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Abstract: Based on the active failure mechanism generated by a spatial discretization technique, the stability of tunnel face was 
studied. With the help of the spatial discretization technique, not only the anisotropy and inhomogeneity of the cohesion but also the 
inhomogeneity of the internal friction angle was taken into account in the analysis of the supporting forces. From the perspective of 
upper bound theorem, the upper bound solutions of supporting pressure were derived. The influence of the anisotropy and 
heterogeneity on the supporting forces as well as the failure mechanisms was discussed. The results show that the spatial 
discretization characteristics of cohesion and internal frictional angle impose a significant effect on the supporting pressure, which 
indicates that above factors should be considered in the actual engineering. 
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1 Introduction 
 

In the process of tunnel excavation, the original 
equilibrium of the soils in front of the tunneling face is 
disrupted due to stress release, thus the tunnel face is 
inclined to collapse. In this case, the priority should be 
given to maintaining the stability of the tunnel face so as 
to ensure the safety of tunnel construction. However, it is 
a rather complicated engineering issue since the 
instability of tunnel face has something to do with 
surrounding rock classification, the construction size of 
tunnel face, burial depth, underground water pressure, 
and so forth. In order to evaluate the face stability with 
limit analysis method, it is of great significance to throw 
light upon the failure mechanism which draws the 
outline of actual failure under the limit state, and this 
approach is indeed analyzed by numerous scholars 
worldwide. 

With respect to the face stability of tunnels, diverse 
collapse mechanisms have been utilized by many 
investigators based on the assumption of isotropic and 
homogeneous geotechnical materials. Based on 
generalized Hoek-Brown strength criterion, pseudo-static 
analysis of face stability of a shield-driven tunnel was 
investigated in the presence of surface loads by 
constituting an active failure mode in the framework of 

plasticity theory [1]. In Ref. [2], multi-block failure 
mechanism was proposed according to the gradual 
velocity field of collapsing blocks in front of tunnel face 
during excavation. In light of this thought, the objective 
function of supporting pressure exerted on the tunnel 
face was obtained with upper bound theorem, and the 
corresponding optimal solutions were calculated by 
programming. Furthermore, the effect of relevant 
parameters on the supporting pressure and failure shape 
was discussed. 

In reality, the real geotechnical materials present 
characteristics of anisotropy and heterogeneity due to 
obvious bedding structure resulting from natural 
sedimentary and geological tectonism, thus these factors 
should not be ignored in the theoretical analysis because 
of the significant effect on mechanical properties of 
geomaterials, which exerts an adverse influence on the 
stability of geotechnical structures such as slopes, 
foundations, retaining walls, and tunnels. As for research 
of this respect, although some authors [3−11] have 
studied the foundation bearing capacity in the case of a 
soil with an anisotropic and inhomogeneous cohesion, 
they did not take the anisotropic and inhomogeneous 
nature of the internal friction angle into account. Apart 
from above research, few materials involved with 
anisotropy and heterogeneity can be found so far. 

Anisotropy and heterogeneity properties of 
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geomaterials have a dramatic impact on the face stability 
of tunnels to some extent and some scholars have made 
some researches in this respect. MOLLON et al [12] 
concluded that the effect of internal fractional angle 
change on the tunnel stability is far more than that of 
cohesion. Based on this, MOLLON et al [13] proposed a 
new two-dimensional failure mechanism with non- 
isometric logarithmic spirals, which is generated by a 
spatial discretization technique and can take the spatial 
variation of the internal friction angle into account, to 
calculate the upper bound value of the critical collapse 
pressure for a shield-driven tunnel. This presented 
kinematical approach was validated in comparison with 
the numerical simulation. Subsequently, on the basis of 
previous studies, MOLLON et al [14] further employed 
the spatial discretization technique to build a three- 
dimensional collapse mode, and the upper bound 
magnitudes of the collapse pressure were improved with 
this new mechanism by 25%. 

In this work, on the basis of the active failure 
mechanism generated by the spatial discretization 
technique, the upper bound solutions of supporting 
pressure were derived with limit analysis method by 
considering the anisotropy and inhomogeneity of the 
internal friction angle as well as the cohesion 
simultaneously. Meanwhile, the parametric study was 
conducted to discuss the influence of relevant parameters 
on the upper bound solutions as well as optimal failure 
mechanism. 
 
2 Anisotropy and inheterogeneity of 

geomaterials 
 
2.1 Anisotropy 

Through the experimental investigations, 
CASAGRANDE and CARILLO [15] found that shear 
strength changes with different directions of the failure 
surface, and the law of the cohesion changing with 
different directions is shown in Fig. 1. 

The cohesion cξ in the direction of the maximum 
 

 
Fig. 1 Anisotropy of cohesion 

principle stress, which is at an angle of ξ from the 
vertical direction, can be expressed as 

 
2

h v h( )cos  c c c c                         (1) 
 
where cv is the vertical principle cohesion and its 
maximum principle stress is in the horizontal direction; 
ch is the horizontal principle cohesion and its maximum 
principle stress is in the vertical direction. The magnitude 
of cv and ch can be obtained by geotechnical experiments. 

LO’s research has shown that the ratio of the 
horizontal cohesion ch to the vertical cohesion cv at any 
location remains approximately a constant [16]. Hence, 
he defined a coefficient k=ch/cv, which represents the 
anisotropy of the soils, for the case of isotropic soils with 
k=1. The Eq. (1) can be therefore written as 

 

 2
h (1/ 1)cos  c c k 1                     (2) 

 
where k changes from 0.6 to 1.56 [16−18]. 
 
2.2 Inhomogeneity 

The cohesion increasing with the increase of depth z 
is the most common situation. In the study of foundation 
bearing capacity and slope stability, many scholars 
supposed some models for the inhomogeneity of the 
cohesion, as shown in Fig. 2. The inhomogeneity of the 
cohesion c follows the law in Fig. 2 and internal friction 
angle φ also follows such a similar variation. 
 

 
Fig. 2 Some models for inhomogeneity of cohesion 

 
3 Active failure mechanism of tunnel face 
 

Figure 3 presents the geometrical model for the 
problem in this work, where the point O′ is the center of 
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the A'B' and A'B' represents the tunnel face, D is tunnel 
diameter and C is the buried depth. The ABE is the 
collapsing body; Point A and point B are the intersections 
between the collapsing body and the tunneling face 
respectively and Point F is the center of the AB. 
Theoretically, the collapse would be local failure if the 
soils exhibit inhomogeneity and anisotropy, so the 
collapsing body does not occur on the entire tunneling 
face but on the certain location in the middle of the 
tunnel face. Such a position is characterized by the 
parameter e and R, as illustrated in Fig. 3. 
 

 
Fig. 3 Local collapsing mechanism 

 

Point O is the rotational center of the collapsing 
body and ω is the rotational angular velocity. Other 
parameters, such as θA, θA, θF ,rA, rB and rF, are shown in  
Fig. 3. In this work, the spatial discretization technique 
proposed by MOLLON et al [12−13] was used to 
generate the failure mechanism and the process is similar 
to that in Ref. [8]. 

Assuming that the coordinate of the rotational 
center O is (xO, yO), we can get following expressions: 
 

2 2( 2 )  A O Or x y R                         (3) 
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The position of point O can be expressed as a 

function of rF/R and θF: 
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Thus, the entire failure mechanism can be described 
by two dimensionless parameters which should meet the 
geometrical relationship: 

 
/ 1

π / 2 π


  F

Fr R


                               (9) 

 
4 Calculation of upper bound solution 

considering heterogeneity and anisotropy 
 
4.1 Mode of heterogeneity and anisotropy 
4.1.1 Heterogeneity of internal friction angle 

Both the internal friction angle and cohesion in 
front of the tunneling face would change with the 
variation of depth.  

In Fig. 4, φ0 is the internal friction angle of point B′, 
and the internal friction angle of any point Bi(xi, yi) on 
the velocity discontinuity surface BE can be expressed as  

0 ( / 2 )    i iy D e R                    (10) 
 
where ρφ is the scale factor of the internal friction angle 
varying with the change of depth. 
 

 
Fig. 4 Mode of heterogeneity 

 
Define a dimensionless parameter kφ as the 

inhomogeneity coefficient of the internal friction angle: 
 

0

0

2
=

 D
k 


 


                             (11) 

 
kφ can reflect the varying situation that the internal 

friction angle changes with the depth: 1) 0<kφ<1 for the 
case that φ increases with the increase of depth, and the 
larger the kφ, the greater the increase; 2) kφ=1 for the case 
of homogenous soils; 3) kφ>1 for the case that φ 
decreases with the increase of depth, and the smaller the 
kφ, the greater the decrease. 
4.1.2 Heterogeneity and anisotropy of cohesion 

In Fig. 4, c0 is the cohesion of point B′, and the 
cohesion of any point Bi(xi, yi) on the velocity 
discontinuity surface BE can be expressed as  

0 c ( / 2 )    i ic c y D e R                   (12) 
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where ρc is the scale factor of the cohesion varying with 
the change of depth. 

Define a dimensionless parameter kc as the 
inhomogeneity coefficient of the cohesion: 
 

0 c
c

0

2
=

c D
k

c


                              (13) 

 
kc can reflect the varying situation that the cohesion 

changes with the depth: 1) 0<kc<1 for the case that c is 
positive to the depth, and the larger the kc, the greater the 
increase; 2) kc=1 for the case of homogenous soils; 3) 
kc>1 for the case that c is negative to the depth, and the 
greater the kc, the smaller the decrease. 

The geometrical relationships of the anisotropic 
parameters are shown in Fig. 5. ψ is the angle between 
the velocity discontinuity surface and the maximum 
principal stress which acts on the velocity discontinuity 
surface. Corresponding research has proven that angle ψ 
is basically a constant regardless of the direction of the 
maximum principal stress. It is easy to obtain the 
expression of ξ from Fig. 5: 
 

 
Fig. 5 Relationship of anisotropic cohesion 

 
π   i i                               (14) 

 
Thus, Eq. (2) can be written as 
 

2
h

1
( 1)cos (π )

       
 

i ic c
k   1          (15) 

 
where φi is the internal friction angle of point Bi(xi, yi) 
and can be calculated based on Eq. (10), θi is the angle 
between the line OBi and the initial direction, and it can 
be expressed by the following equation: 
 

π arctan


 

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i
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y y
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                         (16) 

 
By substituting Eq. (12) into Eq. (15), the 

expression of the cohesion of point Bi(xi, yi) results in 
 
 0 c ( / 2 ) ( (1/ 1)       ic c y D e R k  1  

2cos (π ))  i i                      (17) 

4.2 Calculation of power of self-weight 
In order to calculate the power rate generated by 

soil weight, the mechanism is subdivided into two main 
sections, as shown in Fig. 6. 
 

 
Fig. 6 Diagram used for calculation of power of unit weight 

 
As shown in Fig. 6, the calculation of the rate of the 

weight of each triangle element ABiBi+1 is first conducted 
separately, and then the work rate of the weight of part I 
can be obtained by adding the rate of the weight of all 
elements: 

 

1 cos   i Gi Gi
i

W S R                       (18) 

 
where Si is the area of a triangle element ABiBi+1 and it 
can be computed by the following expression: 
 

2 21
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(xA, yA) is the coordinate of point A, 
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Gi is the centre of gravity of triangle element 

ABiBi+1 and the expression of its coordinate is 
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iGR  is the distance between the point O and the 
centre of gravity of triangle element ABiBi+1, and its 
expression is 

 
2 2( ) ( )   

i i iG G O G OR x x y y                (22) 
 

According to geometrical relationship, one can get 
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the expression of :
iG  

 

π arctan
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G O
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For the computation of the work rate of the weight 

of an element AiBiBi+1Ai+1 in the Section II, it can be 
calculated by subtracting the power of the weight of the 
element OAiAi+1 from the element OBiBi+1. Then, the 
work rate of the weight of Part II can be obtained by 
adding the work rate of the weight of all elements: 

 

2 ( cos cos )   i Bi Bi i Ai AiB G G A G G
i

W S R S R      (24) 

 
where 

iBS is the area of triangle element OBiBi+1; 
iAS  

shows the area of triangle element OAiAi+1; 
BiGR  

represents the distance between the point O and the 
centre of gravity of triangle element OBiBi+1; AiGR  
indicates the distance between the point O and the centre 
of gravity of triangle element OAiAi+1; BiG is the angle 
between the line OGBi and the initial direction; 

AiG  
characterises the angle between the line OGAi and the 
initial direction. The calculation of these parameters is 
similar to Eqs. (23) and (24). Therefore, the power of 
gravity of the total failure mechanism is 
 
W=W1+W2                                  (25) 
 
4.3 Calculation of work rate of supporting pressure 

The supporting forces acting on the tunnel face are 
regarded as uniform loads and the power of the 
supporting forces can be computed by analytical method: 

 
2

2
f 2

cos1
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where rB, θA and θB are given in Eqs. (4), (5) and (6). 
 
4.4 Computation of power of energy dissipation 

The energy dissipation only takes place on the 
velocity discontinuity surfaces due to assumption of the 
rigid rotation. The velocity discontinuity surfaces are 
generated by many successive segments, so the energy 
dissipation can be computed at each segment. The energy 
dissipation of the velocity discontinuity surface BE can 
be calculated by the following expression: 

 

1
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where 

iBL is the distance of BiBi+1:  
2 2

1 1( ) ( )    
iB i i i iL x x y y                 (28) 

 

iBR is the distance between the point O and the midpoint 
of BiBi+1:  
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iB is the internal friction angle at the midpoint of BiBi+1:  
 0 1( ) / 2 / 2     

iB i iy y D e R          (30) 
 

Bc is the cohesion at the midpoint of BiBi+1:  
0 1( (( ) / 2 / 2 ))      B c i ic c y y D e R
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The energy dissipation of the velocity discontinuity 
surface AE can be calculated as 

 

1
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  i i iAE A A A A
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D c L R

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where the meanings of parameters 

iii AAA RL  , , and 

AC are similar to those in Eqs. (28)−(31). Therefore, the 
energy dissipation of the total system is 
 

 AE BED D D                              (33) 

 
4.5 Upper bound solutions of supporting forces 

By equating the external power to the internal 
energy dissipation, the virtual work-rate equation can be 
expressed as 
 

f W P D                                 (34) 
 

Through solving Eq. (34), one can obtain the upper 
bound solutions of the supporting pressure as follows: 
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  (35) 

 
Therein, the supporting force is a function of rF/R 

and θF. 
 
5 Influence of heterogeneity and anisotropy 

on supporting forces 
 
5.1 Influence of anisotropy of cohesion 

The influence of the cohesion c on the supporting 
forces is discussed with relevant parameters 
corresponding to kc=1.0, kφ=1.0, c0=10 kPa, γ=20 kg/m3, 
D=12 m, C/D=2, R=6 m, e=0 m and δθ=1°. The results 
are shown in Fig. 7. 

It can be seen in Fig. 7 that the supporting forces 
increase with the increase of the cohesion anisotropy 
coefficient k. This is due to the fact that a bigger 
cohesion anisotropy coefficient k means a greater 
average cohesion c and the collapse is more difficult to 
happen even if the supporting forces are relatively 
smaller. Figure 8 presents the optimal failure mechanism 
with different cohesion anisotropy coefficient k. It is 
shown that the failure mechanism extends outward when 
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Fig. 7 Relationship between k and σ 

 

 
Fig. 8 Impact of k on shape of failure mechanism 

 
the anisotropic coefficient k increases. 
 
5.2 Influence of heterogeneity of cohesion 

Figure 9 presents the σ values with different 
heterogeneity coefficient kc of cohesion in the absence of 
the anisotropy of cohesion and the heterogeneity of 
internal friction angle when c0=25 kPa, γ=20 kg/m3, 
D=10 m, C/D=2, R=5 m, e=0 m and δθ=1°. 

As shown in Fig. 9, the supporting forces linearly 
decrease with increasing the value of heterogeneity 
coefficient kc of cohesion, which means that the 
magnitude of cohesion has great influence on the 
supporting forces. This is because the larger kc means the  
 

 
Fig. 9 Relationship between kc and supporting forces 

bigger cohesion and the better self-stability of the soils. 
According to analysis, it can be found that the failure 
mechanism is contracting inward with the increase of kc 
but this trend is not very obvious. 
 
5.3 Influence of heterogeneity of internal friction 

angle 
The change law of σ values with different 

heterogeneity coefficient kφ of internal friction angle is 
obtained, as shown in Fig. 10, in the absence of the 
anisotropy and the heterogeneity of cohesion when c0= 
20 kPa, γ=20 kg/m3, D=8 m, C/D=1, R=5 m, e=0 m and 
δθ=1°. As illustrated in Fig. 10, the supporting forces are 
linearly negative to the value of kφ, although the 
influence is not obvious. This is due to the interpretation 
that the larger the kφ, the bigger the internal friction angle 
and the better the self-stability of the soils. 

The optimal failure mechanisms with different kφ 

are optimized, as illustrated in Fig. 11. It can be found 
that the failure mechanism contracts inwardly along with 
the increase of kc, and this trend is relatively obvious 
compared with the precious conditions. 
 

 
Fig. 10 Relationship between kφ and supporting forces     

 

 
Fig. 11 Impact of kφ on optimal failure mechanism 

 
5.4 Influence of heterogeneity and anisotropy of 

cohesion 
With the presence of anisotropy and heterogeneity 

of cohesion, the change law of the supporting forces is 
investigated when φ0=25°, c0=20 kPa, γ=20 kg/m3, D= 
10 m, C/D=2.0, R=5 m, e=0 m and δθ=1°. 
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As shown in Fig. 12, the supporting forces increase 
with the decrease of kc, but the change is very little. 
Besides, the supporting pressure decreases when k 
increases and this influence is more obvious than that of 
kc, from which one can conclude that k has a larger 
impact on the supporting forces than kc does. 
 

 
Fig. 12 Impact of kc and k on supporting forces 

 
5.5 Influence of heterogeneity of internal friction 

angle and anisotropy of cohesion 
Under the condition of the anisotropy of cohesion 

and the heterogeneity of internal friction angle, the 
change rule of σ values is plotted in Fig. 13 when φ0=20°, 
c0=10 kPa, γ=20 kg/m3, D=10 m, C/D=2.0, R=5 m, e=  
0 m and δθ=1°. It can be easily found from Fig. 13 that, 
the supporting forces are positive to the value of k, but 
the trend grows slowly. However, the effect of kφ shows 
an opposite change pattern, i.e., the supporting pressure 
increases with the decreasing magnitude of kφ, which 
indicates that both k and kφ have an important influence 
on the supporting forces. 
 

 
Fig. 13 Influence of kφ and k on supporting forces 

 

5.6 Influence of heterogeneity of internal friction 
angle and cohesion 
Considering the heterogeneity of cohesion and 

internal friction angle, the change pattern of σ values is 
illustrated in Fig. 14 when φ0=25°, c0=20 kPa, γ=20  

 

 
Fig. 14 Influence of kφ and kc on supporting forces 

 
kg/m3, D=10 m, C/D=2.0, R=5 m, e=0 m and δθ=1°. 

Figure 14 shows that the supporting forces have a 
positive relationship with the value of kc, but the 
decreasing trend is very small. Besides, the supporting 
forces decrease with the increase of kφ. 
 
6 Conclusions 
 

1) Without taking into account the heterogeneity of 
cohesion and internal friction angle, the supporting 
pressure tends to increase, and the failure mechanism 
extends outward with increasing the value of cohesion 
anisotropy coefficient k, although it changes slowly. 
However, the collapse pressure shows an opposite trend 
and the failure mechanism extends inward with the 
increase of heterogeneity coefficient kc of cohesion and it 
attenuates linearly and greatly in the absence of 
anisotropy of cohesion and heterogeneity of internal 
friction angle. Moreover, with the increase of 
heterogeneity coefficient kφ of internal friction angle, the 
supporting pressure decreases linearly and the collapse 
mechanism shrinks inward without considering 
anisotropy and the heterogeneity of cohesion. 

2) The effect of cohesion anisotropy coefficient k on 
supporting pressure is far more significant than that of 
heterogeneity coefficient kc due to the amplitude of 
variation, while both cohesion anisotropy coefficient k 
and heterogeneity coefficient kφ have an obvious 
influence on the collapse pressure of excavation face, 
although the amplification varies in diverse conditions. 
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