was employed by REN et al [11] in modeling of 
hydraulic fracturing in concrete by imposing a constant 
pressure value along the crack faces. The technique was 
also employed by LECAMIPON [12] in hydraulic 
fracture problems using the special crack-tip functions in 
the presence of internal pressure inside the crack. The 
XFEM was recently employed by MOHAMADNEJAD 
and KHOEI [13] in hydro-mechanical modeling of 
deformable, progressively fracturing porous media 
interacting with the flow of two immiscible, 
compressible wetting and non-wetting pore fluids. The 
main objective of this work is to develop a coupled 
numerical model on the basis of the extended finite 
element method in conjunction with a hydro-mechanical 
model for the modeling of the hydraulic fracture 
propagation in rock. Finally, two numerical examples are 
presented to demonstrate the capability and the 
efficiency of the developed model in the simulation of 
the hydraulic fracture propagation in rock. The effect of 
some parameters that have an influence on the hydraulic 
fracture propagation is studied further. 
 
2 Hydraulic fracture model with XFEM 
 
2.1 XFEM approximation for cracks 

In XFEM, special enriched shape functions are 
added to enrich the finite element displacement using the 
framework of partition of unity to model the 
discontinuities of cracks. The displacement 
approximation for an isotropic linear elastic material 
with a crack takes the following form:  

4
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where Ω is the entire domain; Ni(x) is the traditional 
finite element shape function; ui is the traditional degree 
of freedom; ΩΓ is the domain cut by the crack; H(x) is 
the Heaviside enrichment; ai denotes the nodal enriched 
degree of freedom associated with the discontinuous 
Heaviside function; ΩΛ is the domain containing the 
crack tip; Fl(x) is the crack tip enrichment; l

ib  is the 
nodal degree of freedom corresponding to the near-tip 
function. 

For an element completely cut by a crack, the 
Heaviside enrichment function is given as [14]  
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where x is a sample (Gauss) point; x* (lies on the crack) 
is the closest point to x; n is the unit outward normal to 
the crack at x*. 

For the isotropic elasticity, the near tip displacement 
field takes the form of the following four functions [15]: 
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                         (3) 
 
where (r, θ) are the polar coordinates in the local 
crack-tip coordinate system (see Fig. 1). A node should 
be enriched by both Eqs. (2) and (3), and only Eq. (3) is 
used as shown in Fig. 2, in which the nodes with circle 
are enriched by the Heaviside step function, and the 
nodes with square are enriched by the crack tip 
enrichment functions. 
 

 
Fig. 1 Local coordinate system 

 

 
Fig. 2 Nodes enriched with enrichment functions 

 
According to Eq. (1), the displacement discontinuity 

between the two surfaces of the crack can be obtained as 
 

12 2i i i i
i i

N r N
  

 

 
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where w is the separation between the two faces of the 
crack. 
 
2.2 Governing equations 

Consider a two-dimensional plane strain model in a 
homogeneous, isotropic, impermeable medium, which 
will be employed to model the hydraulic fracture 
propagating. A small elastic deformation domain Ω 
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contains an edge crack described by Γc as shown in   
Fig. 3. We assume quasi-static loading by a body force b 
and traction t imposed on the part Γt of the boundary. The 
domain is constrained by prescribed displacement u 
imposed on the part Γu of the boundary. The prescribed 
stress and displacement fields are  and u, respectively. 
The crack face Γc is distinguished into two parts 

cΓ  
and 

cΓ  in which c c c     and the normal 
vectors to 

cΓ  and 
cΓ  are denoted by n+ and n−. The 

fracture propagation is mainly dependent on the water 
pressure p including p+ and p−, which are acted on the 
boundary 

cΓ  and ,c
Γ  respectively. 

 

 
Fig. 3 Geometry of discontinues domain and its boundary 

conditions 

 
In this model, the equilibrium equation and the 

boundary condition are as follows: 
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The stress field insider the domain Ω is expressed in 

terms of the isotropic, linear elastic constitutive law as 
 

: D                                     (6) 
 
where D is Hooke’s tensor. 

The weak form of the equilibrium equations can be 
written as 
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where δu is an arbitrary virtual displacement and δε is 
the corresponding virtual strain. 

For the water pressure on the crack surfaces, we 
have p+=−p−=p. So, the last two terms of the right-hand 
side of Eq. (7) can be expressed as 
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          (8) 
 

Substituting Eq. (8) into Eq. (7), Eq. (7) can be 
rewritten as 

t

: δ d d dS
  
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By defining δw=δu+−δu−, where δu+ is the 

separation between the two surfaces of the crack, the 
week form of the hydraulic fracturing equilibrium 
equation can be given by 
 

t c
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   
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(10) 
 
2.3 Discretized equations 

Substitution of the displacement approximations 
(Eq. (1)) and the constitutive equation (Eq. (6)) into   
Eq. (10), the following discrete system of linear 
equations is obtained 
 

Kd f                                   (11) 
 
where d is the vector of degrees of nodal freedom (for 
both classical and enriched ones), defined as 
 

1 2 3 4 T{ }i i i i i id u a b b b b=                             (12) 
 
K and f are the global stiffness matrix and external force 
vector, respectively. 

The global matrix is calculated by assembling the 
matrix of each element. For each element e, K may be 
calculated as 
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where r, s=u, a, b; Ωe is an element such that the crack 
lies along the edges of these elements; Bu, Ba, Bb are the 
matrices of shape function derivatives which are given 
by 
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where l=1−4; Ni,x and Ni,y are the derivatives of Ni with 
respect to x and y, respectively; (NiH),x and (NiH),y is the 
derivatives of (NiH) with respect to x and y, respectively; 
(NiFl),x and (NiFl),y is the derivatives of (NiH) with 
respect to x and y, respectively. 
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f is the equivalent node force vector of body force b, 
traction t and water pressure p which is given by 
 

T
1 2 3 4{ }u a b b b bf f f f f f  f                      (15) 

 
where the vectors that appear in Eq. (15) are defined as 
 

e
t

e
t c

e
t c

t

t

N d d

d d 2 d

d d 2 d

u i iΩ

a i i iΩ

bl i l i l iΩ

N

N H N H N

N F N F r N



 

 

 

  

  

  
    

    

 
  
  

f t b

f t b n p

f t b n p
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where l=1−4; Ni is finite element shape function. 

It can be shown that for an element which is cut by 
the crack, water pressure vector components are related 
to the regular degrees of freedom vanish. Only the 
additional degrees of freedom contribute to the external 
nodal force of the crack interface. 
 
2.4 Numerical integration method 

To construct the integrals on the crack surface, it is 
necessary to discretize Γc. In traditional finite element 
discretization, nodes must be placed on the element faces 
which align with the crack surface. In XFEM, since the 
crack and mesh geometry are independent, we first 
divide Γc into one-dimensional segments. The segments 
are determined according to the interaction of the crack 
geometry with the mesh. In order to numerically 
integrate the terms in Eq. (16) on Γc, an enough number 
of Gauss points are used along each of the one- 
dimensional segments, as shown in Fig. 4. 
 

 
Fig. 4 Gauss points on crack segments for crack surface 

 
3 Hydro-mechanical coupling model 
 
3.1 Fluid-flow model of single crack 

A hydro-mechanical model of rock with a single 
fracture initially filled by saturation water was 
introduced by LI et al [16]. It is assumed that the 
fracturing fluid is an incompressible, uniform and 
Newtonian viscous fluid. The flow pattern is 
one-dimensional laminar flow and differential equation 
of water pressure distribution due to hydraulic fracturing 
is obtained by the finite control volume approach. 

The pressure gradient and the fracture width in the 
domain filled with fluid are related by the basic equation 
in the approximation of lubrication theory [7]: 

3
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                               (17) 

 
where q is the local flow rate; μ is the dynamic viscosity 
of the fracturing fluid; w is the local fracture width; p 
denotes the fluid pressure in the fracture. 

The fracturing fluid is considered to be 
incompressible, so the mass conservation equation for 
the fluid may be expressed as 
 

q w

x t
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Equation (18) ignores any leak-off from the fracture 

surface into the rock formation. 
Through Eq. (17), we can obtain the following 

differential equation: 
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Substituting of Eq. (18) into Eq. (19) leads to 

differential equation of water pressure distribution: 
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The solution of Eq. (20) is approximated using 

finite differencing techniques, and the derivative of w 
with respect to x or time t can be approximated as 
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where i represents the ith control volume and Δxi is the 
length of the ith control volume as shown in Fig. 5. 
 

 
Fig. 5 Dynamic model of flow in fracture 

 
The hydraulic fracturing in fields of water 

conservancy, hydropower and mining engineering is 
produced by natural hydraulic power. Its boundary 
conditions are different from those in artificial hydraulic 
fracturing applied in fields of petroleum and natural gas 
engineering. The boundary conditions for hydraulic 
fracturing problem of constant head and large reservoir 
water capacity at the edge of crack can be approximated 
as 
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Equation (21) is an order ordinary differential 

equation for p/x combined with boundary condition of 
Eq. (22), and the following equation can be obtained as 
[16] 
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Now, the differential Eq. (23) is obtained, which can 

be implicitly expressed in terms of the relative water 
pressure gradient in the fracture and fracture width. 
Starting from crack front and combined with the 
hydraulic boundary condition, the distribution of water 
pressure on the crack surfaces is given by 
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3.2 Equivalent hydraulic aperture 

The differential Eq. (23) describing the internal 
water pressure distribution in rock fractures formed by 
hydraulic fracturing is obtained under the assumption 
that the crack surfaces are perfectly smooth. However, 
the crack surfaces in rock are rough in fact. Considering 
the crack surface roughness effects on fluid flow in rock 
joints, an empirical equation proposed by BARTON [17] 
for the analysis of the relationship between the 
equivalent hydraulic aperture and the theoretical aperture 
is adopted herein, which is given by 
 

2.5 2
eq eq/( / )w JRC w w                       (25) 

 
where weq is the equivalent hydraulic aperture; w is the 
theoretical aperture. The units of weq and w are microns. 
JRC is the joint roughness coefficient and the values of 
JRC range from 0 to 20. The influence of roughness 
decreases as the fracture opens (increasing w) and w/weq 
approaches 1.0 [18]. 
 
4 Stress intensity factor evaluation and crack 

growth criterion 
 
4.1 Stress intensity factor evaluation 

An interaction integral method [19] is used for 
calculating the stress intensity factor (SIF) at the tip of 
the crack. The coordinates are taken to be the local crack 
tip co-ordinates with the x1-axis parallel to the crack 
faces. The domain form of interaction integral is given 
by 

(2) (1)
(1,2) (1) (2) (1,2)

1
1 1

di i
ij ij jA

j

u u Q
M W A

x x x
  
   

    
    

  

c

(2) (1)
(1) (2)

1 1

di i
j j

u u
p p Q

x x




  
    

          (26) 

 
where ij, εij and ui represents stress component, strain 
component and displacement component, respectively; pj 
represents water pressure on the crack surfaces; δ1j is the 
Kronecker delta; A is an area surrounding the crack tip; 
Q is a weighting function; W(1,2) represents the strain 
energy density for states 1 and 2; M(1,2) is called the 
interaction integral for states 1 and 2; the states 1 and 2 
depict the actual and the auxiliary states, respectively. 
Field variables for the actual state are obtained by the 
XFEM solution and those for auxiliary state are chosen 
as the crack tip asymptotic fields [20]. 

Strain energy density W(1,2) is given as 
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Expanding and rearranging terms from Eq. (27) 

give 
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where superscript ‘‘aux’’ denotes auxiliary fields. 

The interaction energy integral is related to the SIFs 
as follows [21]: 
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where E* is defined in terms of material parameters E 
(elastic modulus) and ν (Poisson ratio) as 
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The stress intensity factors for the XFEM state 

(1)K and (1)K  are given by selecting (2) 1K   and 
(2)
II 0,K   followed by (2) 0K   and (2)

II 1K   such 
that (1)K  and (1)K  are 
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*
(1) (1,mode I)
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E
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where I(1,mode I) is the interaction integral for (2) 0K   
and (2)

II 0K   and 
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E
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where I(1,mode I) is the interaction integral for (2) 0K   
and (2)

II 1.K   Once SIFs are obtained, fracture 
parameters θc can be easily computed. 
 
4.2 Crack growth criterion 

There are several criteria for predicting crack 
growth direction in homogeneous materials. The 
maximum circumferential stress criterion [14] which is a 
commonly used criterion, is adopted herein. The 
maximum circumferential stress criterion states that the 
crack will propagate from its tip when equivalent stress 
intensity factor eqK is greater than fracture toughness KIC. 
According to this criterion, the crack growth occurs in a 
direction perpendicular to the maximum principal stress. 
Thus, at each crack tip, the angle of crack growth θc is 
given by 
 

 2c
1

2arctan 8
4

K K K K    
    
 

      (33) 

 
where KI and KII are the mixed-mode stress intensity 
factors. 

According to this criterion, the equivalent mode-I 
SIF is obtained as 
 

eq c
c c

1
cos [ (1 cos ) 3 sin ].

2 2
K K K


  

    
 

     (34) 

 
5 Coupling solution procedure 
 

The described time-dependent non-linear problem 
of hydraulic fracture propagation is solved using an 
iterative solution procedure. Iterative procedure is 
required to bring the fluid-flow, rock deformation and 
fracturing processes in equilibrium at every propagation 
step. The solution process consists of the following 
operations: 

1) The fracture width w is obtained from XFEM 
analysis under the given initial load and initial crack 
length. The theoretical apertures w in this model have to 
be converted to physical apertures weq using Eq. (25). 

2) Solve the water pressure p by Eq. (24). The 
obtained water pressure distribution p is imposed on the 
engineering structure to perform XFEM analysis. The 
water pressure p is solved iteratively using reasonable 
tolerance on the water pressure difference to judge 
whether the solution has converged. Once this is satisfied, 
we go to the next step. 

3) Calculate the equivalent stress intensity factor 
eq ;K  if eqK  is less than KIC, go to next step; if eqK  

is more than KIC, calculate the propagation direction and 
step length based on the propagation criterion, then go 
back to step 1. 

4) The water pressure at the edge of crack is 
increased by the time step, go back to step 1. 
 
6 Numerical examples 
 

In order to illustrate the accuracy and versatility of 
the extended finite element method in modeling of the 
hydraulic fracturing problem, several numerical 
examples are presented. The calculation of the stress 
intensity factors is performed with the domain form of 
the interaction integral as detailed in the previous 
section. 
 
6.1 Edge-cracked plate under uniform surface 

tractions 
The first example is chosen to demonstrate the 

accuracy of stress intensity factor obtained by the 
proposed XFEM modeling of hydro-mechanical analysis. 
A square plate with an edge crack under uniform water 
pressure is shown in Fig. 6. The chosen plate dimensions 
are a width of 3 m and a height of 3 m with an edge 
crack of length 1.2 m. The material is linearly elastic 
with elastic modulus E=10 MPa and the Poisson ratio 
=0.3. The uniform water pressure p=1 Pa is imposed on 
the crack surface. Square plane stress quadrilateral 
elements with a structured mesh are used. 
 

 
Fig. 6 Edge-cracked plate under water pressure 

 
The stress intensity factor is calculated based on the 

proposed XFEM modeling of hydro-mechanical analysis 
considering water pressure along the crack surface. No 
analytical solutions and numerical results in the literature 
are compared with the present results. According to 
superposition principle, the stress intensity factors for 
edge-cracked plate under uniform surface tractions and 
edge-cracked plate under tension are approximately 
equal. The case of a square plate with an edge crack 
under tension is shown in Fig. 7. All the parameters 
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Fig. 7 Edge-cracked plate under tension 

 
including geometry and material properties needed for 
simulation are considered similar to the previous 
example. The theoretical Mode I stress intensity factor 

exacK  for this case is given as 
 

2 3
exac

Ι
1.12 0.231 +10.55 21.72 +

c c c
K

w w w

              
     

 

4

30.39 π
c

c
w


 
 

  
                    (35) 

 
where  is the applied stress. To compare the calculated 
and theoretical values, the stress intensity factors are 
normalized: 
 

XFEM
N

exac

K
K

K





                               (36) 

 
where exacK  is given by Eq. (35) and XFEMK is the 
value calculated by the XFEM analysis using the domain 
form of the interaction integral. The normalized results 
for the various mesh density are given in Table 1. 
 
Table 1 Normalized SIF values for various mesh density 

Mesh density NK  

2025 0.9334 

3969 0.9534 

5625 0.9758 

8649 0.9825 

11025 0.9971 

15129 0.9996 

 
Figure 8 shows the effect of mesh density on 

normalized SIF. It can be noticed from Fig. 8 that the 
good accuracy of computational results can be obtained 
in the case of coarse mesh and the error decreases with 
the increase of element number. The mesh density has no 
more influence on the normalized SIF when the element 
number is around 6000. 

 

 
Fig. 8 Effect of mesh density on SIF 

 
Figure 9 shows the SIFs for various crack lengths 

with 15129 elements in the full domain. It can be noticed 
from Fig. 9 that the results for the SIFs obtained by 
XFEM are in excellent agreement with the exact solution 
for the entire crack length of c/w. 
 

 
Fig. 9 SIFs for various crack lengths 

 
6.2 XFEM modeling of hydraulic fracturing for rock 

sample 
The second example is chosen to demonstrate the 

performance of proposed computational algorithm for 
the hydro-mechanical analysis of an impermeable 
discontinuity in the rock, as shown in Fig. 10. The 
 

 
Fig. 10 Geometry model of specimen 
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chosen sample dimensions are a width of 10 m and a 
height of 10 m. The edge crack has an initial length of  
2 m. The material properties used in the analysis are 
chosen to be elastic modulus E=39.2 GPa, =0.25 and 
the plane fracture toughness KIC=8.5×106 N·m−3/2. The 
sample is constrained at the right boundary and the 
gravity is ignored while the water pressure p0=5 MPa is 
imposed at the edge of crack. We assume the rock joint 
with a typical JRC value of 10. 

In the numerical model, a uniform mesh consisting 
of 25×25 elements is considered and quasi-static crack 
growth is governed by the maximum circumferential 
stress criterion. The change in crack length for each step 
is taken to be a constant crack growth increment Δc=0.4, 
and the crack is grown for 5 steps. The specific crack 
propagations in an impermeable elastic formation at step 
2, 5 and deformation are shown in Fig. 11. It can be seen 
from Fig. 11 that the water pressure loading makes the 
crack open and propagate along the crack face. Our 
results are similar to those in Ref. [11]. The 
corresponding normal and shear stress contours are 
shown in Fig. 12. It can be seen that the stress 
concentration near crack tip is very obvious. 
 

 
Fig. 11 Deformed shape and crack propagation path: (a) Crack 

propagation path after 2 steps; (b) Crack propagation path after 

5 steps 

 
Table 2 gives the position and SIF of the top crack 

tip at each step of the simulation. Figure 13 shows the 

 

 
Fig. 12 Normal and shear stress contours: (a) Normal stress xx; 

(b) Normal stress yy; (c) Shear stress τxy 

 
Table 2 Position and SIFs for crack tip 

Step 
Tip position 

KI/(N·m−3/2) 
x/m y/m 

Initial 2.0 5.0 1.2041×107 

1 2.4 5.0 1.4417×107 

2 2.8 5.0 1.7203×107 

3 3.2 5.0 2.3177×107 

4 3.6 5.0 2.8018×107 

5 4.0 5.0 3.2763×107 
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Fig. 13 Relationship between SIF at crack tip and crack 

propagation length 

 
relationship between the SIF at the crack tip and the 
crack growth length during the crack propagation. It can 
be seen from Fig. 13 that the mode ISIF at the crack tip 
increases with the increase of crack propagation length. 
The results show that the crack propagation is non-steady 
under the water pressure loading. 

The simulation result for the fracture opening width 
under different crack propagation step is shown in    
Fig. 14. It is observed from Fig. 14 that with the 
propagation of the crack, the crack opening width 
increases. Figure 15 displays the distribution of water 
pressure in the direction of the hydraulic fracture 
propagation after different crack propagation step. It is 
observed that first water pressure along crack face 
significantly decreases and then rapidly develops to full 
head after the hydraulic fracture propagation. The main 
reason for this result is that with the increase of the crack 
opening width, the resistance of water flow into the 
fracture reduces, so the water pressure along crack face 
is rapidly developed to full head. Simulated results using 
XFEM are in good agreement with the experimental 
 

 
Fig. 14 Fracture opening width under different crack 

propagation step 

 

 
Fig. 15 Hydraulic pressure distribution along crack face under 

different crack propagation step 

 
results represented by BRÜHWILER and SAOUMA 
[22]. Excellent agreement between the two solutions 
demonstrates the capability of the proposed model in 
simulating hydraulic fracture propagation. 
 
7 Conclusions 
 

A coupled numerical model is developed for the 
modeling of the hydraulic fracture propagation in rock 
using the extended finite element method in conjunction 
with a hydro-mechanical model. The governing equation 
of XFEM for hydraulic fracture modeling is derived by 
the virtual work principle of the fracture problem 
considering the water pressure on crack surface. A 
hydro-mechanical model of rock with a single fracture 
initially filled by saturation water is introduced. The 
coupling relationship between water pressure gradient on 
crack surface and fracture opening width is obtained by 
semi-analytical and semi-numerical method. This 
method simplifies coupling analysis iteration and 
improves computational precision. Then, numerical 
examples were analyzed to demonstrate the performance 
and capability of proposed computational algorithm in 
modeling of the hydraulic fracturing problem. The first 
example was selected to deal with the hydro-mechanical 
analysis of a plate with an edge crack to verify the stress 
intensity factor obtained from the numerical analysis 
with available reference results. The second example was 
chosen to perform the XFEM hydro-mechanical analysis 
of an impermeable discontinuity in the rock. The results 
show that the XFEM with remeshing avoided is needed 
to accurately predict the hydraulic fracture propagation, 
and the XFEM with remeshing avoided can provide an 
effective tool for carrying out hydraulic fracture growth 
in the rock. 
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