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Abstract: The problem of fault estimation is investigated for a class of uncertain switched systems with time-varying delay. A robust 
observer-based fault estimator is designed such that the augment error system is exponentially stable and the H∞ performance index 
meets the predefined requirements. Based on the multiple Lyapunov-Krasovskii functions and the average dwell-time method, the 
delay dependent sufficient conditions on the existence of desired fault estimator are established. However, since these conditions are 
not linear matrix inequalities (LMIS), they can not be solved by MATLAB. By using a novel method, these conditions are presented 
in terms of LMIS. Finally, a numerical example is carried out. The designed fault estimator could tract the fault signal timely. Besides, 
the error between estimation and fault is very small. Therefore, the validity of the obtained results is illustrated. 
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1 Introduction 
 

Switched system belongs to hybrid systems. It is 
composed of several subsystems and a switching law [1]. 
The switching law supervises the switches among the 
subsystems. In practice, switched systems are widely 
applied in many fields, such as communication system 
[2], formation flying [3], networks control [4], and power 
systems [5]. Recently, the switched system has attracted 
great attention of researchers. Most of the obtained 
results focus on several basic problems, such as stability 
[6], and stabilization [7−9]. 

For control system, security and reliability are very 
important. The fault of control system usually leads to 
the degradation of performances and security incidents. 
Therefore, for improving the system reliability, fault 
detection and isolation (FDI) is a very significant 
problem in engineering. Many effective approaches have 
been proposed for FDI. Recently, H∞ filtering 
formulation method has been widely used to study FDI. 
In Ref. [10], FDI was studied based on robust sliding 
mode observers. The problem of robust fault detection 
was considered for switched systems in Ref. [11]. In  
Ref. [12], fault detection of uncertain discrete switched 
system was converted into a H∞ filtering problem by 
constructing a robust fault filter. The fault detection of 
switched system was investigated via building an 
observer [13−15]. In Ref. [14], by using a new Lyapunov 

function, the sufficient condition was established for the 
existence of fault detection filters. 

On the other hand, fault estimation is also very 
meaningful, especially for fault tolerant control (FTC). 
Therefore, many researchers devote to investigating this 
problem. During the past decades, several effective 
methods have been developed, such as sliding mode 
observer approach [16], adaptive technique [17−18] and 
learning method based on neural network [19−20]. The 
observer approach possesses an advantage that the state 
estimation and fault estimation could be obtained 
simultaneously. WANG and ZHANG [21] used a class of 
adaptive observers to estimate both system state and fault. 
In Ref. [22], based on adaptive observer technique, the 
parameter fault detection and estimation were studied for 
nonlinear systems with time delay. 

However, for switched system, just several works 
on fault estimation were published. The fault of switched 
linear systems was estimated via building a hybrid 
controller which is composed of a fault estimator and an 
impulsive controller [23]. In Ref. [24], the problem of 
fault estimation and accommodation was investigated for 
switched linear system. Furthermore, an observer-based 
fault tolerant controller was obtained on the basis of fault 
estimation. Based on a novel switched descriptor 
observer, the sensor fault estimation was investigated in 
Ref. [25]. XIANG et al [26] detected the fault of a class 
of uncertain switched nonlinear systems via state 
updating approach. In Ref. [27], the problem of fault  
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detection was investigated for switched nonlinear 
systems under asynchronous switching. An estimator was 
designed for discrete-time switched positive linear 
systems in Ref. [28], and the developed method is useful 
for fault estimation. Based on fault estimation, the 
problem of fault tolerant control was studied for 
switched discrete-time systems [29]. In above mentioned 
literatures, some effective approaches were proposed for 
fault estimation. However, the model uncertainty usually 
exists in dynamical systems. It has not been taken into 
account in most of published papers. 

In practice, unknown disturbance, model 
uncertainty and fault signal are coupled together in 
control system. It should be noted that unknown 
disturbance and model uncertainty may interfere with 
fault estimation. Therefore, the desired fault estimator 
should not only be sensitive to fault but also be robust to 
disturbance and model uncertainty. In this work, by 
taking time-varying delay and model uncertainty into 
account, the problem of robust fault estimation is 
investigated for a class of uncertain switched linear 
systems. A robust fault estimator is designed based on 
building state observer. The error between the fault and 
the fault estimation satisfies the predefined performance 
index. Based on the multiple Lyapunov-Krasovskii 
functions, the sufficient conditions on the existence of 
desired fault estimator are established in terms of linear 
matrix inequalities (LMIS). Finally, a numerical example 
is given to illustrate the validity of obtained results. 

Notations: Rn stands for n-dimensional real vector 
space; Rn×n denotes the space of n×n matrices with real 
entries; let T 2 2

1|| || { },n= = + +x x x x x where xi is the 
ith element of vector, ;nx R let  1,  ,  m m  and 

 1,  ,  ,n n  where m and n are arbitrary positive 
integers; l2 stands for 2-norm; I represents the identity 
matrix. 
 
2 Problem and preliminaries 
 

Consider the following uncertain switched linear 
system with time-varying delay:  
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             (1) 

 
where ( ) nt x R  is the system state vector; τ(t) stands 

for time-varying delay; y(t) is the system output; d(t) 
stands for the external disturbance; f(t) is the fault which 
belongs to 2[0, );l   ( )t m   denotes the switching 

law which is a piecewise continuous function; f(t) 

denotes the continuous vector-valued initial function; the 
model uncertainties ΔAσ(t) and ΔAdσ(t) are norm bounded, 

described by the following equality: ( ) d ( )Δ  Δt t    A A   

( ) ( ) 1 ( ) 2 ( ) ;t t t t     H F E E ( )tF  is unknown matrix 

satisfying T
( ) ( ) ;t t  F F I  Hσ(t), E1σ(t) and E2σ(t) are 

known matrices; Aσ(t), Adσ(t), Bσ(t), Gσ(t), Cσ(t), Cdσ(t), Dσ(t) 
and Jσ(t) are known system matrices with appropriate 
dimensions; besides, 0 ( )t   and ( ) 1,t d   where  

τ and d are known positive constants. 
First, some definitions and lemmas are introduced. 
Definition 1: If there are two positive constants α 

and β such that  

0

0 0 0
[ ,0]

( ) exp{ ( )} sup ( ) ,  
t

t t t t t t


 
 

    x x     (2) 

 
then system (1) is globally uniformly exponentially 
stable (GUES) under the switching law σ(t) [6]. 

Definition 2: For T≥t≥0, let Nσ(t)(t, T) denote the 
switching number of σ(t) over (t, T]. If  

( ) 0
a

( , )t
T t

N t T N 


                          (3) 

 
then τa is called the average dwell-time (ADT). τa≥0 and 
N0 is a non-negative integer [7]. 

Assumption 1: System (1) is a strict continuous 
system, which implies that system state trajectory is 
continuous everywhere. In other words, state variable 
does not jump at any switching instant [30]. 

Lemma 1 [8]: For matrices D, E and symmetric 
matrix Y,  

T T T 0  Y DFE E F D                       (4)  
holds for FTF≤I if and only if there exists a positive 
constant ε such that 

 
T 1 T 0    Y DD E E                       (5) 

 
Next, the problem of robust fault estimation of 

system (1) would be expounded in detail. In this work, 
the considered fault belongs to a frequency range located 
at low frequencies, and its minimal state space 
description is given as 

 

0

0

( ) ( ) ( )

( ) ( ) ( )
w w w w

w w w

t t t

t t t

 
  

x A x B f

f C x D f
                    (6) 

 
where xw(t) is the fault state vector; f0(t) is the fictitious 
signal; f(t) denotes the weighed fault; Aw, Bw, Cw and Dw 
are known matrices obtained from the prior knowledge 
of fault. 

Define the following matrices: 
 

T T T( ) ( ) ( )wt t t   x x x , 
 

T T T
0( ) ( ) ( )t t t   w d f , 
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1 ( ) 1 ( ) 0t t    E E , 

2 ( ) 2 ( ) 0t t    E E                           (7) 
 

The augment system (8) could be obtained from 
system (1) and (6), written as 
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     (8) 

 
where  

( ) d ( ) ( ) ( ) 1 ( ) 2 ( )Δ Δ ,t t t t t t           A A H F E E

T
( ) ( ) .t t  F F I  

According to the structure of system (8), the desired 
observer is described by 
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where Kσ(t) is the gain matrix to be determined; )(ˆ tx  
and )(ˆ ty are the state and output of the observer, 
respectively; )(ˆ tf denotes the fault estimator. 

Let ˆ( ) ( ) ( ),t t t ε x x ˆ( ) ( ) ( ).t t t e f f From  
Eqs. (8) and (9), error system (10) is obtained: 
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Define the following matrices given by  
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Then, the following augment error system is 

constructed via Eqs. (8) and (10): 
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The main task of this work is that constructing 
observer (9) guarantees: 1) when v(t)=0, system (12) is 
stable; 2) under initial condition f(t)=0, the H∞ 

performance index should satisfy 
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If observer (9) could be built successfully, then the 
observer-based fault estimator )(ˆ tf could be obtained 
from observer (9). 
 
3 Robust fault estimator design 
 

In this section, the sufficient conditions on the 
existence of fault estimator would be proposed, and the 
desired fault estimator would be built. 

Lemma 2: For given scalars γ>0, λ>0 and ρ≥1, if 
there exist positive symmetric matrices Tp, Pp and Rp, 
and positive scalar ε such that 
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and the ADT satisfies 
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then there exists observer (9) such that system (12) meets 
the requirements (1) and (2). 
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Proof: Construct multiple Lyapunov-Krasovskii 

function for system (12) as follows: 
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By the Jensen inequality, inequality (21) is obtained 
from inequality (20):  
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From Eq. (18), and inequalities (19) and (21), it 
follows that 
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where 
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First, when v(t)=0, the stability of system (12) is 

considered. 
Noting that v(t)=0, inequality (22) could be written as 

 
T

11 12

22

( ) ( )
( ) ( )+

*( ( )) ( ( ))p p

t t
t t

t t t t


 
    

           

 
 

S Sx x
V V

Sx x
 

(23)  
According to Schur complement, inequality (24) is 

obtained from inequality (14): 
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According to Lemma 1 and inequality (24), then 
 

T
11 12

22

2 T

* 0 0

* *

* * *

p p w

w

 
 
   

 
  





Ψ Ψ T B C

Ψ

I D

I

 

1 2
0

0 0
0

0

p p

p p

 
 
      
 
  



  

T H

F E E  

T
1

T
T T T2 0 0 0 0

0

0

p

p
p p

 
 
       
 
 
 



  

E

E F H T           (25) 

 
Obviously, inequality (25) is equivalent to 
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By Schur complement and inequality (26), then 
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Consequently, 
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By iterative calculation, it follows that 
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Since 0 0[ , ]s t t  and 0exp{ ( )}t s     

[exp( ), 1] , 
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Inequality (32) is derived from inequalities (29), (31) 

and the definition of Vσ(t)(t):  
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Obviously, α>0. Since a ln / ,    β>0. According to 

Definition 1, system (12) is GUES with an ADT (16). 
Next, under initial condition f(t0)=0, consider the 

following performance index: 
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According to Schur complement and Lemma 1, 

inequality (36) could be obtained: 
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Since 0( ) 0p t V  and lim ( ) 0p

t
t


V , then J<0, 

which implies 2

2

( )
.

( )

t

t


e

v
 This completes the proof of 

Lemma 2. 
Remark 1: Matrices ,p

B  p
A  and dp

A  contain 
unknown gain matrix ,pK  therefore ,p

A dp
A and p

B  
are unknown matrices. Then, two unknown matrix 
variables Kp and Tp exist simultaneously in product terms 
of ,p p

T A T ,p p
A T dp p

T A  and .p p
T B  In addition, ε−1 

also exists in inequality (14). Thus, it would generate 
product term .p p

T A  Consequently, inequality (14) is 
not a LMIS. Next, Lemma 3 is proposed to solve this 
problem. 

Lemma 3: For given scalars γ>0 and λ>0, if there 
exist positive symmetric matrices Tp, Pp and Rp, and 
matrices Ωp, Wp and pΞ , and positive scalars a and b 
such that 
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then inequality (14) holds. 
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It follows from inequalities (37) and (38) that 
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Pre-multiply diag 1{ , , , , , }bI I I I I I and post- 

multiply diag 
1{ , , , , , }bI I I I I I  to inequality (39): 

 
T T

11 11 1

T
22 2

2 T

1

* 0 0 0

* * 0 0 0
* * * 0 0

* * * * 0

* * * * *

p w p p p

p

w

b

b

a

a





 
 
 
 
   

 
 
 
  

  





Φ Φ Ξ C T H E

Φ E

I D

I

I

I

     (40) 

 
Let 1,a   ,p p p Ω T A dp p p W T A and 

,p p p Ξ T B  then inequality (14) is established. This 
completes the proof. 

Remark 2: In Lemma 3, ,p p
T A  dp p

T A  and p p
T B  

are replaced by Ωp, Wp and pΞ , respectively. Positive 
variables a and b are introduced to eliminate the product 
terms generated by ε−1. By this way, inequality (14) is 
transformed into LMIS (37). 

Theorem 1: For given scalars γ>0, λ>0 and ρ≥1, if 
there exist positive symmetric matrices Tp, Pp and Rp, 
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and matrices Ωp, Wp and pΞ , and positive scalars a and 
b such that 
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,i jT T  ,i jP P i jR R , ,i j m         (42) 

 
and the ADT satisfies 
 

a
ln 
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then there is observer (9) such that system (12) is GUES, 
and 
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2
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Proof: According to Lemma 3 and inequality (41), 

inequality (14) holds. Furthermore, by Lemma 2, 
inequalities (42) and (43), there exists observer (9) such 

that system (12) is GUES and 2
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t

t



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v

e

v
 for 

2
( ) [0, ).t  v  This completes the proof. 

Remark 3: First, Ωp could be obtained via solving 
LMIs (41). Then, 1 .p p p

A T Ω  Finally, from Eqs. (7) 
and (11), Kp is obtained. By this way, the fault observer 
is built and the fault estimator ˆ ( )tf  is also obtained. 
 
4 Numerical example 
 

In this section, a numerical example is presented to 
illustrate the validity of the obtained result. Consider the 
switched linear system (1) with following subsystems 
and fault system.  

1) Subsystem 1: 
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2) Subsystem 2: 
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3) Fault system: 
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Let γ=0.2, λ=0.2 and ρ=1.1. From Theorem 1 and 

Remark 3, it is easy to get 
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 


 
 
 
 
    

            

K

K

                         (48) 

 
Over time interval [0, 10], the results of the 

simulation are shown in Figs. 1−3. 
In Fig 1, one could find τa>0.4766, which implies 

 

 
Fig. 1 Simulation of switching law 
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Fig. 2 Simulation of disturbance 

 

 
Fig. 3 Simulation of fault and fault estimation 

 
ADT satisfies inequality (43). The random disturbance is 
shown in Fig. 2. From Fig. 3, one can find that the fault 
estimation approximates the fault. The error between 
them is very small. Besides, the fault estimator could 
tract the trajectory of fault timely. Thus, the designed 
fault estimator could estimate the fault exactly and meet 
the requirements. 

In most of other works, the model uncertainty has 
not been taken into account. However, the designed fault 
estimator in this work is robust to uncertainty.  
Compared with other works, such as Refs. [26] and [27], 
the fault estimation in this work approximates the fault 
more exactly. 
 
5 Conclusions 
 

1) By constructing an observer-based estimator, this 
problem is formulated as a H∞ problem. Based on the 
multiple Lyapunov-Krasovskii functions and average 
dwell-time method, the sufficient conditions on the 
existence of robust fault estimator are obtained. 
Furthermore, the sufficient conditions are presented in 
form of LMIs via a novel method. 

2) It should be pointed out that the multiply 

co-positive Lyapunov-Krasovskii functions used in this 
work are traditional. In the future work, we will try to 
utilize the new kind of function to deal with the fault 
estimation problem for switched positive system, and 
make a comparative analysis with the traditional 
functions. 
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