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Abstract: Aggregate nearest neighbor (ANN) search retrieves for two spatial datasets T and Q, segment(s) of one or more trajectories 
from the set T having minimum aggregate distance to points in Q. When interacting with large amounts of trajectories, this process 
would be very time-consuming due to consecutive page loads. An approximate method for finding segments with minimum 
aggregate distance is proposed which can improve the response time. In order to index large volumes of trajectories, scalable and 
efficient trajectory index (SETI) structure is used. But some refinements are provided to temporal index of SETI to improve the 
performance of proposed method. The experiments were performed with different number of query points and percentages of dataset. 
It is shown that proposed method besides having an acceptable precision, can reduce the computation time significantly. It is also 
shown that the main fraction of search time among load time, ANN and computing convex and centroid, is related to ANN. 
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1 Introduction 
 

Nowadays, mobility is one of the key concepts in 
the society. Ubiquitous computing and location-based 
service (LBS) tools support mobility pretty well. The 
advances in location positioning and wireless 
communication technologies have given rise to the 
prevalence of mobile computing systems and 
location-based services, leading to a myriad of spatial 
trajectories representing the mobility of a variety of 
moving objects, such as people, vehicles, animals, and 
natural phenomena, in both indoor and outdoor 
environments [1]. Because of rapid growth in wireless 
communication technologies and mobile devices like 
smart phones, personal digital assistances (PDAs), 
navigational systems on vehicles such as GPS, 
radio-frequency identification (RFID) tags on cargos and 
other positioning devices, we encounter large volumes of 
requests for tracking moving objects in location-based 
systems. By using these technologies, the position of 
moving objects in geographical spaces can be collected. 
Because of production of huge volumes of data in this 
space (also ever increasing), it is not possible to store or 
process them in memory. So, appropriate methods are 
required for management and processing on disk. 

A spatial trajectory is a trace generated by a moving 
object in geographical spaces. A trajectory can be 
modeled using a sequence of points in a three- 
dimensional space such that two dimensions are for 

spatial coordinates (x, y) and the third dimension is used 
for time (t) [1−3] . These three components specify the 
latitude and longitude of location of object and the time 
of presence of object at that location. By connecting 
these consecutive time-stamped locations, a sequence of 
line segments or briefly, segments, is created. The set of 
segments constitute a trajectory for that object. Hence, a 
segment of a trajectory in a k-dimensional space, in 
essence, is a line in (k+1)-dimensional space with time as 
an additional dimension [4]. 

Currently, moving objects trajectory data are used to 
response various queries like time intervals, time slice 
and range queries. Another important query type is k 
nearest neighbor (kNN) search which aims at returning k 
nearest neighbors to a query point. Aggregate nearest 
neighbor (ANN) search is a special case of NN, in which 
the goal is to retrieve point(s) or segment(s) with 
minimum aggregate distance to query points while the 
number of query points is high. But for various reasons 
such as large amount of data and continuous updates, 
answering these queries is very expensive by considering 
whether a single or a group of query points. Therefore, 
approximate methods are very convenient for answering 
these queries because they provide approximate response 
with an acceptable precision in a short time. 

In this work, an approximate method called 
approximate aggregate nearest neighbor (AANN) for 
answering ANN queries is proposed. Normally, to 
answer such queries, all data must be loaded into 
memory. But due to large volumes of data, it would be  
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very costly. In the proposed method, firstly we compute 
the convex hull of query points and then, centroid of this 
convex hull is determined. After that, by exploiting the 
kNN algorithm, nearest segments to this centroid are 
obtained. These segments are close to result set of ANN 
with a good approximation. In experiments, in addition 
to evaluating the performance of our method, we have 
demonstrated that the approximate method has a good 
precision. Furthermore, currently numerous methods for 
management and indexing of large trajectory datasets are 
suggested, each of which aims at improving performance 
and processing of queries and ultimately reducing costs. 
The base for the majority of these methods is R-tree and 
its family like R*-tree. Since the amount of data stored 
on disk is very large, in this work, we used SETI 
indexing structure to index trajectory data. Since, in 
SETI, indexes are stored on disk, we have used B+-tree 
instead of R*-tree. Because of special characteristics of 
B+-tree, we would expect better performance. 
 
2 Related works 
 

One of the extensions to nearest neighbor search 
[5−7] is increasing the number of query points. This new 
problem is known as aggregate or group nearest neighbor 
problem [8−10]. In this new space, instead of one point, 
we have multiple query points such that our goal is to 
find a point from dataset of points which is near to 
multiple query points simultaneously. For this purpose, 
in these approaches, the distance relation varies and 
aggregate distance is proposed. The most important 
characteristic of such problems that are also considered 
in their distance relation is the simultaneous closeness of 
answer point to query points. The most well-known 
application of this approach is in “Meet Point” problem. 
In this problem [9], the point with minimum distance to 
all group members should be found. Another related 
topic is AggregateRoadNetwork-NNS [10]. Generally, 
the nearest neighbor search is introduced in Euclidean 
space. In the previous problem, the assumption is that the 
distance between any two points can be directly 
computed. In some applications, the problem space is 
Euclidean and aforementioned assumption does not hold. 
For instance, consider streets of a city and movement of 
vehicles on them. In such environments, although the 
space is Euclidean, there is no direct path between points. 
They are called road networks and modeled using planar 
graphs. In the established graph, the triangle inequality 
still holds. It should be remembered that in normal 
graphs, this inequality does not hold necessarily. The 
proposed aggregate distance in this approach is defined 
in the general form: 
 

))),(dist , ), ,(dist() ,(aggdist _1 QnQpQpfQp   

The main functions that substitute f in above 
relation are: sum of distances, maximum distance and 
minimum distance. In order to speed up the response to 
aggregate k nearest neighbor queries, especially in 
trajectory datasets, a suitable indexing structure is 
needed. Efficient indexing structures [11] must be 
capable of supporting large volumes of trajectory data 
and numerous moving objects. Currently, a number of 
indexing structures are introduced [12−13] which can be 
classified into four major groups: 1) Indexing the past; 2) 
Indexing the current; 3) Indexing the future; 4) Indexing 
data at all points of time. The base for the majority of 
this methods is R-tree and its family [14−15]. 

We only concentrate on R-tree-like structures [15] 
that store historical information about moving object 
trajectories such as 3DR-tree [16−18], TB-tree [19], 
STRtree [19], and MV3R-tree [16]. In some indexes 
such as MR-tree [20], HR-tree [17, 21] and HR+-tree 
[22], the temporal dimension is distinguished from the 
spatial dimensions. One of structures that is suitable for 
large amounts of trajectories is SETI [4, 23] which stores 
its indexes on disk that is comfortable for our work. 
 
3 Basic concepts 
 

Fundamental concepts are described in this section. 
First, we introduce SETI indexing structure. Thereafter, 
data space partitioning of SETI is explained in detail. 
Next, different queries that can be answered using this 
method are presented. 
 
3.1 SETI indexing structure 

SETI [4, 23] is used for indexing trajectories in the 
past. Due to essential differences between the 
characteristics of spatial dimensions and the temporal 
dimension [24], the indexing of spatial and temporal 
dimensions is separated. While in structures like 3D 
R-tree, these dimensions are considered equal. By 
analyzing large trajectory datasets, one can realize that 
the boundaries for spatial dimensions change very slowly 
in the lifetime of the trajectory data, whereas the values 
of time dimension increase. 

Because the spatial dimensions have a few change, 
this method logically partitions the space into static, 
non-overlapping cells. In the next section, data space 
partitioning is described. Each cell only contains those 
trajectory segments that are completely inside that cell. If 
a trajectory segment crosses the border of two cells, then 
it is divided into two sub-segments in the border of cells 
and those sub-segments are inserted into corresponding 
cells. Each segment is stored as a tuple in a data page on 
disk. Every data page only contains trajectory segments 
that belong to specific spatial cell. A sparse time index is 
built for each cell. More precisely, for every data page, 
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an entry is stored in the index (instead of an entry for 
each trajectory segment). In order to build this temporal 
index, the lifetime of every data page is computed. By 
lifetime, we mean the minimum time interval that covers 
all the time intervals of trajectory segments pertaining to 
that data page. Thereafter, all time intervals 
corresponding to a cell are indexed using a 1D R*-tree. 
Despite of being one of the best indexing methods for 
trajectory data, SETI has some drawbacks [23]. 
 
3.2 Data space partitioning 

One of the most popular geometric shapes used in 
spatial data indexing is rectangle. However there are 
other shapes proposed for this indexing. For instance, 
circles are suitable for multi-dimensional indices and 
searching similar data. One of the main difficulties of 
using circles is that the real partitioning of the data space 
is not possible mathematically. In other words, we have 
to deal with overlapping. Due to large number of 
intersections, these overlappings result in degradation in 
the query performance and increased I/O costs in query 
processing. Generally, regular and equal-sized 
partitioning approaches are used in storage and retrieval 
and organization of spatial data, because of their 
simplicity in hashing and mapping to secondary storage. 
They provide efficient functions for this task in such a 
way that they firstly split data space into regular and 
non-overlapping rectangles and then map each cell to a 
physical data page [25]. 

Like SETI method, we partition data space into 
regular grid of hexagons logically. It has been proved 
that it is not possible to tile the plane with regular, 
equal-sized disjoint convex polygons with edges of more 
than six [25−26]. So, there are three shapes for regular 
partitioning: triangle, rectangle and hexagon. Among the 
three, hexagon is the most complex regular polygon that 
can partition plane without hole or overlapping. 

Using hexagons has many benefits. Each hexagon 
has six neighbors, sharing an edge with it. The centers of 
all the neighbors of hexagon are of the same distance 
from its center. Despite of square, hexagon has no 
common vertex with its neighbors. This fact alone has 
made regular hexagons very popular for partitioning [27]. 
Regular hexagonal partitioning has a uniform orientation 
and displays a uniform adjacency. Also, considering 
circular range queries, hexagon is very similar to circle 
in terms of shape. Thus, we encounter less orientation 
deviation. In a regular hexagonal partitioning, the 
number of cells that have intersection with the range of 
circular query is always less than that of rectangular or 
triangular partitioning. That is to say, by exploiting 
hexagons in partitioning, we need less I/O operations 
[25]. 

The main drawback of hexagon is that it is not 

possible to split or join hexagons in situations like 
increasing or decreasing the scale of sampling. In 
contrast, splitting or joining a square into new squares is 
straightforward. For example, we can only split the 
hexagon into smaller triangles instead of smaller 
hexagons. 
 
3.3 Queries 

Applicable queries on moving objects data can be 
classified into two major groups [28]: coordinate-based 
queries and trajectory-based queries. 

Examples of coordinate-based queries are time 
interval queries [1] in which all trajectories that have a 
segment contained in the specified spatial box and 
temporal range are returned. Another example is time 
slice queries [1] that select as a result all trajectories that 
have a segment contained in the specified spatial box at 
the determined time instant. Last, but not the least, 
nearest neighbor queries [5−7] that return all trajectories 
that a segment belongs to, has minimum distance to 
query point(s). 

The trajectory-based queries are further classified 
into topological queries and navigational queries. 
Topological queries examine the whole or part of the 
trajectory of an object. For example, the predicate 
‘collision’ examines two trajectories if they intersect in a 
given area at a specific time instant. The navigational 
query involves the information derived from the 
trajectories, such as the speed and the heading of an 
object. The average or top speed of an object is obtained 
by the fraction of travelled distance over time. The 
heading or the direction of travel of the object is 
computed by determining the vector between two 
specified positions [28]. 
 
4 Our proposed method 
 

In our proposed method, because the amount of data 
is large and answering to queries is time-consuming, we 
use an approximate method for answering ANN queries. 
Figure 1 illustrates an overview of the scheme of 
proposed method. At first, the convex hull of query 
points is computed and then the centroid of this convex 
 

 
Fig. 1 Overall scheme of proposed method 
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is determined. After that, by exploiting the kNN 
algorithm, k nearest segments to this centroid are 
obtained. For this purpose, segments indexed by SETI 
structure are retrieved from disk. In order to improve the 
performance, we have used B+-tree instead of R*-tree as 
a temporal index. In the following, the proposed method 
is demonstrated. 
 
4.1 Building temporal index for each cell 

After partitioning data space, a temporal index for 
each cell is created. This procedure is useful for 
analyzing recursive space partitioning in trajectory 
indexing. 3D R-trees are widely used in indexing spatial 
data. A 3D R-tree is a simple method for indexing 
trajectories. This method extends an R-tree in a manner 
that can be used in a three-dimensional space such that 
time is considered as an additional space dimension (two 
dimension for space and one dimension for time). 3D 
R-trees are designed for coordinate-based queries like 
time interval and time slice queries and they are not 
well-suited for trajectory-based queries. There is no 
difference between time dimension and space dimensions 
and they are treated in the same manner. 

In SETI method, R*-tree is used for indexing 
temporal dimension. In this case, for each data page, a 
record formatted as (data page lifetime lower bound, data 
page lifetime upper bound) is stored. Thus, in fact, two- 
dimensional data are stored in tree. Instead of R*-tree, 
the B+-tree is used in the proposed method. In B+-tree, 
only the lower bound of lifetime for each data page is 
stored. Since the data stored in a B+-tree are sorted, the 
lack of upper bound of lifetime for data pages does not 
affect the search process and we do not face with 
problematic situations throughout answering queries. 

Our proposed method has some advantages: 
(1) We build our index on one-dimensional data 

instead of two-dimensional data. Thus, the problems of 
dimensionality are prevented. 

(2) In a B+-tree, the search time is considerably less 
than that of other types of trees. So, exploiting B+-tree in 
place of R*-tree would be beneficial. 

(3) While the data on B+-tree are sorted, during 
range queries, the lifetime for most data pages found is in 
temporal range of query and there is no need for 
temporal propositions to be carried out on their segments 
in subsequent stage of query processing. 

(4) Similar to SETI method, these indices are trees 
that are stored on disk. That is to say, when inserting the 
first segment in a cell, the tree corresponding to this cell 
is created and stored on disk. Afterward, for subsequent 
insert or search operations on this cell, the tree is fetched 
from disk into memory and upon the operation is done, 
the tree is stored on disk again. 

Since insert operations within each cell is numerous, 
by using a caching method, they can be speeded up. 
After building the tree or after fetching it from disk, 
while the successive insert operations must be carried out 
on that cell, we can store the tree in cache memory. We 
can also use a mechanism like bulk-loading that is 
straightforward for B+-trees. 
 
4.2 Approximate aggregate k nearest neighbor search 

Despite of usual AkNN, in approximate aggregate k 
nearest neighbor search (AAkNN), the answer is 
approximate. The main goal of this method is improving 
the speed of search and answer to queries. In Section 4, 
we have shown that the approximate answer is close to 
main answer with a high precision. Compared with the 
saved time, slight loss of precision is negligible. 

The best cell for finding close trajectory segments 
to set of query points is the cell in which the centroid of 
query points is located. Here, we can calculate the 
average of query points, and determine the center of 
mass by this way with O(n) time complexity. This 
method is suitable when the goal is to minimize the sum 
of distances. In our proposed method, we aim at 
minimizing the maximum of distances. So firstly, we 
compute convex hull of query points and then determine 
the centroid of that convex hull. In addition, because the 
number of query points is not expected to be high, the 
time for computing the centroid does not matter 
accordingly. On the other hand, using the following way 
to calculate the centroid makes the cell selection process 
easier. For this purpose, by exploiting the Graham’s scan 
algorithm, the convex hull of the set of query points is 
computed. The convex hull of a set of points in the 
Euclidean space is the smallest convex polygon 
containing all the points in that set. Graham’s scan is a 
method of computing the convex hull of a finite set of 
points in the plane with time complexity of O(nlogn). 
The algorithm finds all vertices of the convex hull 
ordered along its boundary. After computing the convex 
hull, for the resulting polygon, the centroid is determined. 
The way we compute the centroid is as follows. Consider 
a polygon made up of line segments between n vertices 
(xi, yi), i=0 to n−1. Vertices of the polygon are 
sequentially numbered counterclockwise from an 
arbitrary starting vertex. The last vertex (xn, yn) is 
assumed to be the same as the first, i.e. the polygon is 
closed. Then, we compute the values for S, Cx and Cy 
using the following relations [29]: 
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where S is the area of the polygonal region as calculated 
by the coordinate area formula and (Cx, Cy) are the 
coordinates of the centroid. Very general polygonal 
regions may be evaluated using this formula including 
disconnected polygons and those with holes [29]. One 
advantage of the preceding formula is that for a 
polygonal region, it is exact. After determining the 
centroid, the search process begins. The cell containing 
the centroid point is the first cell for search process to 
start from. 

Hereafter, the search process would be similar to 
kNN search. All the segments in data pages belonging to 
this cell are investigated and the set of their distances to 
query points is computed. In the implemented method, 
for each segment, the sum of all distances to query points 
is determined. Then, for each trajectory, the distance that 
is minimum among its belonging segments is assigned 
(The distance values for segments of that trajectory are 
compared and the smallest is assigned to it). Ultimately, 
k first trajectories close to query point are returned as 
answer (These are trajectories that have a segment with 
minimum sum of distances). The distance between a 
query point q and trajectory A is usually measured by the 
distance from the point q to the nearest point on 
trajectory A [1, 30]: 
 

) ,(min) ,(dist pqAq
Ap




 

 
So, the distance of a segment s to set of query points 

Q is computed as follows: 
 

)) ,(dist , ), ,(dist(sum) ,(dist _1 QnQsQsQs   
 

And the distance of a trajectory A to set of query 
points Q can be obtained as 
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By extending one query point to multiple points, 

this relation can be used: 
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The intuition of using the exponential function is to 

assign a larger contribution to pairs of points that are 
close to each other and a small contribution to pairs that 
are far away. As a result, only trajectories that their 
points are closer in all query locations are selected as 
similar trajectories. 
 
5 Performance experiments 
 

For implementation of our experiments, we used a 
system with Core i5 3.30 GHz Intel CPU and 8 GB main 

memory, running Windows 8. Also, we implemented 
algorithms in Java programming language. We used 
trajectory dataset of Microsoft Geolife project for 
evaluation. This GPS trajectory dataset is collected by 
182 users in a period of over five years. A GPS trajectory 
in this dataset is represented as a sequence of points, 
each of which consists of information about latitude and 
longitude, altitude and time and date of sampling. In 
order to remove noisy and outlier data, firstly, we did a 
preprocessing on data. 

Next, to evaluate the effect of dataset size on speed 
and precision of the proposed method, the improved 
index was built for the certain percentages of dataset, 
namely 10%, 20%, 30%, 40%, 50% and 100%. Then, on 
each of the resulting set of indexes, different search 
methods like time interval, time slice, aggregate k nearest 
neighbor (AkNN) and approximate AkNN (AAkNN) 
were experimented. However, AAkNN is more important 
than other search methods and we concentrated on that. 
For this purpose, we selected some random points from 
intended spatial range as query points. For better 
evaluation of the obtained results, the number of query 
points increased gradually such that 1, 10, 100, 500, 
1000, 2000, 5000, 10000, 20000, 50000 and 100000 
query points were considered. That is to say, in the case 
of one query point, only the kNN algorithm and for 
higher number of query points, AkNN and AAkNN 
algorithms were carried out. In the next section, we 
present results of experiments on speed and precision of 
aforementioned algorithms. 
 
5.1 Evaluation results 

Due to huge volumes of dataset stored on disk, 
answering ANN queries needs an access to disk for each 
query point. So, this I/O operation would be very time- 
consuming. But, in approximate method proposed in this 
work, the query points are reduced to one point which is 
the centroid of them. This leads to a significant reduction 
in disk accesses. 

As mentioned above, we did experiments on 
different index percentages and different number of 
query points. For each experiment, in every stage, the 
time for calculating convex hull and centroid, and the 
load time and AkNN and AAkNN times are obtained. In 
the end, the runtime of each experiment is calculated. 
The results of experiments is shown for different index 
sizes and plotted. 

Experiments show that, calculation of convex hull 
and centroid of query points takes a negligible time of 
the whole search process. As indicated in Fig. 2, if the 
number of query points is large (e.g. larger than 10000), 
the whole search process is slightly affected by the 
convex hull and centroid calculation time. But, it should 
be said that, usually we never encounter with such a  
high number of query points in practice. Meanwhile, 
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Fig. 2 Convex hull and centroid calculation time 

 
increasing the size of dataset does not affect the convex 
hull and centroid calculation time. 

Another case studied in experiments is load time of 
data pages and sparse temporal indices from disk to main 
memory. This time is apart from the runtime and usually 
is related to operating system and hardware used. It 
should be noted that by increasing the size of dataset, the 
load time increases. But the increase in the number of 
query points has no effect on load time. At the same time, 
by exploiting different techniques like caching, the load 
time can be reduced. Figure 3 depicts the load time of 
different dataset sizes. 

The main time in search process is related to 
AAkNN computation. Like calculating convex hull and 
centroid, this time also does not change much by 
increasing the number of query points unless there are 
too many query points. For example, as shown in Fig. 4, 
the AAkNN time matters if the number of query points 
exceeds 20000. However, this case is very rare in reality. 
Also, the increase in the size of dataset has a little effect 
on the AAkNN time. As seen in Fig. 4, if the number of 
query points is greater than 20000, the time for larger 
datasets is increased. That is to say, the load time is also 
 

 
Fig. 3 Data pages and index load time 

 

 
Fig. 4 Approximate aggregate kNN time 

 
considered. For the less number of query points (less 
than 2000), the load time takes more than half of time. 
But by increasing the number of query points, the effect 
of load time is decreased.  

Another time computed in experiments is runtime 
that consists of convex hull and centroid calculation, 
AAkNN, sorting and representation of results. Since this 
time is taken from abovementioned times, it has a 
behavior similar to them. In Fig. 5, the results of runtime 
are shown. 

The convex hull and centroid calculation, load and 
AAkNN time contributions in the whole search process 
are shown in Fig. 6. As illustrated, the main time pertains 
to computing AAkNN. If the number of query points 
increases (greater than 20000), then the effect of convex 
hull and centroid calculation becomes higher. 

Another important point evaluated in experiments is 
assessing the precision of the proposed method (AAkNN) 
compared with common AkNN methods. To calculate the 
precision for different query points, in each experiment, 
the average distance for first 10 answers in both AAkNN 
and AkNN methods is calculated and the comparison is 
reported in Table 1. Furthermore, Fig. 7 depicts the 
 

 
Fig. 5 Total runtime 
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Fig. 6 Contribution of three major times in whole search 

process 

 
Table 1 Comparison of average distance for query results 

Number of query points 
Distance 

AAkNN AkNN 

1 0.00 0.00 

10 1.37 1.31 

100 15.88 15.62 

1000 157.10 155.88 

2000 302.66 300.13 

5000 762.93 757.24 

 

  
Fig. 7 Comparison of average distance for query results 
 
precision of AAkNN compared to AkNN. Considering 
that the AAkNN is an approximate method, but in 
experiments we realized that its precision is close to 
common methods, it is a suitable method. 

In addition, computing AkNN in common methods 
needs a vast amount of data pages and corresponding 
sparse time indexes to be loaded into memory. Moreover, 
calculating the distance of query points to segments of 
each cell takes too much time. Totally, common methods 
waste considerable time and memory to prepare answers. 
But, AAkNN method can greatly reduce the computation 
time with precision guaranty. 

 
6 Conclusions and future work 
 

1) An approximate method for retrieving one or 
more segments from trajectories of dataset having 
minimum aggregate distance to query points, was 
proposed. 

2) Our main idea is the reducing of number of query 
points to one query point, consequently to improve 
response time of queries over large amounts of 
trajectories. In this idea, despite of large volume of 
dataset and numerous query points, accessing to disk is 
considerably reduced. 

3) In our proposed method, the convex hull of query 
points is calculated and for this convex hull, centroid is 
determined and then segments with minimum distance to 
this centroid are returned as result. 

4) The SETI structure is refined for indexing large 
amounts of trajectories in such a way that its two- 
dimensional temporal index is substituted by a one- 
dimensional index to improve the performance. 

5) For future works, diverse Big Data applications 
can benefit from this idea. Since in Big Data applications, 
data are stored on disk, and by exploiting this method, 
accessing to disk can be reduced. 

6) In order to get further improvement in time and 
precision, we plan to use this method in other indexing 
structures like TB-tree. Also, we intend to exploit this 
method in structures used for indexing trajectories of 
present and future times. 
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