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Abstract: Assessment of temporal and spatial variations in surface water quality is important to evaluate the health of a watershed 
and make necessary management decisions to control current and future pollution of receiving water bodies. In this work, surface 
water quality data for 12 physical and chemical parameters collected from 10 sampling sites in the Nenjiang River basin during the 
years (2012−2013) were analyzed. The results show that river water quality has significant temporal and spatial variations. 
Hierarchical cluster analysis (HCA) grouped 12 months into three periods (LF, MF and HF) and classified 10 monitoring sites into 
three regions (LP, MP and HP) based on the similarity of water quality characteristics. The principle component analysis 
(PCA)/factor analysis (FA) was used to recognize the factors or origins responsible for temporal and spatial water quality variations. 
Temporal and spatial PCA/FA revealed that the Nenjiang River water chemistry was strongly affected by rock/water interaction, 
hydrologic processes and anthropogenic activities. This work demonstrates that the application of HCA and PCA/FA has achieved 
meaningful classification based on temporal and spatial criteria. 
 
Key words: Nenjiang River basin; water quality; hierarchical cluster analysis (HCA); principal component analysis (PCA); factor 
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1 Introduction 
 

Water, used by households, agriculture, and industry, 
is clearly the most important good provided by freshwater 
systems. However, in an industrialized society, 
maintaining completely unpolluted water in all drains, 
streams, rivers, and lakes is probably impossible, 
especially in China [1−2]. Pollution of surface water 
with toxic chemicals and eutrophication of rivers and 
lakes with excess nutrients are of great environmental 
concern worldwide [3]. The degradation of water quality 
due to these contaminants has resulted in species 
composition alteration and overall health decrease of 
aquatic communities within the river basin [4]. With an 
increased understanding of the importance of drinking 
water quality to public health and raw water quality to 
aquatic life, there is a great need to assess water quality. 

Rivers and streams are highly heterogeneous at 
different spatial scales [5]. This spatial heterogeneity 
may be controlled by complex anthropogenic and natural 
factors [6]. The anthropogenic discharges can be 
considered a constant polluting source, but not so the 
surface runoff which is seasonal and highly affected by 
climate [7]. Seasonal variation in precipitation, surface 
runoff, ground water flow, interception and abstraction 

strongly affect flow rates and consequently the 
concentrations of chemical compositions of river water 
[6−7]. In addition, pollutants entering a river system 
normally result from many transport pathways including 
storm water runoff, discharge from ditches and creeks, 
vadose zone leaching, groundwater seepage, and 
atmospheric deposition. These pathways are seasonal- 
dependent [3]. Therefore, due to the seasonality and 
regionality of river water, assessing spatial and temporal 
variations of river water quality at a watershed level has 
become an important aspect for the physical and 
chemical characterization of aquatic environments     
[3, 5−7]. 

In order to restore the health of the river water 
quality and prevent its further pollution, one of such 
critical efforts was the development of the surface water 
monitoring network [3, 8−9]. However, although such 
long-term survey and monitoring programs are very 
critical to a better knowledge of hydrology, geochemistry, 
and pollution in the river, they produce large sets of data 
that are often difficult to interpret and to draw 
meaningful conclusions [7, 10−11]. Further, for effective 
pollution control and water resources management, it is 
required to identify the pollution sources and the most 
significant parameters contributing to spatial and 
temporal variations. 
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The problems of data reduction and interpretation, 
characteristic change in water quality parameters, and 
indicator parameter identification can be approached 
through the use of multivariate statistical techniques, 
such as cluster analysis (CA), principal component 
analysis (PCA), and factor analysis (FA) [3, 7, 12]. 
Cluster analysis (CA) has been used by many authors to 
study the similarities in water quality measured at 
differing locations and is one of the most frequently 
applied techniques [7, 12−18]. Principal components 
analysis (PCA) greatly reduces the dimensionality of the 
variable space by extracting a smaller number of linear 
combinations of the original variables, principal 
components. Factor analysis (FA) attempts to identify the 
relationships among variables, to identify representative 
variables from a large set of variables, and create a new 
(smaller) set of variables replacing the original variables 
for future analysis [19]. 

The Nenjiang River basin is an important foodstuff 
base and eco-environmental fragile area in China. 
Currently, the watershed of the Nenjiang River as the 
main source of surface water plays a key role in 
agricultural irrigation, socio-economic development, 
hydropower generation, wetland recharge and local 
eco-environmental conservation in the basin. Located in 
the temperate and monsoon climatic zone, the study area 
has a typical continental climate with long, extremely 
cold, and dry winter and short, mild and moist summer. 
The warming and drying trend of the basin has 
influenced seasonal stream flow (Fig. 1) [20]. In addition, 
rapid urbanization along the river plays an important role 
in the increase of point and non-point source pollution 
loading. Thus, the variability and quality of the water 
from this watershed has attracted attentions and interests 
from academic circles and local government. Despite its 
significance, there is a lack of knowledge regarding the 
 

 
Fig. 1 Hydrological regime of Nenjiang River at Nianzishan 

station, based on records from 1956−2006 (Adapted from   

Ref. [20]) 

water quality of the Nenjiang River and its temporal and 
spatial variations. 

Therefore, this work attempts to apply the HCA and 
PCA/FA techniques to evaluating the temporal and 
spatial variations of water quality parameters from the 
viewpoint of the whole basin. The objectives of this 
work are to reveal the temporal and spatial variations in 
water quality, and identify factors and sources 
influencing the chemistry of the river water. The overall 
aim of the present work is to provide useful information 
for water resources management at the watershed scale. 
 
2 Materials and methods 
 
2.1 Study area 

The Nenjiang River (45° 27'−51° 38' N, 119°52'− 
126° 30' E), the largest tributary of the Songhua River，is 
located in the northeast part of China, with a total length 
of 1370 km and a drainage area of 2.97×105 km2, which 
includes multiple tributaries (Fig. 2). The Nenjiang River 
originates from Greater Khingan Mountains, wanders 
through the southern semiarid region, passes through the 
western plain, and finally discharge into the Songhua 
River. 

The average annual temperature varies from   
−4.63 °C in the humid mountains to 6.43 °C in the 
semi-arid eastern plains. The extreme minimum and 
maximum temperatures in history records are −39.5 °C 
and 40.1 °C, respectively. The annual precipitation 
mainly concentrates in June to September, which 
accounts for 70%−80% of total precipitation [20−21]. 
The main land use types of the study area are forest 
(35.44%) and agricultural lands (30.88%). The remaining 
area of the basin is covered by pasture (20.08%) and 
wetlands (6.25%) [20]. 

The Nenjiang River basin can be divided into three 
distinct areas: the upper, middle, and lower basins on the 
basis of various interrelated factors such as altitude, 
climate, topography, physiognomy. Mainly dominated as 
piedmont of Greater Khingan Range and Lesser Khingan 
Range, the upper basin is a mountainous forest region 
with good vegetation and complicated topography. The 
middle and lower reaches of the basin are 
morphologically dominated by hills and plains with rich 
mineral resources, fertile soil, relatively dense population 
as well as developed industry and agriculture. The 
Nenjiang River receives pollution load from both the 
point and non-point sources. Municipal wastewater is 
directly discharged into the river as the wastewater and 
sewage treatment plant is still being built. Moreover, yet 
big industries settled in the area purify their wastewater, 
small industries are suspected to discharge residues into 
the river. Besides, it receives agricultural run-off from its 
vast catchments area directly or through its tributaries  
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Fig. 2 Map of study area and surface water quality sampling sites in Nenjiang River basin, China 

 
and wastewater drains. The combination of extreme 
continental climate causes river hydrology and hence 
river pollution to be strongly influenced by seasonality. 
 
2.2 Data 

Based on the hydrologic river features and on our 
previous results, we selected 10 sampling sites located in 
the Nenjiang River basin (Fig. 2). The sampling sites 
were designed to cover a wide range of determinants at 
key sites, which reasonably represent the water quality of 
the river system accounting for tributary and inputs from 
wastewater drains that have impact on downstream water 
quality. Selected sites were sampled every month for two 
years (2012−2013). 

Although more than 20 water quality parameters 
were available, only 12 representative parameters (Table 
1) were selected for testing due to their continuity in 
measurement at all 10 sampling sites. The selected 
parameters for the assessment of surface water quality 
characteristics included water temperature (Temp), 
transparency (SD), pH, dissolved oxygen (DO), electrical 
conductivity (EC), ammonium nitrogen (NH3-N), total 
organic carbon (TOC), chemical oxygen demand 
(KMnO4) (COD), 5-day biological oxygen demand 
(BOD5), total nitrogen (TN), total phosphorus (TP), and 
chlorofucine α (Chla). All the sampling and pretreatment 
of samples followed the Chinese National Standards for 
Scientific Sampling (Ministry of Environmental 
Protection of China, 2002). 

Table 1 Water quality parameters associated with their 

abbreviations and units used in this work 

Parameter Abbreviation Unit 

Water temperature Temp °C 

Transparency SD m 

pH pH pH 

Dissolved oxygen DO mg/L 

Electrical conductivity EC mg/L 

Ammonia nitrogen NH3-N mg/L 

Total organic carbon TOC mg/L 

Chemical oxygen demand (KMnO4) COD mg/L 

5-day biological oxygen demand BOD5 mg/L 

Total nitrogen TN mg/L 

Total phosphorus TP mg/L 

Chlorofucine α Chla mg/L 

 
2.3 Data treatment 

Correlation structure between variables was studied 
using the Spearman R coefficient, in order to account for 
variables with non-normal distribution [13]. To examine 
the suitability of the data for PCA/FA, Kaiser-Meyer- 
Olkin (KMO) and Bartlett’s Sphericity tests were 
performed [17]. HCA, PCA and FA applied to 
experimental data standardized through z-scale (mean=1, 
variance=0) transformation in order to avoid 
misclassification due to wide differences in data 
dimensionality. Standardization tended to minimize the 
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effects of differences in measurement units and variance 
of variables and rendered the data dimensionless [7, 12, 
22−23]. 
 
2.4 Cluster analysis 

Cluster analysis (CA) classifies objects (cases) into 
classes (clusters/groups) so that each object is analogous 
to the others in the cluster but different from those in 
other classes [13, 19]. The results of CA help in 
interpreting the data set and indicating the patterns [7]. 
Hierarchical cluster analysis (HCA) is the most common 
approach, which starts with the most similar pair of 
objects and forms higher clusters step-by-step. The 
similarity between two samples is usually given by the 
Euclidean distance, and a “distance” can be represented 
by the “difference” between analytical values from both 
samples. The process of forming and joining clusters is 
repeated until a single cluster containing all samples is 
obtained, and the result can be displayed graphically in a 
dendrogram or tree diagram [24]. The dendrogram 
provides a visual summary of the clustering process, 
presenting a picture of the groups and its proximity with 
a dramatic reduction in dimensionality of the original 
data [13]. 

In this work, HCA was presented on the normalized 
data set using the Ward’s method as agglomeration 
technique and squared Euclidean distance as a measure 
of similarity. The Ward’s method employs an analysis of 
variance approach to evaluate the distances between 
clusters, attempting to minimize the sum of squares of 
any two clusters that can be formed at each step. The 
Euclidean distance (linkage distance) is reported as 
Dlink/Dmax, which represents the quotient between the 
linkage distance divided by the maximal distance. The 
quotient is usually multiplied by 100 as a way to 
standardize the linkage distance represented by the 
vertical-axis [8, 12, 17]. 
 
2.5 Principal component analysis/factor analysis 

Principal component analysis (PCA) provides 
information on the most meaningful parameters, which 
describe the whole data set rendering data reduction with 
minimum loss of original information [7, 19, 23]. PCA 
starts with the covariance matrix describing the 
dispersion of the original variables (measured 
parameters), and extracting the eigenvalues and 
eigenvectors. An eigenvector is a list of coefficients 
(loadings or weightings) by which we multiply the 
original correlated variables to obtain new uncorrelated 
(orthogonal) variables, called principal components 
(PCs), which are weighted linear combinations of the 
original variables [7, 23]. An eigenvalue gives a measure 
of the significance of the PC; thus, the PCs with the 
highest eigenvalues are the most significant. Eigenvalues 

of 1.0 or greater are considered significant [17]. 
Factor analysis (FA) follows PCA. The main 

purpose of FA is to reduce the contribution of less 
significant variables in order to simplify even more of 
the data structure coming from PCA. This last purpose 
can be achieved by rotating the axis defined by PCA, 
according to well-established rules, and constructing new 
groups of variables, also called varifactors (VFs). It 
should be noted that a PC is a linear combination of 
observable water quality variables, while a VF can 
include unobservable, hypothetical, ‘‘latent’’ variables  
[7, 23]. The factor loadings express the correlation 
between the original variables and the newly formed 
varifactors. The VF loadings can be used to determine 
the relative importance of a variable as compared to 
other variables in a factor and do not reflect the 
importance of the factor itself [3]. Classification of factor 
loadings is “strong”, “moderate”, and “weak”, 
corresponding to absolute loading values of >0.75, 
0.75−0.50 and 0.50−0.30, respectively [25]. 
 
3 Results and discussion 
 

Table 2 summaries briefly the maximum, minimum 
and mean values, standard deviation (Std. Dev.) and 
coefficient variation (CV) of the 12 measured parameters 
in the river water samples from the 10 sampling sites in 
the Nenjiang River basin. It must be noticed that high 
dispersion of most variables (high standard deviation and 
coefficient variation), which indicates variability in 
chemical composition between samples, thus pointing to 
the presence of spatial and temporal variations caused 
likely by polluting sources and/or climatic factors. 
Recommended guide levels of these variables allowed by 
the Environmental Quality Standards for Surface Water 
(EQSSW, GB3838 — 2002, National Environmental 
Protection Agency of China 2002) are included in Table 
2. It must be emphasized that average concentrations of 
some variables are within the acceptable limit of the 
Grade III standard, therefore this water resource is 
adequate for human consumption or industrial purposes. 

 
3.1 Temporal similarity and period grouping 

Temporal HCA generated a dendrogram (Fig. 3), 
grouping 12 months into three clusters with significant 
differences at (Dlink/Dmax)×100<64. 

Cluster 1 (the first period) includes January, 
February, March, November and December, which 
corresponds to the low flow (LF) period. In this period, 
all streams are so severely icebound that the depth of the 
ice layer above the water body usually reaches 0.8−1.5 m. 
Cluster 2 (the second period) includes April, May and 
June, which approximately corresponds to the typical 
mean flow (MF) period in Northeast China. It is also the  



J. Cent. South Univ. (2015) 22: 3770−3780 

 

3774

 

 
Table 2 Statistical descriptive of water quality in Nenjiang River basin, China 

Parameter Min Max Mean Std. Dev. CV/%
Environmental Quality Standards for Surface Water (GB3838—2002)

Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ 

Temp 4.98 26.05 16.52 7.24 43.80 − − − − − 

SD 0.05 1.00 0.32 0.21 65.56 − − − − − 

pH 7.48 10.32 8.19 0.42 5.15 6.5−8.5 6.5−8.5 6.5−8.5 6.5−8.5 6.5−8.5 

DO 5.24 12.28 8.62 2.09 24.23 >7.5 6 5 3 2 

EC 0.08 20.80 5.43 6.69 123.31 − − − − − 

NH3-N 0.32 0.86 0.57 0.13 23.89 <0.15 0.5 1.0 1.5 2.0 

TOC 2.40 7.19 5.72 1.07 18.64 − − − − − 

COD 2.01 9.22 5.25 2.48 47.25 <2 4 6 10 15 

BOD5 0.00 5.62 2.52 2.16 85.62 <3 3 4 6 10 

TN 0.57 1.17 0.91 0.18 20.26 <0.2 0.5 1.0 1.5 2.0 

TP 0.05 0.18 0.11 0.04 32.87 <0.02 0.1 0.2 0.3 0.4 

Chla 0.08 32.50 7.45 6.81 91.43 − − − − − 

 

 
Fig. 3 Dendogram showing clustering of monitoring periods 

based on hierarchical clustering (Ward’s method) 

 
interim between non-icebound and icebound periods. In 
the upper basin the spring stream flow from snow 
melting takes up more than 10% of total stream flow and 
the percentage of that is smaller in the lower basin. 
Cluster 3 (the third period) includes July, August, 
September and October, which closely corresponds to the 
high flow (HF) period. The phenomena can be explained 
by the local summer flood. 

Therefore, 12 months were divided into three 
different clusters by their hydrological characteristics 
(low, mean and high flows) rather than the traditional 
four seasons (spring, summer, autumn and winter). This 
temporal pattern of water quality is actually more 
reasonable because the winter in the Nenjiang River 
basin is so long that it could last nearly half a year; even 
the well-trained hydrologist may not be able to easily 
distinguish the months of each period by only reviewing 
the discharge record [26]. 

3.2 Temporal variations of river water quality 
Temporal variations of the water quality parameters 

were first evaluated through a hydrological period 
parameter correlation matrix, using the Spearman 
non-parametric correlation coefficient (R). To do this, a 
specific integer number was assigned to each period  
(LF, 1; MF, 2; HF, 3). Then, Spearman correlation was 
established between all of the water quality parameters 
and the ordinal variables [6, 13, 17]. 

The results show that the water temperature exhibits 
the highest correlation coefficient (R=0.764) with the 
period and a very significant p-level (0.000). In addition 
to the temperature, we observed six additional 
parameters having significant correlation with the period 
(p<0.05): DO (R=−0.680), SD (R=−0.475), COD 
(R=0.387), NH3-N (R=0.342), Chla (R=−0.332), and 
BOD5 (R=0.294). So far, these parameters can be taken 
as representing the major source of temporal variations 
in water quality. 

These correlations in various water quality 
parameters can be explained in terms of the climatologic 
and hydrologic characteristics associated with the period. 
It is evident that the water temperature reflects the 
atmospheric temperature, and that this parameter 
presents the most significant difference between the three 
periods. From the temperature difference, changes are 
expected in the DO. The negatively correlation between 
the period and SD can also be explained in terms of the 
increased quantity of eroded material and urban runoff 
expected while raining (HF period). Flow rate is 
negatively correlated to most variables, since an increase 
in flow rate caused dilution of contaminants. The 
correlation observed with COD and BOD5 could be a 
result of increased anthropogenic activities and river 
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flow during the HF period. In the LF period (such as 
winter), there are not many agricultural activities going 
on in this area, which leads to low load of contaminants; 
in the HF period (such as summer), there is a general 
increase in agricultural activities, producing a greater 
contribution of organic matter, through increased runoff 
and severe erosion (Fig. 4). However, the monitoring 
results show that there is a high concentration of NH3-N 
during the LF period, while there is a low concentration 
during the HF period in the study area (Fig. 4). Temporal 
variation of NH3-N is due to seasonal change of river 
hydrology because the degradation of NH3-N is highly 
correlated with temperature. Thus, seasonal variation in 
the concentration of NH3-N can be attributed to natural 
seasonal influences [26]. Non-significant correlation of 
other parameters with period indicates the contribution of 
anthropogenic sources in the catchment areas. 

Temporal PCA/FA was further applied to the 

standardized data sets containing 12 variables, separately 
for three periods, viz., LF, MF and HF period, as 
delineated by temporal HCA techniques, to compare the 
compositional pattern between water quality parameters 
and to identify the factors influencing them. The KMO 
result for the LF, MF and HF period were 0.688、0.778 
and 0.869, and Bartlett’s sphericity test was significant 
(0.000, p<0.05), showing that PCA/FA could be 
considered appropriate and useful to provide significant 
reduction in data dimensionality. 

PCA renderes four PCs for the LF period, three PCs 
for the MF period and two PCs for the HF period with 
eigenvalues > 1, explaining 85.8%, 79.6% and 72.0% of 
the total variance in respective water quality data sets. 
Equal numbers of varifactors (VFs) are obtained through 
the FA performed on the PCs. Results of FA including 
factor loadings, eigenvalues and total and cumulative 
variance values are presented in Table 3. 

 

 
Fig. 4 Boxplot of COD Mn (a) and NH3-N concentration (b) in Nenjiang River basin, China (2012−2013) 

 
Table 3 Factor loadings matrix and explained variance of water quality parameters in three periods 

Parameter 
LF period MF period  HF period 

VF1 VF2 VF3 VF4 VF1 VF2 VF3  VF1 VF2 

Temp 0.935 0.191 −0.108 −0.198 −0.699 −0.639 −0.113  −0.791 −0.215

SD −0.806 0.456 −0.075 −0.101 0.102 0.929 −0.075  0.480 0.340 

pH 0.004 −0.101 0.819 −0.289 −0.425 0.691 −0.128  −0.739 −0.167

DO −0.819 −0.306 −0.108 0.000 0.497 0.669 −0.153  0.680 0.392 

EC 0.232 −0.204 0.478 −0.584 −0.871 −0.211 0.056  0.962 0.027 

NH3−N 0.182 0.917 0.034 0.149 −0.436 −0.320 0.723  0.376 0.951 

TOC −0.001 0.064 0.015 0.916 0.576 0.420 0.320  0.378 0.772 

COD 0.915 0.323 −0.033 0.022 0.965 0.160 −0.105  0.863 0.329 

BOD5 0.932 0.255 −0.160 −0.059 0.912 0.096 −0.242  0.110 −0.888

TN 0.283 0.912 0.065 0.062 0.833 0.056 0.312  0.265 0.857 

TP −0.076 0.288 0.807 0.213 0.162 −0.005 0.862  0.913 0.276 

Chla −0.935 −0.001 −0.137 0.085 0.823 −0.184 0.018  −0.905 −0.068

Eigenvalue 4.948 2.318 1.630 1.397 5.368 2.592 1.598  5.289 3.354 

Total variance/% 41.236 19.318 13.581 11.640 44.737 21.597 13.313  44.072 27.953

Cumulated/% 41.239 60.553 74.134 85.774 44.737 66.334 79.647  44.072 72.024
Note: Bold values are coefficients higher than or equal to 0.75; italic values are higher than or equal to 0.5 (with significance level of 0.05). 
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For the dataset pertaining to the LF period, among 

four VFs, VF1 (41.236% of total variance) has strong 
positive loadings on BOD5, COD and Temp, and strong 
negative loadings on Chla, DO and SD. In the frozen 
period, a thick surface ice layer would prevent nonpoint 
sources pollution from agricultural activities like animal 
breeding, agricultural fertilizers, and soil erosions. Thus, 
this organic factor mainly represents the contribution of 
point sources, such as municipal and industrial discharge 
pipes and wastewater treatment plants. Furthermore, DO 
decreases in the LF period, probably related to 1) high 
levels of dissolved organic matter consuming large 
amounts of oxygen, and 2) the thick surface ice layer 
would preventing photosynthesis and water re-aeration 
from the atmosphere when the river is icebound in the 
frozen period. The high loading of temperature is 
associated with seasonal variation, thus showing that 
only climate and seasonality are responsible for 
variations in water temperature. VF2 (19.318% of total 
variance) has strong positive loadings on NH3-N and TN. 
VF3 (13.581% of total variance) has strong positive 
loadings on pH and TP. VF2 and VF3 reflect the nutrient 
pollution of nitrogen and phosphorus. The excess 
nutrient in the LF period was mainly from point sources, 
such as town sewage. VF4 (11.640% of total variance) 
has strong positive loadings on TOC and moderate 
negative loadings on EC; these parameters are indicators 
of organic pollution from industries activities. 

For the data set pertaining to the MF period, among 
three VFs, VF1 (44.737% of total variance) has strong 
positive loadings on COD, BOD5, TN, and Chla and 
moderate positive loadings on TOC, whereas strong 
negative loadings on EC and moderate negative loadings 
on Temp. This factor can be explained as oxygen- 
consuming organic and inorganic nutrients pollution. 
This factor may be related to anthropogenic pollution of 
industrial, domestic and agricultural source. VF2 
(21.597% of total variance) has strong positive loadings 
on SD and moderate positive loadings on pH and DO, 
whereas moderate negative loadings on Temp. Strong 
loading on these parameters could have been due to 
anthropogenic activities through road construction, 
clearing of lands, and runoff taking place near the study 
area. Meanwhile, this factor also indicates a strong effect 
of soil erosion from agricultural fields especially when 
the river flow increases due to snow melting at the river 
sources. The negative loadings of SD and Temp can be 
explained taking into account that particles suspended in 
water may absorb heat in the sunlight, hence raising 
water temperature. VF3 (13.313% of total variance) has 
strong positive loadings on TP and moderate positive 
loadings on NH3-N. This nutrient factor represents the 
non-point pollution of the river. Non-point sources of 
nitrogen in this region mainly contain agricultural runoff, 

as well as natural decomposition organic and geologic 
deposits. TP also ascribes to the runoff from phosphorous 
fertilizers and soil erosion. 

For the data set pertaining to the HF period, among 
two VFs, VF1 (44.072% of total variance) has strong 
positive loadings on EC, COD, and TP, and moderate 
positive loadings on DO, whereas strong negative 
loadings on Chla and Temp, and moderate negative 
loadings on pH. This factor can be explained as high 
levels of organic matter and inorganic nutrients. High 
loadings on these parameters indicate that the river is 
heavily polluted due to anthropogenic activities through 
point and non-point sources. Point sources such as 
wastewater from domestic sewage, wastewater treatment 
plants and industries effluences. Impact of non-point 
sources of pollution especially agricultural activities like 
animal breeding, agricultural fertilizers, and soil erosions 
are dominant. VF2 (22.953% of total variance) has 
strong positive loadings on TN, NH3-N and TOC, and 
strong negative loadings on BOD5. High concentration of 
nitrogen and organic matter in river can originate from a 
number of sources, such as domestic sewage and 
agriculture cultivation. A large amount of nitrogenous 
fertilizers is applied on these farmlands, which is finally 
released into the river ecosystem and deteriorates the 
river water quality. In the HF period, flushing of 
overland runoff due to floods is the main and nearly 
constant sources of organic matter and nutrient in river 
water, so that dilution of pollutants caused by an 
increasing in river flow is less evident. 
 
3.3 Spatial similarity and site grouping 

Spatial HCA rendered a dendrogram, grouping 10 
sampling sites into three distinct clusters with significant 
differences at (Dlink/Dmax)×100 < 56 (Fig. 5). 
 

 
Fig. 5 Dendogram showing clustering of monitoring sites based 

on hierarchical clustering (Ward’s method) 

 
Cluster 1 (including MS1, TR2, TR3, TR6 and TR9) 

corresponds to relatively less polluted (LP) region. MS1 
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is located in the headwater of the Nenjiang River in an 
area that has extensive forest cover and limited human 
activities, thus the water quality is optimal. TR2 and TR3 
are both located in the upstream and midstream of the 
river in areas that experience no industrial activity and 
have relatively small human population; thus water 
quality is found to be only less polluted by agricultural 
practices. Relatively low concentration of all monitored 
water parameters were observed in TR6, possibly 
attributed to high water flow and long stream length in 
the Yalu River. TR9, located in the Hudaer River, has a 
medium-size reservoir, which the water quality was in a 
better condition. 

Cluster 2 (containing MS7, MS8 and MS10) 
corresponds to moderately polluted (MP) region. In 
cluster 2, these sites are situated at the most downstream 
area of the Nenjiang River basin. Although the direct 
discharged domestic wastewater and industrial effluents 
and surface runoff from villages contaminated the river, 
the water quality corresponds to moderately polluted, 
which indicates the existence of the self-purification and 
assimilative capacity of the river as it flows downstream. 

Cluster 3 (comprising MS4 and MS5) corresponds 
to highly polluted (HP) region. In cluster 3, these sites 
are located at the Qiqihar City region. Qiqihar City is 
nearly the most developed region in the Nenjiang River 
basin, with a population of about 5.71 million 
(Heilongjiang Statistical Yearbook 2010). There are 
many chemical, pharmaceutical, petroleum chemical, 
iron-steel and electroplating factories. These sites 
received large amounts of pollution from various point 

sources, such as wastewater treatment plants, domestic 
wastewater and industrial effluents, and showed the 
highest average concentrations of all monitored water 
parameters. Moreover, a large number of livestock 
breeding farms without wastewater treatment facilities 
also located near the river. 
 
3.4 Spatial variations in river water quality 

Spatial PCA/FA is performed on the correlation 
matrix of rearranged normalized datasets separately for 
the three regions (LP, MP and HP) to compare the 
compositional pattern between analyzed water samples 
and identify the source influencing each one. In this 
study, the KMO result for the HP, MP and LP regions 
were 0.729, 0.671 and 0.631, and Bartlett’s Sphericity 
test was significant (0.00, p<0.05), indicating that 
PCA/FA could be considered appropriate and useful to 
provide significant reduction in data dimensionality. 

PCA yield three PCs for the LP and HP regions and 
four PCs for the MP region with eigenvalues>1, 
explaining 79%, 88% and 87% of the total variance in 
respective water quality data sets. Equal numbers of VFs 
are obtained through FA performed on the PCs. Results 
of FA including factor loadings, eigenvalues and total 
and cumulative variance values are presented in Table 4. 

For the dataset pertaining to water quality in the LP 
sites, among three VFs, VF1 (30.305% of total variance) 
has strong positive loadings on DO and SD, and 
moderate positive loadings on TOC and TP, whereas 
strong negative loadings on Temp and moderate negative 
loadings on pH. This factor explains the erosion from 

 
Table 4 Factor loadings matrix and explained variance of water quality parameters in three regions 

Parameter 
LP region MP region HP region 

VF1 VF2 VF3 VF1 VF2 VF3 VF4 VF1 VF2 VF3 

Temp −0.941 0.197 −0.037 −0.938 0.213 −0.082 0.187 0.078 −0.957 −0.056

SD 0.800 0.098 0.101 0.908 −0.287 −0.126 −0.126 −0.884 0.315 0.105 

pH −0.641 0.079 −0.282 0.049 −0.925 0.147 −0.096 −0.711 −0.568 0.150 

DO 0.932 0.103 −0.084 0.950 0.118 −0.116 0.021 −0.141 0.906 −0.314

EC 0.021 −0.149 0.952 0.398 −0.343 −0.133 −0.779 −0.453 0.490 −0.712

NH3-H −0.037 −0.421 0.650 −0.286 0.023 0.794 0.174 0.237 −0.549 −0.667

TOC 0.649 0.540 0.225 0.264 0.271 0.378 0.544 0.602 0.538 0.132 

COD −0.028 0.993 0.027 −0.112 0.775 0.531 0.196 0.922 0.130 0.302 

BOD5 −0.225 0.927 −0.270 −0.235 0.774 0.450 0.219 0.816 −0.073 0.503 

TN 0.220 0.090 0.810 −0.111 0.441 0.700 0.364 0.911 −0.008 0.290 

TP 0.539 0.205 0.688 0.536 0.022 0.759 −0.161 0.227 0.881 0.116 

Chla −0.137 −0.126 −0.792 −0.124 0.027 0.042 0.959 0.359 −0.027 0.881 

Eigenvalue 3.637 3.210 2.659 3.302 2.585 2.401 2.157 4.463 3.786 2.322 

Total variance/% 30.305 26.748 22.157 27.514 21.544 20.007 17.975 37.191 31.554 19.349

Cumulate/% 30.305 57.053 79.210 27.514 49.058 69.065 87.040 37.191 68.745 88.094
Note: Bold values are coefficients higher than or equal to 0.75; italic values are higher than or equal to 0.5 (with significance level of 0.05). 
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upland areas during rainfall events and the positive 
correlation with TOC and TP indicates the loading of 
partially decayed organic matters from forested areas. 
This assumption is reasonable, as the water quality in 
this region is good and land use activities are mostly 
limited to agriculture and forest areas. The inverse 
relationship between Temp and DO is also a natural 
process because warmer water becomes saturated more 
easily with oxygen and it can hold less dissolved oxygen. 
VF2 (26.748% of total variance) has strong positive 
loadings on COD and BOD5, and moderate positive 
loadings on TOC. BOD5, COD and TOC are considered 
organic factors and may be interpreted as representing 
influences from nonpoint sources such as agricultural 
activities and forest areas. VF3 (22.157% of total 
variance) has strong positive loadings on EC and TN, 
and moderate positive loadings on NH3-N and TP, 
whereas strong negative loadings on Chla. The presence 
of nitrogen and phosphorus are related to the influence of 
domestic waste and agricultural runoff. 

For the dataset pertaining to water quality in the MP 
sites, among four VFs, VF1 (27.514% of total variance) 
has strong positive loadings on DO and SD, and 
moderate positive loadings on TP, whereas strong 
negative loadings on Temp. Different from the LP region, 
this factor is correlated with suspended solids, which is 
related to the discharge from urban development areas 
involving clearing of lands, the erosion of road edges due 
to surface runoff, as well as agricultural runoff. The 
conversion of land use from forestal or agricultural to 
urban has indeed caused large negative impacts to the 
ecosystem of the Nenjiang River basin in the form of 
mud flood, land slide, and river floods. VF2 (21.544% of 
total variance) has strong positive loadings on COD and 
BOD5 and strong negative loadings on pH. As explained 
above, this factor is related to organic pollution and 
suspected to come from point pollution sources such as 
sewage treatment plants and industrial effluents. Organic 
matters in river water consumes large amount of oxygen, 
and as the amount of available DO decreases, they 
undergo anaerobic fermentation processes leading to the 
production of ammonia and organic acids. Hydrolysis of 
these acidic materials causes a decrease of water pH 
values. VF3 (20.007% of total variance) has a high and 
positive load of NH3-N and TP, and moderate positive 
loadings on TN and COD. This nutrient factor represents 
the point and non-point pollution of the river. Point 
sources include municipal waste treatment plants, 
industrial operations, and large, confined livestock 
operations. Nonpoint sources comprise soil erosion and 
water runoff from cropland, lawns and gardens, private 
waste treatment systems, urban areas, small livestock 
confinement operations, etc. VF4 (17.975% of total 
variance) has strong positive loadings on Chla and 

moderate positive loadings on TOC, whereas strong 
negative loadings on EC. This factor is suspected to 
originate from agricultural fields, where irrigated 
horticultural crops are grown and the use of inorganic 
fertilizers (usually as ammonium nitrate) is rather 
frequent. But this pollution may also originate from the 
decomposition of nitrogen containing organic 
compounds via degradation process of organic matters, 
such as proteins and urea occurring in municipal 
wastewater discharges. 

Lastly, for the data set representing the HP sites, 
among total three VFs, VF1 (37.191% of total variance) 
has strong positive loadings on COD, TN and BOD5, and 
moderate positive loadings on TOC, whereas strong 
negative loadings on SD and moderate negative loadings 
on pH. This factor indicates that the river is heavily 
polluted with organic pollutants. In the HP region, this 
pollution comes mostly from point sources such as 
discharge from wastewater treatment plants, domestic 
wastewater and industrial effluents. The presence of 
nutrient in this region, also possibly contributed by 
pollution loadings from livestock farms, attributed to the 
absence of a treatment system. The negative factor 
loading of SD on this factor can be attributed to run-off 
from fields with high load of soil and waste disposal 
activities. VF2 (31.554% of total variance) has strong 
positive loadings on TP and DO and strong negative 
loading on Temp. This factor can be explained as the 
phosphorous pollutions of the stream. Point sources of 
the phosphorus such as wastewater from the phosphorous 
chemical industry and non-point sources like animal 
breeding, agricultural fertilizers, and soil erosions 
constitute the pollution commonly found in this region. 
VF3 (19.349% of total variance) has strong positive 
loadings on Chla and moderate positive loadings on 
BOD5, whereas moderate negative loadings on EC and 
NH3-N. The presence of nitrogen is due to agricultural 
runoff such as livestock waste and fertilizers, industrial 
effluents, municipal sewage, and existing sewage 
treatment plants because nitrogen is an important 
component of detergents. 
 
4 Conclusions 
 

1) In this case work, different multivariate statistical 
techniques are used to evaluate temporal and spatial 
variations in surface water quality of the Nenjiang River 
basin. Hierarchical cluster analysis (HCA) renders good 
results to evaluate both temporal and spatial differences. 
HCA groups 12 months into three periods (LF, MF and 
HF) and classifies 10 monitoring sites into three regions 
(LP, MP and HP) based on the similarity of water quality 
characteristics. It offers reliable classification of the 
surface water in the Nenjiang River basin that could help 
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to design an optimal future monitoring strategy. 
According to spatial HCA, the number of monitoring 
sites may be decreased and only chosen from clusters 1, 
2 and 3. Similarly, according to temporal HCA, the 
monitoring frequency may decrease and the monitoring 
period could be selected depending on their hydrological 
characters (LF, MF and HF), rather than the traditional 
seasons. Thus, the HCA can facilitate comparisons 
among different localities or periods and can be a useful 
tool for optimizating the water quality monitoring 
strategy. 

2) According to the results from temporal PCA/FA, 
we can observe that beside geochemical aspects, 
seasonal regime of the Nenjiang River basin water 
quality is controlled by three important hydrologic/ 
anthropogenic processes: ①  point sources pollution, 
such as wastewater from domestic sewage and 
wastewater treatment plants in LF, MF and HF periods; 
② impact of non-point sources of pollution especially 
agricultural activities, that are dominant during the HF 
and MF periods; ③ flushing of overland runoff, due to 
floods occurring in HF period. In general, temporal 
effects were associated to variations of river flow rate 
which cause dilution of pollutants and hence variations 
in water quality. Having the mentioned processes 
functioning over the watershed, relevant management 
policies and actions need to implement. Of the best ways 
to reduce the concentrations of chemical compositions of 
river water, establishment of riparian vegetation is 
recommended. 

3) The result of spatial PCA/FA indicates that the 
parameters responsible for water quality spatial variation 
were mainly related to suspended solids (natural sources: 
soil erosion), organic pollution and nutrients (non-point 
sources: animal husbandry and agriculture activities) in 
relatively LP region; suspended solids (non-point sources: 
clearing of lands, surface runoff, agricultural runoff), 
oxygen-consuming organic pollution (point sources: 
industries and domestic wastewater), nutrients (non-point 
sources: agriculture activities, organic decomposition 
and geologic deposits) in MP region; and oxygen- 
consuming organic pollution (point source: domestic 
sewage, wastewater treatment plants and industrial 
effluences), nutrients (non-point sources: agricultural 
activities, runoff in soils) in HP region. Consequently, the 
PCA/FA could be useful for evaluation of potential 
environmental hazards in each region. Therefore, 
different measures can be carried out to control the water 
pollution sources in different regions. The HP region 
should pay more attention to these point sources of 
pollution that are also significant latent pollution sources 
in MP region. Non-point sources of pollution are a 
serious environmental problem throughout the basin. 
Agricultural activities like cultivation or aquatic breeding 

without advanced techniques bring tremendous nutrients 
and organic pollution. Thus, the priority is to develop 
advanced techniques for decreasing non-point sources of 
pollution in these three regions. 

4) The application of HCA and PCA/FA has 
achieved meaningful classification based on temporal 
and spatial criteria. This work reinforces the fact that 
multivariate statistical methods including HCA and 
PCA/FA can be applied to interpret complex datasets of 
water quality, understand temporal and spatial variations 
in water quality, and identify latent pollution sources/ 
factors. Therefore, this evaluation work can help 
managers identify the main sources of pollution in 
different regions and in different periods so as to 
determine their priorities for improving water quality. 
Since multivariate statistical methods are easily applied 
to water quality data, using them can be a practical 
approach to environmental impact assessment. 
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