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Abstract: To gain a thorough understanding of the load state of parallel kinematic machines (PKMs), a methodology of 
elastodynamic modeling and joint reaction prediction is proposed. For this purpose, a Sprint Z3 model is used as a case study to 
illustrate the process of joint reaction analysis. The substructure synthesis method is applied to deriving an analytical elastodynamic 
model for the 3-PRS PKM device, in which the compliances of limbs and joints are considered. Each limb assembly is modeled as a 
spatial beam with non-uniform cross-section supported by lumped virtual springs at the centers of revolute and spherical joints. By 
introducing the deformation compatibility conditions between the limbs and the platform, the governing equations of motion of the 
system are obtained. After degenerating the governing equations into quasi-static equations, the effects of the gravity on system 
deflections and joint reactions are investigated with the purpose of providing useful information for the kinematic calibration and 
component strength calculations as well as structural optimizations of the 3-PRS PKM module. The simulation results indicate that 
the elastic deformation of the moving platform in the direction of gravity caused by gravity is quite large and cannot be ignored. 
Meanwhile, the distributions of joint reactions are axisymmetric and position-dependent. It is worthy to note that the proposed 
elastodynamic modeling method combines the benefits of accuracy of finite element method and concision of analytical method so 
that it can be used to predict the stiffness characteristics and joint reactions of a PKM throughout its entire workspace in a quick and 
accurate manner. Moreover, the present model can also be easily applied to evaluating the overall rigidity performance as well as 
statics of other PKMs with high efficiency after minor modifications. 
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1 Introduction 
 

Parallel kinematic machines (PKMs) have been 
proposed as an alternative solution for high-speed 
machining tool for years due to the merits of simple 
structure, high rigidity, better accuracy, good 
reconfigurability and easy controlling. This has been 
fully exemplified by the commercial success of Sprint Z3 
head applied in aeronautical industries [1] and the 
Tricept robots used in locomotive industries [2−3]. 

As a multiple-axis spindle head with 1T2R capacity, 
Sprint Z3 head has aroused great interests from industrial 
and academic fields since its invention. The topological 
architecture of Sprint Z3 head is a 3-PRS parallel 
mechanism. Extensive investigations have been carried 
out on the 3-PRS parallel mechanism, ranging from 
inverse and forward kinematics [4−5], workspace 
prediction [6−7], Jacobian formulation [8], parasitic 
motion [9] to stiffness evaluation [10−11] and rigid-body 

dynamics [12−13]. Despite numerous researches 
mentioned above, investigations on dynamics and load 
state of the 3-PRS parallel mechanism are quite scare as 
far as the author’s knowledge is concerned. Nevertheless, 
the dynamic performance evaluation and kinematic pair 
load prediction are two main concerns in the design stage 
of such a PKM module used for high-speed machining 
where high accuracy is required. 

As evidenced by the literature, the dynamic 
modelling of PKMs has been gradually addressed. In the 
first stage, equations of motion for the PKMs were 
derived with assumptions that all components are rigid 
bodies [14−16]. The Kane’s method was commonly used 
in these models due to the closed-loop kinematic chains 
property of PKMs. In the early 1990s, LEE and GENG 
[17] derived the Lagrange equations for flexible 6-RPR 
spatial manipulators using tensor representation, in 
which the piston was modelled as a mass-spring-damper. 
Much literature along this track can be found in     
Refs. [18−20]. However, it is worthy to point out that in 
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the aforementioned literature joint stiffnesses were not 
taken into account yet they would bring significant 
influences on the global stiffness and dynamics of the 
system. SHIAU et al [21] proposed a nonlinear dynamic 
model for a 3-PRS PKM, in which the limbs were treated 
as rigid and the joints were simplified as isotropic 
constant springs. 

From the above discussions, it can be seen that the 
component stiffnesses are crucial to system dynamics 
and should be modelled dedicatedly when establishing a 
dynamic model for such PKMs. Considering the 3-PRS 
module as a compliant parallel mechanism where the 
three PRS limbs are equivalent to three sets of springs 
that have bending, extending and torsional deflections, a 
comprehensive elastodynamic model for the 3-PRS PKM 
module is presented. Based on the proposed 
elastodynamic model, the quasi-static equations are 
derived by degenerating the differential term in the 
governing equations of motion. The analysis is then 
extended to the prediction of joint reactions in order to 
provide the designer with useful information in the stage 
of structural design. 
 
2 Kinematic description of 3-PRS PKM 
 

A CAD model for a Sprint Z3 head is shown in  
Fig. 1, which consists of a moving platform, a fixed base 
and three identical PRS limb assemblies. Each PRS limb 
assembly consists of a hollowed limb body with 
non-uninform cross-sections, a carriage containing ball 
screw assembly driven by a servo motor, and a fixed 
base with a guideway. An electrical spindle is mounted 
on the platform to implement high-speed milling. 
Independently driven by three servomotors, one 
translation along z axis and two rotations about x and y 
axes can be achieved. 

As can be seen from Fig. 1, the topological 
architecture of Sprint Z3 head is a 3-PRS parallel 
 

 
Fig. 1 Structure of 3-PRS PKM module 

mechanism. To facilitate the formulations, the schematic 
diagram and corresponding coordinates of the 3-PRS 
PKM are depicted in Fig. 2. 
 

 
Fig. 2 Schematic diagram of 3-PRS PKM module 

 
Herein, Bi and Ci (i=1, 2, 3) are the centers of 

spherical and revolute joints, respectively; Ai denotes the 
rear end of the limb (also is the installation point of rear 
bearing); ΔA1A2A3 and ΔB1B2B3 are assumed to be 
equilateral. To facilitate the formulation, Cartesian 
coordinate systems are set as the followings. A global 
Cartesian coordinate system A-xyz is attached on the 
centre point A of the fixed base, in which x axis is set 
along the direction of AA1 and z axis is perpendicular to 
the plane A1A2A3 while y axis is decided with the 
right-hand rule. Similarly, a body-fixed moving 
Cartesian coordinate system B-uvw is set at the centre 
point B of the moving platform, in which u is in the 
direction of BB1 and w is perpendicular to the plane 
B1B2B3 while v is decided according to the right-hand 
rule. Meanwhile, a limb reference coordinate frame 
Ci-uiviwi (i=1,2,3) is established at the centre point Ci of 
the i-th revolute joint, in which ui and wi are coincident 
with the axes of revolute joint and limb body, 
respectively, while vi is determined with the right-hand 
rule. For clarity, only one limb reference frame in limb 3 
is depicted in Fig. 2. 

The transformation matrix R0 of the frame B-uvw 
with respect to the frame A-xyz can be formulated as 
 

 0 01 02 03R R R R  

cos cos sin cos sin cos sin sin cos cos sin sin

= sin cos cos cos sin sin sin cos cos cos cos sin

sin sin sin cos cos

           
           

    

   
     
  

 

(1) 
 
where ,  and  are Euler angles in terms of precession, 
nutation and rotation, respectively. 

The position vector of point Bi measured in the 
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global coordinate system A-xyz can be given as 
 

0i i i i id l    B R b p a n s                     (2) 
 
where bi and p are the vectors of point Bi and point B 
measured in B-uvw and A-xyz respectively; ai is the 
vector of point Ai measured in A-xyz and di is the stroke 
of the i-th slider measuring from point Ai to Ci; l is the 
length of limb body; n is the unit vector of guideway and 
si is the unit vector of CiBi measured in the frame of 
A-xyz. There exist  

p b

cos cos 0

sin , sin , , 0

0 0 1

i i x

i i i i y

z

p

r r p

p

 
 

      
               

            

b a p n   (3) 

 
where rp and rb are the radii of the moving platform and 
the fixed base, respectively; 2π( 1) / 3i i    are the 
position angles of the revolute joints; px, py and pz are 
coordinates of point B measured in frame A-xyz. 

Taking ,  and pz as independent coordinates, and 
considering the constrains of revolute joints, one can 
obtain 
 

p

p

0.5 (1 cos )cos(2 )

0.5 (1 cos )sin(2 )

x

y

p r

p r

 

 

 

 


  
  

                  (4) 

 
Noting that 
 

i i lC B                                   (5) 
 

Solving Eq. (5), one can derive the inverse 
kinematics of the PKM model. 
 
3 Elastodynamic modeling 
 

Considering the structural features of the 3-PRS 
PKM module, one can decompose the PKM system into 
one fixed base subsystem, one moving platform 
subsystem and three identical limb subsystems. For the 
convenience of analytical derivation, the following 
hypotheses and approximations are made. 

1) The base and the moving platform are treated as 
rigid bodies due to their relatively high rigidities; 

2) The limb body is modeled as a continuum elastic 
hollowed spatial beam with non-uniform cross-sections 
according to its structural feature; 

3) The revolute and spherical joints are simplified 
into virtual lumped springs with equivalent stiffness at 
their geometric centres; 

4) The transient structural assumption is adopted 
and the coupling effect between rigid and elastic motions 
is negligible as the mechanism works at low or moderate 
speed; 

5) Clearances, frictions and dampings in joints are 
neglected though they can be added to the governing 

equations in an easy way. 
 
3.1 Dynamic modelling of PRS limb assembly 

Figure 3 shows the assemblage of a PRS limb in the 
3-PRS PKM module. 
 

 
Fig. 3 Assembly of PRS limb 

 
According to the assembling relationships and 

structural features of the PRS limb, one can classify all 
the components in an individual PRS limb into three 
categories when formulating the compliance expression: 
the limb body, the revolute joint (including the lead- 
screw-nut assembly and carriage-guideway assembly) 
and the spherical joint. 

Consequently, the compliance of an entire PRS limb 
assembly can be regarded as a serial combination of the 
aforementioned three compliant components. With the 
knowledge of kineto-elastodynamics, one can model the 
hollowed PRS limb body as a non-uniform spatial beam 
constrained by two sets of lumped springs with 
equivalent stiffness as shown in Fig. 4. 

The symbols in Fig. 4 are defined as follows. ksxi, 
ksyi and kszi are the stiffness coefficients of three virtual 
lumped translational linear springs of the spherical joint; 
krxi, kryi, krzi and krui, krvi, krwi are stiffness coefficients of 
the translational and torsional lumped springs of the 
revolute joint in the i-th limb assembly, respectively. 
 

 
Fig. 4 Force diagram of limb body 

 
The geometric feature of the limb body is 

demonstrated in Fig. 5. As shown in Fig. 5, the 
cross-sections of the limb body are not uniform. To be 
specific, the cross-section of segment BiDi of the limb 
body is in a rectangular form with gradually changing 
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dimensions. The topological form of the cross-section is 
depicted as I. Accordingly, the cross-sections of segment 
DiEi and EiCi are labeled as II and III, respectively. For 
clarity, the dimensional parameters of the cross-sections 
are not shown in the above figure. 

As aforementioned, the limb body of the PRS limb 
in the PKM module can be modeled as a hollowed 
spatial beam with non-uniform cross-sections 
constrained by two sets of lumped springs. The following 
will derive the differential equations of motion for the 
limb body by finite element method. 

As shown in Fig. 5, the hollowed limb body is 
discretized into several segments with a spatial beam 
element. The spatial beam element is defined by two 
nodes, each having three linear and three angular 
coordinates (along and about three axes). Figure 6 shows 
the e-th element of the i-th limb in element reference 
frame .e e e e

i i i iN x y z  Here, e and e+1 denote two adjacent 
nodes of the element, ui (i=1−12) represents the nodal 
coordinates and the frame of e e e e

i i i iN x y z  is parallel to 
the limb frame of Ci-uiviwi. 
 

 
Fig. 5 Sketch of limb body cross-section 

 

 
Fig. 6 Definition of spatial beam element 

 
Consequently, a set of equations of motion of the 

i-th limb in the limb frame Ci-uiviwi can be formulated 

with adequate boundary conditions. For convenience, the 
subscript except the limb body number i (i=1, 2, 3) is 
omitted. 
 

i i i i i m u k u f                               (6) 
 
where mi and ki are mass and stiffness matrices of each 
limb body, and ui and fi are the general coordinates 
vector and external load vector of the i-th limb body and 
can be expressed as 
 

T T T T T( )
i i i ii B B C Cu                      (7) 

 
T T T T( )
i i ii B C Cf f f0                     (8) 

 
where 

iii CBB εξε ,,  and 
iCξ  are linear and angular 

coordinates of nodes Bi and Ci in the frame of Ci-uiviwi, 
respectively; ,

iBf  
iCf  and 

iCτ  are reaction forces and 

moments at Bi and Ci measured in Ci-uiviwi, respectively. 
The nodal coordinates can be related to ui by 
 

1 2

1 2

,

,

i i

i i

B B
B ci i B ci i

C C
C ci i C ci i

  


 

ε N u ξ N u

ε N u ξ N u
                    (9) 

 
where 1,B

ciN  2 ,B
ciN  1,C

ciN  2C
ciN  are transformation 

matrices of nodes Bi and Ci with respect to ui in the 
frame of Ci-uiviwi, respectively. 

Thus, the coordinate transformation can be made to 
express Eq. (6) in the reference coordinate system as 
 

i i i i i M U K U F                            (10) 
 
where T ,i i i iM T m T  T ,i i i iK T k T  i i iU T u  

.i i iF T f  Herein, Ti is the transformation matrix of the 
i-th limb body fixed frame with respect to the global 
reference and there exists 
 

diag( , , )i i iT R R                           (11) 
 
where Ri is the transformation matrix of Ci-uiviwi with 
respect to A-xyz and can be determined through the 
inverse kinematics. 
 
3.2 Dynamic modeling for moving platform 

The free body diagram of the moving platform is 
shown in Fig. 7. 

From Fig. 7, the equations of motion of the moving 
platform can be formulated as 
 

3 3

P P P P P P
1 1

,
i iB i B

i i 
       m ε F F I ξ r F τ      (12) 

 
where mP and IP are the mass and inertial matrices of the 
moving platform measured in A-xyz; εP and ξP are the 
linear and angular general coordinates of the moving 
platform; 

iBF  is the reaction force vector at the 
interface between the moving platform and the i-th limb 
body; ri is the vector pointing from point A to Bi; FP and 
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Fig. 7 Force diagram of moving platform 

 
τP are external forces and moments acting on the moving 
platform, respectively. And there have 
 

T
P 0 P0 0 ,

i iB i B I R I R F R f                    (13) 
 
where IP0 is the inertia of the moving platform measured 
in the body-fixed coordinate system B-uvw. 
 
3.3 Deformation compatibility conditions 

As mentioned above, the moving platform connects 
with three identical PRS limbs through three spherical 
joints, each of which can be treated as a virtual lumped 
spring with equivalent stiffness. The displacement 
relationship between the platform and the limb can be 
demonstrated as Fig. 8, in which BiM and BiL are the 
interface points associated with the moving platform and 
PRS limb, respectively; Bi and 

iBε are displacements 
of BiM and BiL measured in the limb coordinate system 
Ci-uiviwi; ksi is the equivalent stiffness coefficient of the 
i-th spherical joint. 
 

 
Fig. 8 Displacement relationship between platform and limb 

body 

 
Observing that the elastic motion of moving 

platform T T T
P P P( , )U    is caused by the deflection of 

three flexible limbs and the platform is rigid, one can 
derive the elastic displacement Bi of BiM (fixed on 
moving platform) as 
 

T
P

ir
i i B R D U                              (14) 

where 3 3
ˆ[ ],ir

iD BI  ˆ
iB  is the reciprocal matrix of 

vector Bi. 
Noting that the spherical joint connects the moving 

platform with the link at Bi, one can express the reaction 
forces of the spherical joint as 
 

1 T T
s P( )i

i

rB
B i ci i i i  f k N T U R D U               (15) 

 
Similarly, the reactions at Ci is 

 
1 T 2 T

r1 r2,
i i

C C
C ci i i C ci i i   f k N T U τ k N T U         (16) 

 
where r1 r r rdiag( , , )x y zk k kk and r2 r rdiag( , ,u vk kk  

r )wk  are the equivalent stiffnesses of revolute joint in 
related directions (along and about three axes in limb 
reference frame i i i iC u v w ). 
 
3.4 Governing equations of motion 

Substituting Eqs. (15)−(16) to Eqs. (10)−(12), the 
governing equations of motion for the PKM system can 
be written as 
 

 MU KU F                                (17) 
 
where K  is the global stiffness matrix; U and F  are 
the general coordinates and external load vectors. And 
there exist 
 

T TT T T T T T T T
1 2 3 4 1 2 3 4   ,       

   U = U U U U F = F F F F   (18) 
 

T T T T T T
4 P P 4 P P(  ) , (  ) U ε ξ F F τ                  (19) 
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4,1 4,2 4,3 4,4

 
 
   
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 

K K
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K K K K

                 (20) 
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,4

ir
i i i

i

 
   
 

R k R D
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s
4, 1 T

s

B
i i ci i

i B
i i i ci i

 
     

R k N T
K

r R k N T
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4 Joint reactions prediction 
 

In this section, the reaction forces of spherical and 
revolute joints in the 3-PRS PKM module at a given 
external load such as the gravity are investigated through 
a quasi-static analysis. The main parameters of the PKM 
are listed in Table 1. Herein, s denotes the stroke of the 
moving platform. ksu, ksv, ksw, klu, klv, klw, kcu, kcv and kcw 
are stiffness coefficients of three perpendicular axes of 
the spherical joint in its local frame; others have been 
defined before. According to the parameters of the 
example system, the following numerical simulation and 
analysis can be conducted. 
 
Table 1 Parameters of PKM 

Parameter Value 

rp/mm 250 

rb/mm 350 

l/mm 550 

s/mm 200 

ksu/(N·μm−1) 23 

ksv/(N·μm−1) 23 

ksw/(N·μm−1) 623 

klu/(N·μm−1) 112 

klv/(N·μm−1) 214 

klw/(N·μm−1) 100 

kcu/(N·μm−1) 676 

kcv/(N·μm−1) 446 

kcw/(N·μm−1) 348 

krx/(N·μm−1) 280 

kry/(N·μm−1) 330 

krz/(N·μm−1) 330 

krv/(MN·m·rad−1) 20 

krw/(MN·m·rad−1) 20 

 
4.1 Quasi-static deformation formulation 

Note that the PKM module works at low or 
moderate speeds, the differential item in Eq. (17) is 
comparatively small thus can be omitted without causing 
non-negligible errors when calculating the kinematic pair 
reactions. Therefore, the elastodynamic equation in   
Eq. (17) can be simplified as 
 

=KU F                                     (27) 
 

Equation (27) can be rewritten as 

 
1U K F                                   (28) 

 
Once the external load of the PKM module F  is 

given and the global stiffness matrix K  is determined 
by Eq. (20), the global coordinates, i.e., the elastic 
deformations of each component can be decided. 
Inserting U into Eqs. (15) and (16), one can easily obtain 
the reaction forces of spherical and revolute joints of the 
PKM module. 
 
4.2 Gravity-caused elastic deformations 

Equation (28) gives the analytical formulation for 
elastic deformations in the 3-PRS PKM module. This 
subsection will discuss the elastic displacements of the 
moving platform aroused from component deformations 
due to the gravity. 

Generally speaking, the cutting force is quite small 
during high speed machining. Compared with the cutting 
force, the gravity of the moving platform and limb 
structures; however, it is comparably large and may bring 
considerable effect on the elastic displacement of the 
moving platform, which in turn will degenerate the 
machining quality of the workpiece. 

According to the 3D CAD model shown in Fig. 1, 
the gravity of the moving platform and limb structures at 
the top position is calculated as 178.65 kg. By solving  
Eq. (28), the displacements of the moving platform can 
be determined and listed in the following Table. 
 
Table 2 Elastic displacement of moving platform caused by 

gravity (pz=875 mm, =0°, =0°) 

Parameter Value 

εpx/μm 363.67 

εpy/μm 0 

εpz/μm −3.1786 

ξpx/10−4rad 0 

ξpy/10−4rad −3.0686 

ξpz/10−4rad 0 

 
From the above table, it can be observed that the 

gravity of the PKM arouses a translational displacement 
in the vertical direction (along x axis). The value of this 
deflection reaches 363.67 μm, which is not negligible 
during high speed machining. This translational 
deflection brings a rotational deflection about v axis, 
which is coincident with the parasitic motions of the 
3-PRS mechanism as expressed in Eq. (4). Meanwhile, 
the gravity also causes a translational deflection along 
axial direction (along z axis). 
 
4.3 Gravity-caused joint reactions 

With the elastic displacements obtaining from    
Eq. (28), the joint reaction forces can be easily 
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determined by inserting U into Eqs. (15) and (16). The 
following tables list the reaction forces of the spherical 
and revolute joints caused by the gravity at the 
aforementioned configuration of top position. 

From Table 3, it can be found that the joint reaction 
forces caused by the gravity are not equally distributed in 
three identical limbs. Taking the spherical joint for 
example, the S joints in three limbs all claim the biggest 
amplitudes in the direction of z axis (i.e. axial direction 
of the limb body). Among them, the S joint in limb 
assembly 1 has the highest value. Compared with the 
forces in z direction, the reactions of S joint in the other 
directions are smaller. Interestingly, forces distributed in 
the S joint in limb assembly 2 and limb assembly 3 are 
equal to each other in the same directions. 
 
Table 3 Reaction forces in S joints caused by gravity (pz=  

875 mm, =0°, =0°) 

Limb No fBix/N fBiy/N fBiz/N 

1 0 −0.0010 4240.5 

2 −1007.6 0 −2274.5 

3 1007.6 0 −2274.5 

 
Table 4 Reaction forces in R joints caused by gravity (pz=875 

mm, =0°, =0°) 

Limb No. fCix/N fCiy/N fCiz/N τCiy/(N·m) τCiz/(N·m)

1 0 0.0010 −4240.5 0 0 

2 1007.6 0 2274.5 −423.2027 0 

3 −1007.6 0 2274.5 423.2027 0 

 
The reactions of revolute joints in the PKM can be 

found in Table 4. As to the revolute joint in limb 
assembly 1, the gravity only causes reactions in two 
directions, i.e. forces along y axis and z axis. However, 
the reactions are much more complicated in the revolute 
joints in limb assemblies 2 and 3. The gravity causes 
reaction forces in two directions and reaction moments 
about one direction. Moreover, the reactions in the same 
direction share the same amplitude for the revolute joints 
in limbs 2 and 3. This can be explained by the axial 
symmetry of the 3-PRS parallel configuration. 
Comparing Tables 3 and 4, it can be found that reactions 
of the spherical joint and revolute joint in the same limb 
claim the same value in corresponding axes. 

The following will discuss the effects of 
configurational parameters on joint reactions due to the 
gravity. For content limitation, only the load distributions 
of spherical and revolute joints in limb assembly 1 are 
illustrated. 

Figure 9 gives the distributions of reaction forces 
along three axes in the spherical joint of limb assembly 1. 

Apparently, the distributions of reaction forces in 
three directions are strongly dependent on the 

 

 
Fig. 9 Distributions of reactions in S joint over working plane 

at pz=875 mm: (a) Reaction along x axis; (b) Reaction along y 

axis; (c) Reaction along z axis 

 
configurational parameters. The amplitudes of each 
reaction force vary with the nutation angle  and the 
precession angle . For instance, the reaction force along 
x axis fB1x varies from the minimal value of −1.08103 to 
the maximal value of 1.08103. The reaction force along 
z axis fB1z changes from 4.20103 to 6.02103. Once 
again, an axisymmetric distribution over the given work 
plane can be observed, i.e. 40° symmetrical about the x 
axis, which is coincident with the axial symmetry of the 
structure of three RPS limbs in the 3-PRS parallel 
mechanism. The same tendency of load distributions can 
be found in revolute joints as shown in Fig. 10. 
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Fig. 10 Distributions of reactions in R joint over working plane at pz=875 mm: (a) Reaction along x axis, fC1x; (b) Reaction along y 

axis, fC1y; (c) Reaction along z axis, fC1z; (d) Reaction about x axis, τC1y; (e) Reaction about y axis, τC1y; (f) Reaction about z axis, τC1z 

 
From Fig. 10, it can be seen that the reaction forces 

in three directions vary noticeably with the configuration 
parameters. Meanwhile, the reaction moments about x 
and z axes are zero, which means that the gravity of the 
platform does not cause rotational deflections at the 
center of revolute joint. This is coincident with the fact in 
that the revolute joint can freely rotate about its axis (x 
axis) and the projection of the gravity center on limb 1 
locates at the centre line of the revolute joint. 

 
5 Conclusions 
 

1) An analytical elastodynamic model is established 
with the technique of substructure synthesis. The limb 
assemblage flexibility is accounted into through FE 
formulation by treating it as a spatial beam with 
non-uniform cross-sections supported by two sets of 
lumped virtual springs of joints. 
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2) Based on the proposed elastodynamic model, a 
quasi-static analysis is conducted to predict the joint 
reactions and component deflections by degenerating the 
differential terms of the governing equations. Compared 
with the traditional FE method, the present method for 
joint reaction prediction is much more concise and 
effective. 

3) The elastic displacements of the moving platform 
and reactions in the revolute and spherical joints caused 
by the gravity are calculated at given work 
configurations. The results show that the influence of the 
gravity on the system deflections cannot be neglected. 

4) A piece-by-piece computation algorithm is 
proposed to predict the joint reactions throughout the 
workspace. The distributions of reactions in revolute and 
spherical joints in an individual limb assemblage are 
predicted to demonstrate a strong dependency of joint 
reactions on system configurations. 
 
References 
 
[1] HENNES N, STAIMER D. Application of PKM in aerospace 

manufacturing-high performance machining centers ECOSPEED, 

ECOSPEED-F and ECOLINER [C]// Proceedings of the 4th 

Chemnitz Parallel Kinematics Seminar. Chemnitz: Verlag 

Wissenschaftliche Scripten, 2004: 557−577. 

[2] NEUMANN K E. Tricept application [C]// Proceedings-3rd 

Chemnitz Parallel Kinematics Seminar. Zwickau: Verlag 

Wissenschaftliche Scripten, 2002: 547−551. 

[3] CACCAVALE F, SICILIANO B. The tricept robot-dynamics and 

impedance control [J]. IEEE, 2003, 2: 263−268. 

[4] CARRETERO J A, PODHORODESKI R P, NAHON K A, 

GOSSELIN C M. Kinematic analysis and optimization of a new 

three degree-of-freedom spatial manipulator [J]. Journal of 

Mechanical Design, 2000, 122: 17−24. 

[5] LI Yan-min, XU Qing-song. Kinematic analysis of a 3-PRS parallel 

manipulator [J]. Robotics and Computer-Integrated Manufacturing, 

2007, 23: 395−408. 

[6] POND G T, CARRETERO J A. Kinematic analysis and workspace 

determination of the inclined PRS parallel manipulator [C]// 

Proceedings of the 15th  CISM - IFToMM Symposium on Robot 

Design, Dynamics and Control. Saint-Hubert: Springer Verlag, 2004: 

1−6. 

[7] CHENG X, HUANG Y M, FAN Z M, SU J H. Workspace generation 

of the 3-PRS parallel robot based on the NN [C]// Proceedings of the 

First International Conference on Machine Learning and Cybernetics. 

Beijing: IEEE, 2002: 4−5. 

[8] GEOFFREY P, CARRETERO G A. Formulating Jacobian matrices 

for dexterity analysis of parallel mechanism [J]. Mechanism and 

Machine Theory, 2006, 41: 1505−1519. 

[9] LI Qin-chuan, CHENG Zhi, CHEN Qiao-hong, WU Chuan-yu, HU 

Xu-dong. Parasitic motion comparison of 3-PRS parallel mechanism 

with different limb arrangements [J]. Robotics and 

Computer-Integrated Manufacturing, 2011, 27: 389−396. 

[10] NIGUS H. Semi-analytical approach for stiffness estimation of 

3-DOF PKM [J]. Modern Mechanical Engineering, 2014, 4: 

108−118. 

[11] WANG You-yu, LIU Hai-tao, HUANG Tian, CHRTWYND D G. 

Stiffness modeling of the tricept robot using the overall Jacobian 

matrix [J]. ASME Journal of Mechanisms and Robotics, 2009, 1: 

021002. 

[12] LI Yong-gang, SONG Yi-min, FENG Zhi-you, ZHANG Ce. Inverse 

dynamics of 3-RPS parallel mechanism by Newton−Euler 

formulation [J]. Acta Aeronautica et Astronautica Sinica, 2007, 28: 

1210−1215. (in Chinese) 

[13] XI Feng-feng, ANGELICO O, SINATRA R. Tripod dynamics and its 

inertia effect [J]. ASME Journal of Mechanical Design, 2005, 127: 

144−149. 

[14] WIENS G J, SHAMBLIN, S A, OH Y H. Characterization of PKM 

dynamics in terms of system identification [J]. Journal of Multi-body 

Dynamics, 2002, 216(1): 59−72. 

[15] WU Pei-dong, XIONG He-gen, KONG Jian-yi. Dynamic analysis of 

6-SPS parallel mechanism [J]. International Journal of Mechanics 

and Materials in Design, 2012, 8(2): 121−128. 

[16] JI Z M. Study of the effect of Leg Inertia in Stewart Platforms [C]// 

Proceedings of the IEEE Conference on Robotics and Automation. 

Altanta: IEEE, 1993: 121−126. 

[17] LEE J D, GENG Z. A dynamic model of a flexible Steward platform 

[J]. Computer and Structures, 1993, 48(3): 367−374. 

[18] LIU Shan-zeng, YU Yue-qing, ZHU Zhen-zai, SU Li-ying, LIU 

Qing-bo. Dynamic modeling and analysis of 3-RPS parallel 

manipulator with flexible links [J]. Journal of Central South 

University, 2010, 17(2): 323−331. 

[19] WANG Xiao-yu, MILLS J K. Dynamic modeling of a flexible-link 

planar parallel platform using a substructuring approach [J]. 

Mechanism and Machine Theory, 2006, 41(6): 671−687. 

[20] ZHANG Xu-ping, MILLS J K, CLEGHORN W L. Dynamic 

modeling and experimental validation of a 3-PRR parallel 

manipulator with flexible intermediate links [J]. Journal of Intelligent 

and Robotic Systems, 2007, 50(4): 323−340. 

[21] SHIAU T N, TSAI Y J, TSAI M S. Nonlinear dynamic analysis of a 

parallel mechanism with consideration of joint effects [J]. 

Mechanism and Machine Theory, 2008, 43(4): 491−505. 

(Edited by DENG Lü-xiang) 

 
 


