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Abstract: The understanding of the rock deformation and failure process and the development of appropriate constitutive models are 
the basis for solving problems in rock engineering. In order to investigate progressive failure behavior in brittle rocks, a modified 
constitutive model was developed which follows the principles of the continuum damage mechanics method. It incorporates 
non-linear Hoek-Brown failure criterion, confining pressure-dependent strength degradation and volume dilation laws, and is able to 
represent the nonlinear degradation and dilation behaviors of brittle rocks in the post-failure region. A series of triaxial compression 
tests were carried out on Eibenstock (Germany) granite samples. Based on a lab data fitting procedure, a consistent parameter set for 
the modified constitutive model was deduced and implemented into the numerical code FLAC3D. The good agreement between 
numerical and laboratory results indicates that the modified constitutive law is well suited to represent the nonlinear mechanical 
behavior of brittle rock especially in the post-failure region. 
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1 Introduction 
 

The mechanical response of rocks during 
compressive loading processes contains several different 
phenomena, like elastic deformation, stress propagation 
and redistributions, micro fracture initiation and 
propagation, crack coalescence and finally macroscopic 
failure. Whereas the pre-failure region is characterized 
by elastic response, some subcritical crack growth and 
micro-cracking, the post-failure region of brittle rocks is 
characterized by massive crack propagation and 
coalescence and finally the localization into shear bands. 
Associated with these processes, non-linear macroscopic 
fracture behaviors and volumetric dilatancy appear. 
Additionally, all of these processes and behaviors are 
greatly influenced by confining pressure. Ideally, all 
these mechanical behaviors should be represented by 
certain kinds of comprehensive constitutive models. In 
the late 1950s, researchers started to apply plastic theory 
in constitutive model to rock materials. The 
elastic-perfectly plastic model and the Mohr-Coulomb 
failure criterion became a widely adopted constitutive 
model. Later on, the continuous damage mechanics 
(CDM) model has emerged as an effective method for 
modelling the failure of rock materials, which is based 
on damage analysis. The internal state variables are used 

in CDM motheds to relate the effect of microdefects to 
the macroscopic material properties [1−4]. 

YUAN and HARRISON [5] presented a review of 
continuous damage mechanics methods and pointed out 
that this phenomenological models are based on purely 
macroscopic considerations of the material during 
damage evolution, irrespective of microscopic effects. In 
this method, the macroscopic properties of the materials 
undergoing damage are averaged by relating them to 
experimentally determined damage variables. MARTIN 
and CHANDLER [6] performed cyclic loading tests with 
granite and calculated the relation between strength 
parameters (friction and cohesion) and damage variables. 
HAJIABDOLMAJID et al [7] set up a cohesion 
weakening-friction strengthening (CWFS) model using 
Mohr-Coulomb failure criterion. In the work of FANG 
and HARRISON [8−10], the strength degradation 
behavior of rock is described by a parameter termed 
degradation index and several degradation models based 
on the Mohr-Coulomb constitutive law were 
implemented in FLAC by and them, which reproduced 
the macroscopic failure process quite well. Based on 
experimental results on rock specimens in the laboratory, 
an idealised pressure-sensitive dilatancy model was 
developed by YUAN and HARRISON [11] to describe 
the dilatant deformation commonly observed during the 
brittle fracture of natural rock. ZHAO and CAI [12] 
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established a mobilized dilation angle model considering 
the influence of both confining stress and plastic shear 
strain, which is based on published data acquired from 
modified triaxial compression tests with volumetric 
strain measurement. 

It is important to understand complete stress−strain 
relations under different loading conditions and to 
develop a constitutive model that can adequately 
represent the complete stress−strain behavior of rock 
especially for the nonlinear parts including softening and 
dilation. By the method of CDM models, a modified 
constitutive law considering the strength degradation and 
dilation behaviors was developed based on non-linear 
Hoek-Brown failure criterion [13] in this work. The 
non-linear degradation and dilation behaviors during 
progressive failure process of rocks under triaxial 
compression test can be represented by several internal 
parameters, which are introduced in this work and related 
to a certain confining pressure level. 
 
2 Modified constitutive law for brittle rocks 

 
The stress−strain behavior of brittle rocks under 

compression was subdivided into several stages prior to 
the macroscopic fracture by ANDREEV [14]: closure of 
(micro) cracks; linear elastic deformation mainly 
attributed to the elastic deformation of the grains; stable 
fracture propagation, the beginning of micro-cracking, 
obeying Griffith’s criterion and the dilation engendered 
by micro-cracking, adding to the general compaction of 
the sample; unstable fracture propagation in which crack 
propagation is independent of 1 at this stage, even if the 
applied load is removed, the cracks could continue their 
extension because of potential (elastic) energy stored 
within the body and then the sample compaction ceases 
and a general volume increase begins; post-failure (post- 
peak) part can be defined by the onset of remarkable 
localization up to the macroscopic fracture; residual 
strength part of which the friction among the pieces 
(blocks) ensures some bearing capacity of the sample to 
determine the residual strength. 

These processes are particularly difficult to predict 
and model in the compressive field. This work develops 
a novel numerical methodology for the simulation of 
these isolated processes, particularly in compressive 
fields such that the resulting non-linear macroscopic 
behaviour can be predicted. 

Continuum modeling approach can reproduce a 
variety of failure phenomena, from brittle fracture to 
ductile failure and softening behavior by averaging the 
effect of crack evolution [8]. It should be noticed that 
almost no continuum hypothesis for failure is based on 
the real failure mechanism. This model, although is 
extended and quite complex, it is a phenomenological 
one and based on a few assumptions: 1) Stress and strain 

follow a linear elastic relation until peak strength is 
reached. 2) Peak strength is governed by a single 
nonlinear failure criterion. 3) Post-failure region is 
divided into two stages: degradation stage and residual 
stage. Material strength parameters reduce linearly inside 
the degradation stage, and are then kept constant at a 
residual value in the residual stage. 4) The stress−strain 
relation is governed by certain flow rules in the plastic 
range. The volumetric response is non-linear and stress 
depending. 
 
2.1 Elastic stage 

This elastic and isotropic model provides the 
simplest representation of rock behavior that exhibits 
linear stress−strain behavior with no hysteresis during 
unloading. The components of stress are linear functions 
of the components of strain according to following 
equation [15]:  

2
2 ( )

3
     ij ij kk ijG K G                   (1) 

 
where ij is the Kroenecker delta symbol; K is the bulk 
modulus; G is the shear modulus. 
 
2.2 Failure criterion 

For brittle rocks as well as for rock masses, the non- 
linear Hoek-Brown failure criterion has been proven to 
give an appropriate description. Over the last decades, 
this criterion was continuously further developed and 
applied. The latest version for rock masses is given by 
following equation [13]:  

3
1 3 ci b

ci

( )


    am s


  


                     (2) 

 
where ′1 and ′3 are the major and minor effective 
principal stresses at failure, respectively; ci is the 
uniaxial compressive strength of the intact rock material; 
mb, a and s are constants used in Hoek-Brown failure 
criterion. 
 
2.3 Strength degradation 

Rocks exhibit the phenomenon of strain softening 
under compressive loads. Thereby, the non-linear 
strength degradation is highly stress-dependent. As 
documented exemplary by BRADY and BROWN [16], 
the confining stress strongly influences the shape of the 
strength degradation as well as the value of residual 
strength. The strength degradation decreases with 
increasing confining pressure. Finally, under high 
confining pressure the rock goes into nearly ductile state 
and no degradation occurs [6−7, 17]. 

FANG and HARRISON [8−10] have defined a 
parameter called degradation index rd, which controls the 
variation of the degradation behavior in relation to the 
confining pressure. The definition of the degradation 
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index implies that the value for rd ranges from zero (no 
degradation associated with ductile behavior) to unity 
(complete degradation associated with brittle behavior). 
But only this single parameter cannot represent the 
relation between degradation rate and confining pressure, 
and the strength degradation from peak to residual value 
is not as a gradual process. Therefore, it is necessary to 
extend the model in such a way that a gradual softening 
and non-linear failure envelope is included. The simplest 
approach is to introduce the softening through a linear 
function. As illustrated in Fig. 1, the rate of strength drop 
or the slope of the softening stage may be expressed by 
–tans. Perfectly brittle behavior is characterized by a rate 
of strength drop close to infinity, whereas perfectly 
plastic material shows a rate of strength drop close to 
zero [18]. 
 

 
Fig. 1 Strain-softening behavior (a), perfectly brittle behavior 

(b) and perfectly plastic behavior (c) of rocks [18] 
 

According to the scheme a new degradation model 
which can represent both strength degradation and 
degradation drop rate is developed. Figure 2 shows the 
principle of mechanical strength degradation under 
different confining pressures. In Fig. 4,  is the peak 
stress; Δ is the strength degradation; d is the residual  

 

 
Fig. 2 Idealized constitutive model comprising strength 

degradation 

 
strength. We define the ratio between Δ and  as the 
degradation index (rd).  

d


r



                                  (3) 
 

The relation between the degradation index and 
confining pressure can be described by Eq. (4), which is 
based on laboratory data.  

d 3exp( ) r A B C                          (4) 
 
where A, B and C are the fitting parameters, and can be 
estimated by regression analysis on experimental data. 

From the Hoek-Brown failure criterion (Eq. (2)), the 
peak strength for undisturbed rock and a=0.5 (typical 
value and approximately valid for most types of rock) 
can be obtained by Eq. (5):  

2
1 3 b ci 3 ci( )  m s                       (5) 

 
The residual strength parameters can be obtained 

according to Eq. (6). 
 

d d d 2 d
d 3 b ci 3 ci

d d 3

( )

(1 ) (1 )

  

       d
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    
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2 2
b d ci d 3 ci d(1 ) (1 ) ( ) (1 )   m r r r s       (6) 

 
where ,d

ci d
bm and sd are the residual strength 

parameters after degradation. 
Comparing the two expressions, we can use the 

degradation index to calculate residual strength 
parameters according to 
 

d
ci ci d

d
b b d

d

(1 )

(1 )

  
  




r

m m r

s s

 

                           (7) 

Material softening after the onset of plastic yielding 
can be simulated by specifying the reduction of the 
material strength parameters according to a softening 
parameter. The chosen softening parameter is the plastic 
strain component ,p

3e  which is expected to correlate with 
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the micro-crack development (damage) in the σ3 
direction [19]. Softening behavior is provided by 
specifying tables that relate each of the properties σci, mb, 
s and a to ,p

3e  as shown in Fig. 3. 
It is assumed that the strength parameters decrease 

linearly with ongoing plastic strain .p
3e  The degradation 

rate depends on the accumulated plastic strain .p
3e  

Moreover, as shown in Fig. 4, increasing confining 
pressure leads to decreasing accumulated plastic strain 

.p
3e  The investigation of typical laboratory results has 

revealed that a fitting function according to Eq. (8) is 
well suited to describe the relation between 

p
3e and 

confining pressure: 
 

p
1 1 1 33 exp( )  e A B C                        (8) 

 
where A1, B1 and C1 are the fitting parameters, which can 
be estimated by regression analysis. 

 

  
Fig. 3 Scheme of strength degradation 

 

  
Fig. 4 Idealized elemental constitutive model comprising 

strength degradation and dilation 
 

2.4 Dilation associated with mechanical degradation 
Experimental observations of rock failure show that 

the failure process is closely associated with rock dilation. 
Following an initial period of elastic contraction, the 
volumetric response tends to be dilation as the material 
enters an inelastic stage that is characterized by the 
development and coalescence of micro-structural damage 

[12−13, 17, 20]. 
When rock is subjected to triaxial compression, the 

rate of dilation tends to reduce with increasing confining 
pressure (Fig. 4). We applied a similar approach as the 
strength degradation, which considers the relationship 
between dilation and plastic strain component ,p

3e  
considering the flow rule used for the Hoek-Brown 
model in FLAC3D [19]. If the yield criterion according to 
Eq.(2) is violated by stress state, strain increments can be 
composed of elastic and plastic parts. 

 
pe

1 1 1

e
2 2

pe
3 3 3

    
  

    

e e e

e e

e e e

                           (9) 

 
Note that in FLAC3D plastic flow does not occur in 

the intermediate principal stress direction. Therefore, the 
following flow rule is assumed.  

p p
1 3  e e                                (10) 

 
We need to consider an appropriate flow rule, which 

describes the volumetric behavior of the material during 
yield. In general, the flow parameter γ will depend on 
stress, and possibly on stress-deformation history. Three 
cases are considered below. 

Associated flow rule: An associated flow rule is 
one in which the vector of plastic strain rate is normal to 
the yield surface. 

 
p
i

i


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
F

e 


                             (11) 

 
Differentiating Eq. (11) by using Eq. (2), one 

obtains: 
 

p
1

p
2

p 13
ci b3

ci ci

0

[1 ( ) ]


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e

e

m
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


 

 

           (12) 

 
and in combination with Eq. (10):  

af
13 b

ci b
ci ci

1

1 ( ) 
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  a m
a m s





 

              (13) 

 
Radial flow rule: Under the condition of uni- and 

multi-axial tensions, we expect that the material would 
yield in the direction of the tensile tractions. These 
conditions are fullfilled by the radial flow rule, where the 
plastic tensile strain vectors are coaxial with the principal 
stress vectors, so that we obtain:  

1
rf

3







                                 (14) 

 
Constant-volume flow rule: With increasing 
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confining stress, a point will be reached, at which the 
material no longer dilates. A constant-volume flow rule is 
therefore appropriate when the confining stress is above 
a user-prescribed level σ3= .3

cv  This flow rule is given 
by 

 
cv 1                                   (15) 

 
Composite flow rule: We propose to assign the 

flow rule (and, thus, a value for γ) according to the stress 
condition. In a pure tensile region, the radial flow rule 
(γrf) will be used. For compressive σ1 and tensile or zero 
σ3, the associated flow rule (γaf) is applied. For the 
interval of 10<σ3< ,cv

3  the value of γ is linearly 
interpolated between the associated γaf and 
constant-volume γcv limits:  

3
cv

af cv af 3

1
1 1 1

( )


 



   

                   (16) 

 
Finally, when σ3> ,cv

3  the constant volume value, 
γ=γcv, is used. It should be noted that, if cv

3  is set equal 
to zero, the model will approache a non-associated flow 
rule with zero dilation angle. If cv

3  is set to a very high 
value relative to σci, the model will approache an 
associated flow state. The volumetric response of a 
compressed cubic element is shown in Fig. 5. 
 

 
Fig. 5 Principal sketch of volumetric strain vs axial strain 

 
The slope k of curve between volumetric strain and 

axial strain in the plastic stage depends on the flow 
parameter γ. 

 
p pp

v 1 3
p p
1 1

1
1

  
   
 

e e
k

e




                 (17) 

 
    When ,cv

33   γ=γcv=−1 is used and subsequently 
k=0. When 0< .cv

33    Eq. (16) is used and the slop k 
is given by 

 

3 3
ψcv cv

af cv af 3 3

1 1 1
1 ( ) 1 ( )     k K

 
    

     ( 1 8 ) 

 
where ψK  is a parameter which is given by 

0 03 3
ψ ψ 3 ψ 3cv CV

3 3

( ) ( ) [ ( ) 1]  K K K
 

 
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         (19) 
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13
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                  (20) 

 
The slope k is a function of various parameters σci, 

mb, s, a, σ3 and .cv
3  The strength parameters σci, mb, s 

and a are constants inside a certain stage. cv
3  is a user- 

prescribed stress level in FLAC3D, so that we can control 
the slope k by setting a suitable value of cv

3  in the 
loading process. The volumetric response is represented 
by fitting the user-prescribed 

cv
3 to laboratory 

observations. Rewriting Eq. (18) and Eq. (20) gives the 
following expression for ,cv

3  which depends on the 
minimum principal stress: 

 
0

3 ψ 3cv
3 0

ψ 3

[ ( ) 1]

1 ( )




 

K

k K

 



                       (21) 

 
By replacing the strength parameters and user- 

prescribed 
cv
3 in each stage, slope k can be expressed as 

(Fig. 6) 
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d d d cv
3 c b 3
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k k k
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  

  

  

           (22) 

 

  
Fig. 6 Sketch of volumetric strains vs axial strain with 

indication of material parameters 

 
kAB varies linearly between kA and kB. ( cv

3 )AB and 
( cv

3 )BC can be obtained from laboratory observation by 
using Eqs. (17)−(20). If constant values for ( cv

3 )AB and 
( cv

3 )BC are assumed under certain confining pressures 
ranges, the nonlinear dilation curve can be simplified to 
an analogous-trilinear form. An exponential relation 
between constant cv

3  and the minimum principal stress 
is recommended based on our laboratory observations: 
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cv
3 3 2 2 2 3

cv
3 3 3 3 3 3

( ) exp( )

( ) exp( )

   


  

AB

BC

A B C

A B C

  
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            (23) 

 
where A2, B2, C2, A3, B3 and C3 are the fitting parameters, 
which can be estimated by using linear regression on 
experimental data. 

To sum up, an idealized elemental confining 
pressure sensitive constitutive model has been developed 
based on typical laboratory results of granites, which can 
describe the degradation and the dilation process of 
brittle rocks. 
 
2.5 Introduction of heterogeneity 

Rock is an inhomogeneous material because it 
consists of many individual components including 
different minerals, grains, cement materials, voids and 
cracks. These individual components usually have 
different physical properties and consequently different 
responses under different loading conditions. The 
heterogeneity can be introduced by Weibull distribution 
[21−22]. 

A general expression for the Weibull (2-parameter) 
probability density function can be given by WEIBULL 
[23−25]: 
 

exp ,   0
( )

0,   0

             


m
m x

m x
f x

x


             (24) 

0
( ) ( )d 1 exp

        
   


m

x
F x f x x


          (25) 

 
where x is the random variable that follows the Weibull 
distribution; m is the shape parameter describing the 
scatter of x; β is a scale parameter. The mechanical 
effects of these two parameters were studied in     
Refs. [26−28]. 

For the numerical modeling, the basic parameters, 
such as the uniaxial compressive strength σci, the elastic 
modulus E, follow the Weibull distribution with shape 
parameter m and scale parameter β. These parameters are 
assigned to each element of the numerical model 
randomly. The random spatial distribution of the basic 
parameters reflects the internal structure (heterogeneity) 
of material under investigation. 
 
3 Numerical simulation of failure process 

during triaxial compression test 
 
3.1 Parameters deduced from laboratory results 

A stiff (9×109 N/m) servo-controlled loading frame 
(MTS 815) was employed for the triaxial compression 
tests. Exemplary a complete stress−strain curve is shown 
in Fig. 7. Typical failure pattern for different confining 

pressures ranging from 5−30 MPa are shown in Fig. 8. A 
macroscopic shear fracture penetrates the whole sample 
after failure of the samples, which is a typical brittle 
failure characteristic. But the macroscopic shear fracture 
under high confining stress contains more microcracks, 
which turns to become more like a plastic shear band 
[29]. 

Based on the modified constitutive law a series of 
parameters (shown in Fig. 7) can be measured using the 
complete stress−strain curve. The characteristic 
parameters of Eibenstock II granite under different 

 

 
Fig. 7 Complete stress−strain curves with characteristic 

parameters 
 

  
Fig. 8 Failure pattern of Eibenstock II granite samples under 

different confining pressures: (a) 5 MPa; (b) 10 MPa;       

(c) 20 MPa; (d) 30 MPa 
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confining pressures are listed in Table 1 (tested in Rock 
Mechanical Lab of Geotechnical Institute at TU 
Bergakademie Freiberg). Notice that rd, ,p

3e  

3
cv
3 )(  AB  and 3

cv
3 )(  BC  are calculated from the 

observed parameters σ, Δσ, ,p
Ie  ,p

ve  kAB and kBC. 
The relation between degradation and dilation 

parameters and confining pressure is set up by empirical 
relations using exponential fitting equations (Fig. 9) 
according to the parameters listed in Table 1. The four 
degradation and dilation parameters decrease with 
increasing confining pressure, which leads to a peak and 
residual strength increase and a reduced dilation rate 
with increasing confining pressure. The mechanical 
parameters used in the simulations are listed in Tables 2 
and 3, where the Hoek−Brown strength parameters were 
deduced by non-linear fitting function Eq. (2) using the 
triaxial compression test results. 

Table 1 Triaxial parameters of Eibenstock granite samples 

σ3/MPa σ1/MPa Δσ/MPa rd %/p
Ie %/p

ve

0 110 100 0.9 1.00×10−3 10 

5 180 130 0.72 8.30×10−2 7.5 

10 260 150 0.58 0.15 5.3 

20 340 170 0.5 0.3 4 

30 430 170 0.4 0.4 3.4 

%/p
3e kAB/ kBC/

/))(( 3
cv
3  AB  

MPa 

/))(( 3
cv
3  BC

MPa 

10 / / 300 200 

7.4 90 3.3 195 75 

5.15 34 2.3 140 25 

3.7 13 0.77 90 10 

3 8.5 0.56 70 8 
 

 

  
Fig. 9 Observed degradation and dilation parameters at different confining pressures and corresponding fitting curves:           

(a) Degradation index; (b) Accumulated plastic strain; (c) ;)( cv
3 AB  (d) BC)( cv

3  

 

Table 2 Mechanical parameters determined from lab test results 

Elastic modulus, 
E/GPa 

Poisson 
ratio, ν 

Uniaxial compressive
strength, σci /MPa 

Hoek−Brown parameter  Distribution parameter 

mb s a  m β 

31 0.26 106 42 0.8 0.5  20 1.05 

 

Table 3 Fitting parameters for lab test results (based on SI units) 

A B C A1 B1 C1 A2 B2 C2 A3 B3 C3 

0.37 0.52 −8.46 0.026 0.075 −9.8×10−8 6.4 2.35 −1.14×10−7 6.64 1.94 −2.16×10−7
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3.2 Numerical simulation results compared with lab 

test results 
Via the internal program language FISH the 

modified constitutive law combined with heterogeneous 
parameter distribution was implemented into the 
numerical code FLAC3D and a numerical simulation 
scheme was developed (Fig. 10). 

 

 
Fig. 10 Scheme of numerical simulation procedure 
 

A series of 3-dimensional numerical simulations of 
triaxial compression tests were conducted with FLAC3D. 
The model has a height of 100 mm and a diameter of 
50 mm. The mesh contains 96000 elements and 100521 
grid-points. A constant grid-point velocity of 5× 
10−8 m/step was applied at the top and bottom of the 
sample, respectively. During the simulation of the triaxial 
loading process the elements deform and reveal 
degradation and dilation. Considering the strength 
heterogeneity, the elements undergoing degradation and 
dilation will coalesce and then lead to the formation of 
macroscopic fractures. The simulated stress−strain 
curves under confining pressure of 20 MPa are shown in 
Fig. 11. Figures 12−13 display the fracture development 
and deformation evolution during the failure process for 
the selected loading points 1−10 as marked in Fig. 11. 

Some conclusions can be drawn from the simulated 
failure process. 1) During the elastic deformation stage 

 

 
Fig. 11 Simulated stress−strain curve for triaxial compression 

test under confining pressure of 20 MPa: (a) Vertical 

stress−strain curve; (b) Volumetric strain−vertical strain curve 
 
from points 1 to 3 nearly no damage happened; the 
volumetrical strain in every element is negative 
(compressive); no plastic shear strain happened; the 
principle stresses are homogeneously distributed and the 
displacement vectors are vertical. 2) Near peak load 
around point 4, a few elements begin to degrade. 3) After 
the peak load from points 4 to 8 more and more elements 
lost their initial strength; the volumetrical strain turned 
into the positive range (dilation); plastic shear strain 
increased, which means that elements show shear failure. 
The whole sample was in the degradation stage until 
point 8; the most damaged elements formed the shear 
band; the displacement vectors are oriented in different 
directions (development of “blocks” with different 
movement direction). 4) From point 8 to point 10 the 
sample is in the residual stage; new macroscopic 
fractures are not generated, but volumetric strain and 
plastic shear strain continuously increasd and the shear 
band became wider. 

Several observation points were chosen to track the 
volumetric response in different parts of the sample, 
which shows the localization during the loading process. 
The recorded volumetric strain evolution is shown in 
Fig. 14. The macroscopic fracture patterns for samples 
under different confining pressures in 3D view are 
shown in Fig. 15. 
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Fig. 12 Uniaxial compressive strength evolution in simulated triaxial compression test under confining pressure of 20 MPa 

 

 
Fig. 13 Volumetric strain evolution in simulated triaxial compression test under confining pressure of 20 MPa 

 

 
Fig. 14 Volumetrical strain evolution in different parts of sample: (a) Strain distribution; (b) Strain evolution at marked points 

 

 
Fig. 15 Macroscopic fracture patterns for samples in 3D view: (a) Degraded uniaxial compressive strength at point 10 (σci <5.5×   

107 Pa); (b) Volumetrical strain at point 10 (εv>5%) 
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Fig. 16 Complete set of stress−strain curves for different confining pressures compared with lab results: (a, b, c) Lab results;       

(d, e, f) Simulation results 

 

The complete stress−strain curves obtained from 
numerical simulations and lab test results under different 
confining pressures are shown in Fig. 16. A good 
agreement was found between the numerical simulation 
results and the laboratory measurements, especially in 
quantitative description of the peak strength, residual 
strength and volumetrical strain. But still, the uncertainty 
caused by natural rock samples is out of the capability of 
numerical numerical simulations. 
 
4 Conclusions 
 

By analyzing the complete stress−strain curves 
obtained by triaxial compression tests, the failure process 
for granite (brittle material) is studied. Based on 
experimental results on rock specimens in the laboratory, 
a modified constitutive model is developed which 
follows the principles of the continuum damage 
mechanics method. It incorporates non-linear Hoek− 
Brown failure criterion, confining pressure-dependent 
strength degradation and volume dilation laws, and is 
able to represent the nonlinear degradation and dilation 
behaviors of brittle rocks in the post-failure region. The 
strength degradation after the onset of plastic yielding is 
quantitatively described by a degradation index rd, and 

the softening behavior can be obtained by specifying the 
reduction of the Hoek−Brwon strength parameters 
according to the plastic strain component ,p

3e  which is 
expected to correlate with the micro-crack development 
(damage) in the σ3 direction. The dilation behavior can 
be adjusted by setting a appropriate user-prescribed 
stress ,cv

3e  which is a parameter to control plastic strain 
used in FLAC3D. By relating the degradation index rd and 
user-prescribed stress 

cv
3e  to the confining pressure, the 

confining pressure-dependent failure behavior can be 
represented. With the increase of confining pressure, the 
ductile characteristics of rock become more obvious, 
plastic deformation as well as peak and residual strength 
are enhanced, and finally the volume dilation tends to 
become stable. Via the internal program language FISH, 
the modified constitutive law combined with 
heterogeneous parameter distribution is implemented 
into FLAC3D and a numerical simulation scheme is 
developed. Using the new developed modified 
constitutive law, a good agreement is found between the 
numerical simulation results and the laboratory 
measurements, which shows that the modified 
constitutive law is appropriate to describe the complete 
material behavior of brittle rocks including the post 
failure stage. 
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