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Abstract: The intention of this investigation is to study the effects of heat transfer and inclined magnetic field on the peristaltic flow 
of Williamson fluid in an asymmetric channel through porous medium. The governing two-dimensional equations are simplified 
under the assumption of long wavelength approximation. The simplified equations are solved for the stream function, temperature, 
and axial pressure gradient by using a regular perturbation method. The expression for pressure rise is computed numerically. The 
profiles of velocity, pressure gradient, temperature, heat transfer coefficient and stream function are sketched and interpreted for 
various embedded parameters and also the behavior of stream function for various wave forms is discussed through graphs. It is 
observed that the peristaltic velocity increases from porous medium to non-porous medium, the magnetic effects have increasing 
effect on the temperature, and the size of the trapped bolus decreases with the increasing of magnetic effects while the trend is 
reversed with the increasing of Darcy number. Moreover, limiting solutions of our problem are in close agreement with the 
corresponding results of the Newtonian fluid model. 
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1 Introduction 
 

Peristaltic flows are generated by the propagation of 
waves along the flexible walls of the channel/tube. These 
flows occur widely in many biological and biomedical 
systems, such as urine transport from kidneys to bladder, 
chyme movement in the gastrointestinal tract, transport of 
spermatozoa in the ductus efferent of the male 
reproductive tracts, movements of ovum in the female 
fallopian tube and circulation of blood in the small blood 
vessels. This mechanism also has many industrial 
applications like sanitary fluid transport and blood pumps 
in heart lung machine. Such flows are extensively studied 
in various geometries by using different assumptions of 
large wave length, small amplitude ratio, low Reynolds 
number, and etc. [1−6]. 

The interaction of peristalsis in the presence of 
magnetic field and heat transfer has attracted much 
attention to the researchers. Concept of heat transfer 
analysis is very useful in obtaining the blood flow rate 
through the initial thermal conditions and the thermal 
clearance rate. The flow of blood can be estimated by a 
dilation technique. In this procedure, heat is either 
injected or generated locally and the thermal clearance is 
monitored. Specifically, the bio heat transfer plays a key 
role in destroying undesirable tissues, hyperthermia, 
laser therapy and cryosurgery. Flow through porous 

medium has been of considerable interest in recent years 
because of its widespread applications in bio fluid 
mechanics. In view of this, many researchers have 
studied the peristaltic flows in different situations. 
ELMABOUD and MEKHEIMER [7], TRIPATHI and 
ANWAR [8], and EL SHEHAWAY and HUSSENY [9] 
have discussed the peristaltic problems through porous 
medium. NADEEM and AKRAM [10−11], WANG et al 
[12], SRINIVAS and PUSHPARAJ [13] and HAYAT   
et al [14−15] have investigated the problems on 
peristaltic flows under effect of magnetic field. 
NADEEM and AKBAR [16−17], NADEEM and 
AKRAM [18], MEHMOOD et al [19] and HAYAT et al 
[20] have studied the effect of heat transfer on the 
peristaltic transport under the magnetic field effects. 
SRINIVAS and MUTHURAJ [21] have analyzed the 
peristaltic flow situation through the porous medium 
under the effects of heat transfer and magnetic field. 

The aim of the present work is to examine the 
influence of heat transfer and an inclined magnetic field 
on the Williamson fluid in an inclined asymmetric 
porous channel. The flow is generated by progressive 
waves with the channel walls.  
 
2 Williamson fluid model 
 

The governing equations for an incompressible fluid 
are given by 
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where ρ is the density; q  is the velocity vector; τ  is the 
Cauchy stress tensor; f represents the specific body 
force. 

The constitutive equation for Williamson fluid is 
given by [6]  

Sτ  IP                                         (3)                   
 

  ])1)(([ 1
0


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where IP is the spherical part of the stress due to 
constraint of incompressibility; S is the extra stress 
tensor;   is the infinite shear rate viscosity; 0  is the 
zero shear rate viscosity; Γ is the time constant;  is 
defined as 
 

Π
2

1

2

1
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where Π is the second invariant strain tensor. We 
consider the constitutive Eq. (4), the case for which 

0  and Γ <1. Then, the component of extra stress 
tensor can be written as 
 

  )]1[(])1[( 0
1

0 ΓΓ   S             (6) 
 

The Newtonian fluid model can be obtained by 
choosing Γ=0. 
 
3 Mathematical formulation 
 

In the present work, we consider the peristaltic 
transport of an incompressible Williamson fluid in a 
two-dimensional inclined asymmetric channel through 
the porous medium under the effect of heat transfer and 
inclined magnetic field. The peristaltic flow is generated 
by propagation of waves on the channel walls travelling 
with different amplitudes and phases but with the same 
constant speed c. We further assume that, the induced 
magnetic field is negligible under the assumption of low 
magnetic Reynolds number. In the Cartesian coordinate 
system )  ,( YX  the upper wall is H1 and the lower wall is 
H2. The heat transfer process is maintained by 
considering temperatures 0T  and 1T  to the lower and 
upper walls of the channel, respectively. The wall 
surfaces are chosen as  
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where a1 and a2 are the waves amplitudes; λ is the wave 
length; d1+d2 is the channel width; c is the speed of 

propagation; t is the time; X  is the direction of wave 
propagation. The phase difference   varies in the range 

π,0   in which 0  corresponds to symmetric 
channel with waves out of phase and π  corresponds 
to that with waves in phase, and further a1, a2, d1, d2 and 

  satisfy the condition  cos2 21
2
2

2
1 aaaa  

.)( 2
21 dd   

In laboratory frame, the governing equations for the 
two-dimensional motion of an incompressible 
Williamson fluid in an inclined channel through the 
porous medium with an inclined magnetic field are 
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where ρ is the density; U and V are the velocity 
components; P is the pressure; σ is the electrical 
conductivity of the fluid;   is the permeability parameter; 
B0 is the magnetic field; Θ is the angle of inclination of 
magnetic field;   is the angle of inclination; T  is the 
temperature; 

*  is the thermal conductivity. 
Introducing a wave frame ) ,( yx  moving with 

velocity c away from the fixed frame ) ,( YX  by the 
transformations  

) , ,() ,( , , , , tYXPyxpVvcUuYyctXx   

(13)  
where ,U V and P are the velocity components, pressure 
in the laboratory frame, respectively; ,u  v  and p  are the 
velocity components, pressure in the wave frame, 
respectively. 

After employing these transformations, Eqs. (9)−(12) 
can be reduced to 
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The non-dimensional quantities are: 
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Using the above dimensionless variables in      

Eqs. (14)−(17), we get  
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Introducing the non-dimensional stream function 
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By using the long wave length (δ<<1) approximation, 

neglecting the coefficients of δ, Eqs. (22)−(24) become 
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The corresponding dimensionless boundary 
conditions are defined as follows:  
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4 Rate of volume flow 
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The above expression in wave frame becomes 
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Using Eq. (36) into Eq. (37) and then integrating, we 

get 
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5 Perturbation solution 
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Invoking Eqs. (43)−(45) in Eqs. (29)−(31), and 

comparing the like power of We, we get the zeroth and 
first order systems and solving these equations we obtain 
the expressions of the stream function ,  the temperature 
profile θ and the pressure gradient xp  /  as 
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The coefficients of the heat transfer at the walls 
y=h1 and y=h2 respectively are given by [18] 
 

yx

h
Zh 






1

1
, 

yx

h
Zh 



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                  (49) 

 
After using Eq. (47) in Eq. (49), we get the 

expressions for heat transfer coefficients as follows:  
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The pressure rise 
p  per unit width of the channel 

in the non-dimensional form is given by 
 

x
x

p

y
p d

1 

0 
0


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

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6 Expressions for different wave shapes 
 

The non-dimensional expressions for the four 
considered wave forms are given by the following 
equations. 

1) Sinusoidal wave: 
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2) Triangular wave: 
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3) Square wave: 
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4) Trapezoidal wave: 
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7 Graphical results and discussion 
 

This section describes the effect of various 
parameters on the velocity profile, temperature 
distribution, pressure gradient, heat transfer coefficient 
and stream lines through following figures. The limiting 
solutions of our investigation and pressure rise for 
different involved parameters are discussed through 
tables. 

The variations of inclined magnetic field angle ,Θ  

Darcy number Da, Hartmann number Ha and phase 
difference   on the velocity have been plotted in     
Figs. 1(a)−(d). It is seen that the velocity increases near 
the center of the channel and decreases near the walls. 
Moreover, velocity increases in the middle of the channel 
from porous medium to non-porous. Figure 1(c) shows 
that an increasing Ha leads to decrease in velocity at the 
center of the channel and increase near the walls. That is, 
the presence of magnetic field decreases the fluid velocity 
in the middle part of the channel. The increase in   

decreases the velocity near the lower wall of the channel 
and the behavior is opposite near the other wall, which is 
shown in Fig. 1(d). 

Figures 2(a)−(d) illustrate the variations of pressure 
gradient verses unit wavelength x with ].1 ,0[x  From 
these figures, it can be seen that, by increasing inclined 
magnetic field angle ,Θ  phase difference ,  Darcy 
number Da and Hartmann number Ha, the relative 
pressure gradient is small in the wider part of the channel 
and large in the narrow part of the channel. It means that, 
in the wider part of the channel the fluid can easily move 
without imposition of larger pressure gradient but it has 
opposite behavior in the narrow part of the channel. 
Moreover, the pressure gradient decreases with increase 
in ,Θ    and Da, and the trend is reversed with Ha. The 
streamlines for various values of inclined magnetic field 
angle ,Θ  Darcy number Da and Hartmann number Ha 
are shown in the Figs. 3−5 for symmetric and asymmetric 
channels. From Figs. 3−4, it is clear that, as Θ  and Da 
increase, the size of trapping bolus increases in the 
symmetric and asymmetric channels. For the same values 
of Θ  and Da, with increasing ,  trapped bolus moves 
with the channel walls. It is depicted from Fig. 5 that, size 
of trapped bolus decreases with increase in Ha. Figures 
6−7 represents that streamlines for various wave forms 
with phase difference .  It is observed from the figures 
that, as   increases from 0 to π, the size of trapped bolus 
decreases and moves to right with the wave; when   
reaches to π, the trapped bolus disappears. 

Figure 8 is prepared to study the role of different 
parameters in the heat transfer coefficient on the upper 
wall. Figure 8(a) shows that the absolute value of heat 
transfer coefficient increases by increasing Hartmann 
number Ha. Figures 8(b)−(d) show that the heat transfer 
coefficient decreases in magnitude with an increasing of 
inclined magnetic angle ,Θ  Brinkman number Br and 
phase difference f. Moreover, the heat transfer coefficient 
has oscillatory behavior. 

Figure 9 represents the temperature profile for 
various parameters. From Figs. 9(a)−(b), it is evident that 
the temperature θ increases by increasing of Brinkman 
number Br and inclined magnetic angle .Θ  The 
temperature decreases with an increasing in Hartmann 
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Fig. 1 Velocity profile for fixed values of (a) x=0, a=0.3, b=0.5, d=1, Ф=1, We=0.001, Ha=1, Da=1, f=π/3; (b) x=0, a=0.3, b=0.5, 

d=1, Ф=1, We=0.001, Ha=1, Θ=π/3, f=π/3; (c) x=0, a=0.3, b=0.5, d=1, Ф=1, We=0.001, Θ=π/3, Da=1, f=π/3; (d) x=0, a=0.3, b=0.5, 

d=1, Ф=1, We=0.001, Ha=1, Da=1, Θ=π/3 

 

 
Fig. 2 Pressure gradient for fixed values: (a) y=0, a=0.3, b=0.5, d=1, Ф=1, We=0.001, Ha=1, Da=1, f=π/3, Re=0.5, Fr=0.5, α=π/3;  

(b) y=0, a=0.3, b=0.5, d=1, Ф=1, We=0.001, Ha=1, Da=1, Θ=π/3, Re=0.5, Fr=0.5, α=π/3; (c) y=0, a=0.3, b=0.5, d=1, Ф=1, 

We=0.001, Ha=1, Θ=π/3, f=π/3, Re=0.5, Fr=0.5, α=π/3; (d) y=0, a=0.3, b=0.5, d=1, Ф=1, We=0.001, Θ=π/3, Da=1, f=π/3, Re=0.5, 

Fr=0.5, α=π/3 
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Fig. 3 Streamlines for fixed values of a=0.3, b=0.5, d=1, Ф=2, We=0.001, Ha=1, Da=1: (a) Θ=0, f=0; (b) Θ=0, f=π/3; (c) Θ=π/3, 

f=0; (d) Θ=π/3, f=π/3 

 

  
Fig. 4 Streamlines for fixed values of a=0.3, b=0.5, d=1, Ф=2, We=0.001, Ha=1, Θ=π/3: (a) Da=0.5, f=0; (b) Da=0.5, f=π/3;      

(c) Da=1.5, f=0; (d) Da=1.5, f=π/3 
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Fig. 5 Streamlines for fixed values of a=0.5, b=0.5, d=1, Ф=2, We=0.001, Da=1, Θ=π/3: (a) Ha=0, f=0; (b) Ha=0, f=π/3; (c) Ha=2.5, 

f=0; (d) Ha=2.5, f=π/3 

 

 
 
Fig. 6 Streamlines for various wave forms for fixed values of a=0.5, b=0.5, d=1, Ф=2, We=0.001, Ha=1, Da=1, Θ=π/3, f=0:      

(a) Sinusoidal; (b) Triangular; (c) Square; (d) Trapezoidal 
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Fig. 7 Streamlines for various wave forms for fixed values of a=0.5, b=0.5, d=1, Ф=2, We=0.001, Ha=1, Da=1, Θ=π/3, f=π:      

(a) Sinusoidal; (b) triangular; (c) Square; (d) Trapezoidal 

 

 
Fig. 8 Heat transfer coefficient at upper wall for fixed values: (a) a=0.3, b=0.5, d=1.5, Ф=1, We=0.001, Br=10, Da=1, Θ=π/3, f=π/3; 

(b) a=0.3, b=0.5, d=1.5, Ф=1, We=0.001, Br=10, Da=1, Ha=1, f=π/3; (c) a=0.3, b=0.5, d=1.5, Ф=1, We=0.001, Ha=1, Da=1, Θ=π/3, 

f=π/3; (d) a=0.3, b=0.5, d=1.5, Ф=1, We=0.001, Br=10, Da=1, Θ=π/3, Ha=1 
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Fig. 9 Temperature profile for fixed values: (a) x=0, a=0.5, 

b=0.5, d=1, Ф=1, We=0.001, Ha=1, Da=1, f=0, Θ=π/3; (b) x=0, 

a=0.5, b=0.5, d=1, Ф=1, We=0.001, Ha=1, Da=1, f=0, Br=10; 

(c) x=0, a=0.5, b=0.5, d=1, Ф=1, We=0.001, Br=10, Da=1, f=0, 

Θ=π/3 

 
number Ha (see Fig. 9(c)). Moreover, in all the cases it is 
observed that the temperature profile is parabolic. 

Table 1 gives the comparison of the present work 
with the earlier published work. In the absence of 
Weissenberg number, Darcy number and magnetic field, 
the present problem exactly matchs with the 
corresponding problem of Newtonian model [13].  
Tables 2−5 represent the pressure rise for different values 
of Hartmann number, Darcy number, inclined angle of the  

Table 1 Comparison of velocity profile when x=0, a=0.4, b=0.5, 

d=1, Ф=3, Ha=2, f=π/3  

y 
u(x, y) for present work 

when Θ=0, Da=0, We=0 
u(x, y) [13] 

−1.25 

−0.75 

−0.25 

0.25 

0.75 

1.25 

1.40 

−1.0000 

0.3643 

0.8221 

0.8706 

0.5625 

−0.4367 

−1.0000 

−1.0000 

0.3643 

0.8221 

0.8706 

0.5625 

−0.4367 

−1.0000 

 

Table 2 Variations of Δpλ verses Ф for a=0.4, b=0.5, d=1, 

Re=0.5, Fr=0.5, We=0.001, Θ=π/3, α=π/3, f=π/3, Ec=0.5, Pr=5, 

Da=1 

Ф 
Δρλ 

Ha=1 Ha=2 Ha=3 Ha=4 

−2 

0 

2 

2.0657 

0.6225 

−0.8206 

2.2604 

0.6752 

−0.9101 

2.5838 

0.7626 

−1.0587 

3.0345 

0.8844 

−1.2657 

 

Table 3 Variations of Δpλ verses Ф for a=0.4, b=0.5, d=1, 

Re=0.5, Fr=0.5, We=0.001, Θ=π/3, α=π/3, f=π/3, Ec=0.5, Pr=5, 

Da=1 

Ф 
Δρλ 

Da=0.1 Da=0.2 Da=0.3 Da=0.5 

−2 

0 

2 

4.3729 

1.2462 

−1.8807 

3.0986 

0.9017 

−1.2952 

2.6698 

0.7858 

−1.0982 

2.3252 

0.6927 

−0.9398 

 
Table 4 Variations of Δpλ verses Ф for a=0.4, b=0.5, d=1, 

Re=0.5, Fr=0.5, We=0.001, Ha=1, α=π/3, f=π/3, Ec=0.5, Pr=5, 

Da=1 

Ф 
Δρλ 

Θ=0 Θ=π/4 Θ=π/3 Θ=π/2 

−2 

0 

2 

2.2604 

0.6752 

−0.9101 

2.1306 

0.6401 

−0.8206 

2.0657 

0.6225 

−0.8206 

2.0006 

0.6049 

−0.7907 

 
Table 5 Variations of Δpλ verses Ф for a=0.4, b=0.5, d=1, 

Re=0.5, Fr=0.5, We=0.001, Θ=π/3, Ha=1, f=π/3, Ec=0.5, Pr=5, 

Da=1 

Ф 
Δρλ 

f=0 f=π/4 f=π/3 f=π/2 

−2 

0 

2 

1.9791 

0.5359 

−0.9072 

2.0497 

0.6066 

−0.8365 

2.0657 

0.6225 

−0.8205 

2.0791 

0.6359 

−0.8072 

 
channel and inclination magnetic field. It is observed from 
these tables that, as the Hartmann number increases, the 
pumping rate increases up to the critical value of Φ after 
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that the situation is reversed. The effect of Darcy number 
and inclined magnetic field angle on pumping is opposite 
to that of Hartmann number. It can also be seen that the 
pumping rate is decreasing function of inclined angle of 
the channel. Moreover, as magnetic field increases, we get 
the best pumping results and there is better pumping rate 
in porous medium compared with non-porous medium. It 
is also noted that pumping performance is high in the 
vertical channel and low in the horizontal channel. 
 
8 Conclusions 
 

1) The fluid velocity increases from porous 
medium to non-porous medium. 

2) The pressure gradient is an increasing function of 
Hartmann number and decreasing function of inclined 
angle of magnetic field, phase difference and Darcy 
number. 

3) Increasing of inclination angle of the channel 
leads to increases in pumping rate. 

4) The size of trapped bolus in triangular wave is 
smaller compared with other peristaltic waves. 

5) The size of the trapped bolus decreases with the 
increasing of magnetic effects while it increases with the 
increasing of Darcy number.  

6) The temperature increases with Hartmann 
number and the behavior is opposite in the inclined angle 
of magnetic field, phase difference and Darcy number. 

7) Limiting case of our results is in close agreement 
with the corresponding results of Newtonian fluid model 
of former literature. 
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