

J. Cent. South Univ. (2015) 22: 4246−4253
DOI: 10.1007/s11771-015-2973-0

Approximate aggregate nearest neighbor search on moving objects trajectories

Mohammad Reza Abbasifard, Hassan Naderi, Zohreh Fallahnejad, Omid Isfahani Alamdari

MODB Lab., School of Computer Engineering, Iran University of Science and Technology, Tehran 1684613114, Iran

© Central South University Press and Springer-Verlag Berlin Heidelberg 2015

Abstract: Aggregate nearest neighbor (ANN) search retrieves for two spatial datasets T and Q, segment(s) of one or more trajectories
from the set T having minimum aggregate distance to points in Q. When interacting with large amounts of trajectories, this process
would be very time-consuming due to consecutive page loads. An approximate method for finding segments with minimum
aggregate distance is proposed which can improve the response time. In order to index large volumes of trajectories, scalable and
efficient trajectory index (SETI) structure is used. But some refinements are provided to temporal index of SETI to improve the
performance of proposed method. The experiments were performed with different number of query points and percentages of dataset.
It is shown that proposed method besides having an acceptable precision, can reduce the computation time significantly. It is also
shown that the main fraction of search time among load time, ANN and computing convex and centroid, is related to ANN.

Key words: Approximate aggregate k nearest neighbor (AAkNN); scalable and efficient trajectory index (SETI); trajectory indexing;
moving objects; query processing

1 Introduction

Nowadays, mobility is one of the key concepts in
the society. Ubiquitous computing and location-based
service (LBS) tools support mobility pretty well. The
advances in location positioning and wireless
communication technologies have given rise to the
prevalence of mobile computing systems and
location-based services, leading to a myriad of spatial
trajectories representing the mobility of a variety of
moving objects, such as people, vehicles, animals, and
natural phenomena, in both indoor and outdoor
environments [1]. Because of rapid growth in wireless
communication technologies and mobile devices like
smart phones, personal digital assistances (PDAs),
navigational systems on vehicles such as GPS,
radio-frequency identification (RFID) tags on cargos and
other positioning devices, we encounter large volumes of
requests for tracking moving objects in location-based
systems. By using these technologies, the position of
moving objects in geographical spaces can be collected.
Because of production of huge volumes of data in this
space (also ever increasing), it is not possible to store or
process them in memory. So, appropriate methods are
required for management and processing on disk.

A spatial trajectory is a trace generated by a moving
object in geographical spaces. A trajectory can be
modeled using a sequence of points in a three-
dimensional space such that two dimensions are for

spatial coordinates (x, y) and the third dimension is used
for time (t) [1−3] . These three components specify the
latitude and longitude of location of object and the time
of presence of object at that location. By connecting
these consecutive time-stamped locations, a sequence of
line segments or briefly, segments, is created. The set of
segments constitute a trajectory for that object. Hence, a
segment of a trajectory in a k-dimensional space, in
essence, is a line in (k+1)-dimensional space with time as
an additional dimension [4].

Currently, moving objects trajectory data are used to
response various queries like time intervals, time slice
and range queries. Another important query type is k
nearest neighbor (kNN) search which aims at returning k
nearest neighbors to a query point. Aggregate nearest
neighbor (ANN) search is a special case of NN, in which
the goal is to retrieve point(s) or segment(s) with
minimum aggregate distance to query points while the
number of query points is high. But for various reasons
such as large amount of data and continuous updates,
answering these queries is very expensive by considering
whether a single or a group of query points. Therefore,
approximate methods are very convenient for answering
these queries because they provide approximate response
with an acceptable precision in a short time.

In this work, an approximate method called
approximate aggregate nearest neighbor (AANN) for
answering ANN queries is proposed. Normally, to
answer such queries, all data must be loaded into
memory. But due to large volumes of data, it would be

Received date: 2015−01−04; Accepted date: 2015−04−11
Corresponding author: Hassan Naderi, Assistant Professor, PhD; Tel: +98−21−73225353; E-mail: naderi@iust.ac.ir; abbasifard@iust.ac.ir

J. Cent. South Univ. (2015) 22: 4246−4253

4247

very costly. In the proposed method, firstly we compute
the convex hull of query points and then, centroid of this
convex hull is determined. After that, by exploiting the
kNN algorithm, nearest segments to this centroid are
obtained. These segments are close to result set of ANN
with a good approximation. In experiments, in addition
to evaluating the performance of our method, we have
demonstrated that the approximate method has a good
precision. Furthermore, currently numerous methods for
management and indexing of large trajectory datasets are
suggested, each of which aims at improving performance
and processing of queries and ultimately reducing costs.
The base for the majority of these methods is R-tree and
its family like R*-tree. Since the amount of data stored
on disk is very large, in this work, we used SETI
indexing structure to index trajectory data. Since, in
SETI, indexes are stored on disk, we have used B+-tree
instead of R*-tree. Because of special characteristics of
B+-tree, we would expect better performance.

2 Related works

One of the extensions to nearest neighbor search
[5−7] is increasing the number of query points. This new
problem is known as aggregate or group nearest neighbor
problem [8−10]. In this new space, instead of one point,
we have multiple query points such that our goal is to
find a point from dataset of points which is near to
multiple query points simultaneously. For this purpose,
in these approaches, the distance relation varies and
aggregate distance is proposed. The most important
characteristic of such problems that are also considered
in their distance relation is the simultaneous closeness of
answer point to query points. The most well-known
application of this approach is in “Meet Point” problem.
In this problem [9], the point with minimum distance to
all group members should be found. Another related
topic is AggregateRoadNetwork-NNS [10]. Generally,
the nearest neighbor search is introduced in Euclidean
space. In the previous problem, the assumption is that the
distance between any two points can be directly
computed. In some applications, the problem space is
Euclidean and aforementioned assumption does not hold.
For instance, consider streets of a city and movement of
vehicles on them. In such environments, although the
space is Euclidean, there is no direct path between points.
They are called road networks and modeled using planar
graphs. In the established graph, the triangle inequality
still holds. It should be remembered that in normal
graphs, this inequality does not hold necessarily. The
proposed aggregate distance in this approach is defined
in the general form:

))),(dist ,), ,(dist() ,(aggdist _1 QnQpQpfQp 

The main functions that substitute f in above
relation are: sum of distances, maximum distance and
minimum distance. In order to speed up the response to
aggregate k nearest neighbor queries, especially in
trajectory datasets, a suitable indexing structure is
needed. Efficient indexing structures [11] must be
capable of supporting large volumes of trajectory data
and numerous moving objects. Currently, a number of
indexing structures are introduced [12−13] which can be
classified into four major groups: 1) Indexing the past; 2)
Indexing the current; 3) Indexing the future; 4) Indexing
data at all points of time. The base for the majority of
this methods is R-tree and its family [14−15].

We only concentrate on R-tree-like structures [15]
that store historical information about moving object
trajectories such as 3DR-tree [16−18], TB-tree [19],
STRtree [19], and MV3R-tree [16]. In some indexes
such as MR-tree [20], HR-tree [17, 21] and HR+-tree
[22], the temporal dimension is distinguished from the
spatial dimensions. One of structures that is suitable for
large amounts of trajectories is SETI [4, 23] which stores
its indexes on disk that is comfortable for our work.

3 Basic concepts

Fundamental concepts are described in this section.
First, we introduce SETI indexing structure. Thereafter,
data space partitioning of SETI is explained in detail.
Next, different queries that can be answered using this
method are presented.

3.1 SETI indexing structure

SETI [4, 23] is used for indexing trajectories in the
past. Due to essential differences between the
characteristics of spatial dimensions and the temporal
dimension [24], the indexing of spatial and temporal
dimensions is separated. While in structures like 3D
R-tree, these dimensions are considered equal. By
analyzing large trajectory datasets, one can realize that
the boundaries for spatial dimensions change very slowly
in the lifetime of the trajectory data, whereas the values
of time dimension increase.

Because the spatial dimensions have a few change,
this method logically partitions the space into static,
non-overlapping cells. In the next section, data space
partitioning is described. Each cell only contains those
trajectory segments that are completely inside that cell. If
a trajectory segment crosses the border of two cells, then
it is divided into two sub-segments in the border of cells
and those sub-segments are inserted into corresponding
cells. Each segment is stored as a tuple in a data page on
disk. Every data page only contains trajectory segments
that belong to specific spatial cell. A sparse time index is
built for each cell. More precisely, for every data page,

J. Cent. South Univ. (2015) 22: 4246−4253

4248

an entry is stored in the index (instead of an entry for
each trajectory segment). In order to build this temporal
index, the lifetime of every data page is computed. By
lifetime, we mean the minimum time interval that covers
all the time intervals of trajectory segments pertaining to
that data page. Thereafter, all time intervals
corresponding to a cell are indexed using a 1D R*-tree.
Despite of being one of the best indexing methods for
trajectory data, SETI has some drawbacks [23].

3.2 Data space partitioning

One of the most popular geometric shapes used in
spatial data indexing is rectangle. However there are
other shapes proposed for this indexing. For instance,
circles are suitable for multi-dimensional indices and
searching similar data. One of the main difficulties of
using circles is that the real partitioning of the data space
is not possible mathematically. In other words, we have
to deal with overlapping. Due to large number of
intersections, these overlappings result in degradation in
the query performance and increased I/O costs in query
processing. Generally, regular and equal-sized
partitioning approaches are used in storage and retrieval
and organization of spatial data, because of their
simplicity in hashing and mapping to secondary storage.
They provide efficient functions for this task in such a
way that they firstly split data space into regular and
non-overlapping rectangles and then map each cell to a
physical data page [25].

Like SETI method, we partition data space into
regular grid of hexagons logically. It has been proved
that it is not possible to tile the plane with regular,
equal-sized disjoint convex polygons with edges of more
than six [25−26]. So, there are three shapes for regular
partitioning: triangle, rectangle and hexagon. Among the
three, hexagon is the most complex regular polygon that
can partition plane without hole or overlapping.

Using hexagons has many benefits. Each hexagon
has six neighbors, sharing an edge with it. The centers of
all the neighbors of hexagon are of the same distance
from its center. Despite of square, hexagon has no
common vertex with its neighbors. This fact alone has
made regular hexagons very popular for partitioning [27].
Regular hexagonal partitioning has a uniform orientation
and displays a uniform adjacency. Also, considering
circular range queries, hexagon is very similar to circle
in terms of shape. Thus, we encounter less orientation
deviation. In a regular hexagonal partitioning, the
number of cells that have intersection with the range of
circular query is always less than that of rectangular or
triangular partitioning. That is to say, by exploiting
hexagons in partitioning, we need less I/O operations
[25].

The main drawback of hexagon is that it is not

possible to split or join hexagons in situations like
increasing or decreasing the scale of sampling. In
contrast, splitting or joining a square into new squares is
straightforward. For example, we can only split the
hexagon into smaller triangles instead of smaller
hexagons.

3.3 Queries

Applicable queries on moving objects data can be
classified into two major groups [28]: coordinate-based
queries and trajectory-based queries.

Examples of coordinate-based queries are time
interval queries [1] in which all trajectories that have a
segment contained in the specified spatial box and
temporal range are returned. Another example is time
slice queries [1] that select as a result all trajectories that
have a segment contained in the specified spatial box at
the determined time instant. Last, but not the least,
nearest neighbor queries [5−7] that return all trajectories
that a segment belongs to, has minimum distance to
query point(s).

The trajectory-based queries are further classified
into topological queries and navigational queries.
Topological queries examine the whole or part of the
trajectory of an object. For example, the predicate
‘collision’ examines two trajectories if they intersect in a
given area at a specific time instant. The navigational
query involves the information derived from the
trajectories, such as the speed and the heading of an
object. The average or top speed of an object is obtained
by the fraction of travelled distance over time. The
heading or the direction of travel of the object is
computed by determining the vector between two
specified positions [28].

4 Our proposed method

In our proposed method, because the amount of data
is large and answering to queries is time-consuming, we
use an approximate method for answering ANN queries.
Figure 1 illustrates an overview of the scheme of
proposed method. At first, the convex hull of query
points is computed and then the centroid of this convex

Fig. 1 Overall scheme of proposed method

J. Cent. South Univ. (2015) 22: 4246−4253

4249

is determined. After that, by exploiting the kNN
algorithm, k nearest segments to this centroid are
obtained. For this purpose, segments indexed by SETI
structure are retrieved from disk. In order to improve the
performance, we have used B+-tree instead of R*-tree as
a temporal index. In the following, the proposed method
is demonstrated.

4.1 Building temporal index for each cell

After partitioning data space, a temporal index for
each cell is created. This procedure is useful for
analyzing recursive space partitioning in trajectory
indexing. 3D R-trees are widely used in indexing spatial
data. A 3D R-tree is a simple method for indexing
trajectories. This method extends an R-tree in a manner
that can be used in a three-dimensional space such that
time is considered as an additional space dimension (two
dimension for space and one dimension for time). 3D
R-trees are designed for coordinate-based queries like
time interval and time slice queries and they are not
well-suited for trajectory-based queries. There is no
difference between time dimension and space dimensions
and they are treated in the same manner.

In SETI method, R*-tree is used for indexing
temporal dimension. In this case, for each data page, a
record formatted as (data page lifetime lower bound, data
page lifetime upper bound) is stored. Thus, in fact, two-
dimensional data are stored in tree. Instead of R*-tree,
the B+-tree is used in the proposed method. In B+-tree,
only the lower bound of lifetime for each data page is
stored. Since the data stored in a B+-tree are sorted, the
lack of upper bound of lifetime for data pages does not
affect the search process and we do not face with
problematic situations throughout answering queries.

Our proposed method has some advantages:
(1) We build our index on one-dimensional data

instead of two-dimensional data. Thus, the problems of
dimensionality are prevented.

(2) In a B+-tree, the search time is considerably less
than that of other types of trees. So, exploiting B+-tree in
place of R*-tree would be beneficial.

(3) While the data on B+-tree are sorted, during
range queries, the lifetime for most data pages found is in
temporal range of query and there is no need for
temporal propositions to be carried out on their segments
in subsequent stage of query processing.

(4) Similar to SETI method, these indices are trees
that are stored on disk. That is to say, when inserting the
first segment in a cell, the tree corresponding to this cell
is created and stored on disk. Afterward, for subsequent
insert or search operations on this cell, the tree is fetched
from disk into memory and upon the operation is done,
the tree is stored on disk again.

Since insert operations within each cell is numerous,
by using a caching method, they can be speeded up.
After building the tree or after fetching it from disk,
while the successive insert operations must be carried out
on that cell, we can store the tree in cache memory. We
can also use a mechanism like bulk-loading that is
straightforward for B+-trees.

4.2 Approximate aggregate k nearest neighbor search

Despite of usual AkNN, in approximate aggregate k
nearest neighbor search (AAkNN), the answer is
approximate. The main goal of this method is improving
the speed of search and answer to queries. In Section 4,
we have shown that the approximate answer is close to
main answer with a high precision. Compared with the
saved time, slight loss of precision is negligible.

The best cell for finding close trajectory segments
to set of query points is the cell in which the centroid of
query points is located. Here, we can calculate the
average of query points, and determine the center of
mass by this way with O(n) time complexity. This
method is suitable when the goal is to minimize the sum
of distances. In our proposed method, we aim at
minimizing the maximum of distances. So firstly, we
compute convex hull of query points and then determine
the centroid of that convex hull. In addition, because the
number of query points is not expected to be high, the
time for computing the centroid does not matter
accordingly. On the other hand, using the following way
to calculate the centroid makes the cell selection process
easier. For this purpose, by exploiting the Graham’s scan
algorithm, the convex hull of the set of query points is
computed. The convex hull of a set of points in the
Euclidean space is the smallest convex polygon
containing all the points in that set. Graham’s scan is a
method of computing the convex hull of a finite set of
points in the plane with time complexity of O(nlogn).
The algorithm finds all vertices of the convex hull
ordered along its boundary. After computing the convex
hull, for the resulting polygon, the centroid is determined.
The way we compute the centroid is as follows. Consider
a polygon made up of line segments between n vertices
(xi, yi), i=0 to n−1. Vertices of the polygon are
sequentially numbered counterclockwise from an
arbitrary starting vertex. The last vertex (xn, yn) is
assumed to be the same as the first, i.e. the polygon is
closed. Then, we compute the values for S, Cx and Cy
using the following relations [29]:





 

1

0
11)(

2

1 n

i
iiii yxyxS





 

1

0
111))((

6

1 n

i
iiiiiix yxyxxx

A
C

J. Cent. South Univ. (2015) 22: 4246−4253

4250





 

1

0
111))((

6

1 n

i
iiiiiiy yxyxyy

A
C

where S is the area of the polygonal region as calculated
by the coordinate area formula and (Cx, Cy) are the
coordinates of the centroid. Very general polygonal
regions may be evaluated using this formula including
disconnected polygons and those with holes [29]. One
advantage of the preceding formula is that for a
polygonal region, it is exact. After determining the
centroid, the search process begins. The cell containing
the centroid point is the first cell for search process to
start from.

Hereafter, the search process would be similar to
kNN search. All the segments in data pages belonging to
this cell are investigated and the set of their distances to
query points is computed. In the implemented method,
for each segment, the sum of all distances to query points
is determined. Then, for each trajectory, the distance that
is minimum among its belonging segments is assigned
(The distance values for segments of that trajectory are
compared and the smallest is assigned to it). Ultimately,
k first trajectories close to query point are returned as
answer (These are trajectories that have a segment with
minimum sum of distances). The distance between a
query point q and trajectory A is usually measured by the
distance from the point q to the nearest point on
trajectory A [1, 30]:

) ,(min) ,(dist pqAq
Ap




So, the distance of a segment s to set of query points

Q is computed as follows:

)) ,(dist ,), ,(dist(sum) ,(dist _1 QnQsQsQs 

And the distance of a trajectory A to set of query
points Q can be obtained as

As
QsQA




'
)] ,(distmin[) ,(dist

By extending one query point to multiple points,

this relation can be used:





Qq

AqAQ)] ,(distexp[) ,(sim

The intuition of using the exponential function is to

assign a larger contribution to pairs of points that are
close to each other and a small contribution to pairs that
are far away. As a result, only trajectories that their
points are closer in all query locations are selected as
similar trajectories.

5 Performance experiments

For implementation of our experiments, we used a
system with Core i5 3.30 GHz Intel CPU and 8 GB main

memory, running Windows 8. Also, we implemented
algorithms in Java programming language. We used
trajectory dataset of Microsoft Geolife project for
evaluation. This GPS trajectory dataset is collected by
182 users in a period of over five years. A GPS trajectory
in this dataset is represented as a sequence of points,
each of which consists of information about latitude and
longitude, altitude and time and date of sampling. In
order to remove noisy and outlier data, firstly, we did a
preprocessing on data.

Next, to evaluate the effect of dataset size on speed
and precision of the proposed method, the improved
index was built for the certain percentages of dataset,
namely 10%, 20%, 30%, 40%, 50% and 100%. Then, on
each of the resulting set of indexes, different search
methods like time interval, time slice, aggregate k nearest
neighbor (AkNN) and approximate AkNN (AAkNN)
were experimented. However, AAkNN is more important
than other search methods and we concentrated on that.
For this purpose, we selected some random points from
intended spatial range as query points. For better
evaluation of the obtained results, the number of query
points increased gradually such that 1, 10, 100, 500,
1000, 2000, 5000, 10000, 20000, 50000 and 100000
query points were considered. That is to say, in the case
of one query point, only the kNN algorithm and for
higher number of query points, AkNN and AAkNN
algorithms were carried out. In the next section, we
present results of experiments on speed and precision of
aforementioned algorithms.

5.1 Evaluation results

Due to huge volumes of dataset stored on disk,
answering ANN queries needs an access to disk for each
query point. So, this I/O operation would be very time-
consuming. But, in approximate method proposed in this
work, the query points are reduced to one point which is
the centroid of them. This leads to a significant reduction
in disk accesses.

As mentioned above, we did experiments on
different index percentages and different number of
query points. For each experiment, in every stage, the
time for calculating convex hull and centroid, and the
load time and AkNN and AAkNN times are obtained. In
the end, the runtime of each experiment is calculated.
The results of experiments is shown for different index
sizes and plotted.

Experiments show that, calculation of convex hull
and centroid of query points takes a negligible time of
the whole search process. As indicated in Fig. 2, if the
number of query points is large (e.g. larger than 10000),
the whole search process is slightly affected by the
convex hull and centroid calculation time. But, it should
be said that, usually we never encounter with such a
high number of query points in practice. Meanwhile,

J. Cent. South Univ. (2015) 22: 4246−4253

4251

Fig. 2 Convex hull and centroid calculation time

increasing the size of dataset does not affect the convex
hull and centroid calculation time.

Another case studied in experiments is load time of
data pages and sparse temporal indices from disk to main
memory. This time is apart from the runtime and usually
is related to operating system and hardware used. It
should be noted that by increasing the size of dataset, the
load time increases. But the increase in the number of
query points has no effect on load time. At the same time,
by exploiting different techniques like caching, the load
time can be reduced. Figure 3 depicts the load time of
different dataset sizes.

The main time in search process is related to
AAkNN computation. Like calculating convex hull and
centroid, this time also does not change much by
increasing the number of query points unless there are
too many query points. For example, as shown in Fig. 4,
the AAkNN time matters if the number of query points
exceeds 20000. However, this case is very rare in reality.
Also, the increase in the size of dataset has a little effect
on the AAkNN time. As seen in Fig. 4, if the number of
query points is greater than 20000, the time for larger
datasets is increased. That is to say, the load time is also

Fig. 3 Data pages and index load time

Fig. 4 Approximate aggregate kNN time

considered. For the less number of query points (less
than 2000), the load time takes more than half of time.
But by increasing the number of query points, the effect
of load time is decreased.

Another time computed in experiments is runtime
that consists of convex hull and centroid calculation,
AAkNN, sorting and representation of results. Since this
time is taken from abovementioned times, it has a
behavior similar to them. In Fig. 5, the results of runtime
are shown.

The convex hull and centroid calculation, load and
AAkNN time contributions in the whole search process
are shown in Fig. 6. As illustrated, the main time pertains
to computing AAkNN. If the number of query points
increases (greater than 20000), then the effect of convex
hull and centroid calculation becomes higher.

Another important point evaluated in experiments is
assessing the precision of the proposed method (AAkNN)
compared with common AkNN methods. To calculate the
precision for different query points, in each experiment,
the average distance for first 10 answers in both AAkNN
and AkNN methods is calculated and the comparison is
reported in Table 1. Furthermore, Fig. 7 depicts the

Fig. 5 Total runtime

J. Cent. South Univ. (2015) 22: 4246−4253

4252

Fig. 6 Contribution of three major times in whole search

process

Table 1 Comparison of average distance for query results

Number of query points
Distance

AAkNN AkNN

1 0.00 0.00

10 1.37 1.31

100 15.88 15.62

1000 157.10 155.88

2000 302.66 300.13

5000 762.93 757.24

Fig. 7 Comparison of average distance for query results

precision of AAkNN compared to AkNN. Considering
that the AAkNN is an approximate method, but in
experiments we realized that its precision is close to
common methods, it is a suitable method.

In addition, computing AkNN in common methods
needs a vast amount of data pages and corresponding
sparse time indexes to be loaded into memory. Moreover,
calculating the distance of query points to segments of
each cell takes too much time. Totally, common methods
waste considerable time and memory to prepare answers.
But, AAkNN method can greatly reduce the computation
time with precision guaranty.

6 Conclusions and future work

1) An approximate method for retrieving one or
more segments from trajectories of dataset having
minimum aggregate distance to query points, was
proposed.

2) Our main idea is the reducing of number of query
points to one query point, consequently to improve
response time of queries over large amounts of
trajectories. In this idea, despite of large volume of
dataset and numerous query points, accessing to disk is
considerably reduced.

3) In our proposed method, the convex hull of query
points is calculated and for this convex hull, centroid is
determined and then segments with minimum distance to
this centroid are returned as result.

4) The SETI structure is refined for indexing large
amounts of trajectories in such a way that its two-
dimensional temporal index is substituted by a one-
dimensional index to improve the performance.

5) For future works, diverse Big Data applications
can benefit from this idea. Since in Big Data applications,
data are stored on disk, and by exploiting this method,
accessing to disk can be reduced.

6) In order to get further improvement in time and
precision, we plan to use this method in other indexing
structures like TB-tree. Also, we intend to exploit this
method in structures used for indexing trajectories of
present and future times.

References

[1] ZHENG Yu, ZHOU Xiao-fang. Computing with spatial trajectories

[M]. New York: Springer, 2011: 3−60.

[2] PARENT C, SPACCAPIETRA S, RENSO C, ANDRIENKO G,

ANDRIENKO N, BOGORNY V, DAMIANI M L, GKOULALAS-

DIVANIS A, MACEDO J, PELEKIS N, THEODORIDIS Y, YAN Z.

Semantic trajectories modeling and analysis [J]. ACM Computing

Surveys (CSUR), 2013, 45: 1−32.

[3] RENSO C, SPACCAPIETRA S, ZIMÁNYI E. Mobility data

modeling management and understanding [M]. Cambridge

University Press, 2013: 5−10.

[4] CHAKKA V P, EVERSPAUGH A C, PATEL J M. Indexing large

trajectory data sets with SETI [C]// The Conference on Innovative

Data Systems Research (CIDR 2003). USA, 2003.

[5] ABBASIFARD M R, GHAHREMANI B, NADERI H. A survey on

nearest neighbor search methods [J]. International Journal of

Computer Applications, 2014, 95: 39−52.

[6] DHANABAL S, CHANDRAMATHI S. A Review of various

k-nearest neighbor query processing techniques [J]. Computer

Applications, 2011, 31: 14−22.

[7] BHATIA N, ASHEV V. Survey of nearest neighbor techniques [J].

International Journal of Computer Science and Information Security,

2010, 8: 1−4.

[8] PAPADIAS D, SHEN Q, TAO Y, MOURATIDIS K. Group nearest

neighbor queries [C]// 20th International Conference on Data

Engineering, Massachusetts, Boston, USA, 2004: 301−312.

J. Cent. South Univ. (2015) 22: 4246−4253

4253

[9] PAPADIAS D, TAO Y, MOURATIDIS K, HUI C K. Aggregate

nearest neighbor queries in spatial databases [J]. ACM Transactions

on Database Systems, 2005, 30: 529−576.

[10] YIU M L, MAMOULIS N, PAPADIAS D. Aggregate nearest

neighbor queries in road networks [J]. IEEE Transactions on

Knowledge and Data Engineering, 2005, 17: 820−833.

[11] FENG J, WATANABE T. Index and query methods in road networks

[M]. Springer International Publishing, 2015: 11−39.

[12] MOKBEL M F, GHANEM T M, AREF W G. Spatio-temporal access

methods [J]. IEEE Data Engineering Bulletin, 2003, 26: 40−49.

[13] NGUYEN-DINH L, AREF W G, MOKBEL M F. Spatio-temporal

access methods: Part 2 (2003-2010) [J]. IEEE Data Engineering

Bulletin, 2010, 33: 46−55.

[14] GUTTMAN A. R-trees: A dynamic index structure for spatial

searching [J]. ACM SIGMOD Record, 1984, 14: 47−57.

[15] MANOLOPOULOS Y, NANOPOULOS A, PAPADOPOULOS A N,

THEODORIDIS Y. R-Trees: Theory and applications [M]. New York:

Springer, 2005: 3−20.

[16] TAO Y, PAPADIAS D. MV3R-Tree: A spatio-temporal access

method for timestamp and interval queries [C]// The 27th

International Conference on Very Large Data Bases (VLDB '01).

Rome, 2001: 431−440.

[17] NASCIMENTO M A, SILVA J R O, THEODORIDIS Y. Evaluation

of access structures for discretely moving points [C]// The

International Workshop on Spatio-Temporal Database Management

(STDBM'99). Edinburgh, 1999: 171−188.

[18] THEODORIDIS Y, VAZIRGIANNIS M, SELLIS T. Spatio-temporal

indexing for large multimedia applications [C]// The Third IEEE

International Conference on Multimedia Computing and Systems

(ICMCS '96). Hiroshima, 1996: 441−448.

[19] PFOSER D, JENSEN C S, THEODORIDIS Y. Novel Approaches in

query processing for moving object trajectories [C]// 26th

International Conference on Very Large Data Bases (VLDB '00).

Cairo, Egypt, 2000: 395−406.

[20] XU X, HAN J, LU W. RT-tree: An improved R-tree indexing

structure for temporal spatial databases [C]// The International

Symposium on Spatial Data Handling (SDH). Zurich, 1990:

1040−1049.

[21] NASCIMENTO M A, SILVA J R O. Towards historical R-trees [C]//

The 1998 ACM symposium on Applied Computing (SAC '98).

Atlanta, 1998: 235−240.

[22] TAO Y, PAPADIAS D. Efficient historical R-trees [C]// 13th

International Conference on Scientific and Statistical Database

Management (SSDBM '01). Fairfax, 2001: 223.

[23] CHA Chang-il, KIM Sang-wook, WON Jung-im, LEE Junghoon,

BAE Duck-ho. Efficient indexing in trajectory databases [J].

International Journal of Database Theory and Application, 2008, 1(1):

21−28.

[24] SONG R, SUN W, ZHENG B, ZHENG Y. PRESS: A novel

framework of trajectory compression in road networks [C]//

Proceedings of the VLDB Endowment. Hangzhou, 2014: 661−672.

[25] FERHATOSMANOĞLU H, AGRAWAL D, EĞECIOĞLU Ö, EL

ABBADI A. Optimal data-space partitioning of spatial data for

parallel I/O [J]. Distributed and Parallel Databases, 2005, 17(1):

75−101.

[26] GRUNBAUM B, SHEPHARD G C. Tilings by regular polygons [J].

Mathematics Magazine, 1977, 50: 227−247.

[27] SAHR K, WHITE D, KIMERLING A J. Geodesic discrete global

grid systems [J]. Cartography and Geographic Information Science,

2003, 30: 121−134.

[28] ANTOINE E, RAMAMOHANARAO K, SHAO J, ZHANG R.

Recursive partitioning method for trajectory indexing [C]// The

Twenty-First Australasian Conference on Database Technologies-

Volume 104 (ADC '10). Darlinghurst, Australia, 2010: 37−46.

[29] GREULICH F E. Accurate polygon centroid computation using

ARC/INFO GIS [J]. Journal of Computing in Civil Engineering,

1993, 7: 388−392.

[30] CHEN Z, SHEN H T, ZHOU X, ZHENG Y, XIE X. Searching

trajectories by locations–An efficiency study [C]// The 2010 ACM

SIGMOD International Conference on Management of data

(SIGMOD '10). Indianapolis, Indiana, USA, 2010: 255−266.

(Edited by YANG Bing)

