
 

 

J. Cent. South Univ. (2015) 22: 2825−2832 
DOI: 10.1007/s11771-015-2814-1 

 

Theoretical investigation of micropolar fluid flow between two porous disks 
 

P. Valipour1, S. E. Ghasemi2, M. Vatani3 
 

1. Department of Textile and Apparel, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran; 
2. Young Researchers and Elite Club, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran; 

3. Department of Mechanical Engineering, Babol University of Technology, Babol, Iran 
 

© Central South University Press and Springer-Verlag Berlin Heidelberg 2015 
                                                                                                  

 
Abstract: The steady, laminar, incompressible and two dimensional micropolar flow between two porous disks was investigated 
using optimal homotopy asymptotic method (OHAM) and fourth order Runge–Kutta numerical method. Comparison between 
OHAM and numerical method shows that OHAM is an exact and high efficient method for solving these kinds of problems. The 
results are presented to study the velocity and rotation profiles for different physical parameters such as Reynolds number, vortex 
viscosity parameter, spin gradient viscosity and microinertia density parameter. As an important outcome, the magnitude of the 
microrotation increases with an increase in the values of injection velocity while it decreases by increasing the values of suction 
velocity. 
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1 Introduction 
 

The fluid flow through parallel disks has been 
considered due to its scientific and engineering 
applications such as gas turbine engines, computer 
storage devices, thrust bearings, radial diffusers, and 
biomechanics. Von KARMAN [1] firstly analyzed the 
steady flow of Newtonian fluid over rotating disk by 
using similarity transformation. ASHRAF et al [2] 
utilized numerical method to study the fluid flow 
between an impermeable disk and a permeable disk. 
They investigated the effects of the Reynolds number 
and the micropolar parameters on the velocity and 
rotation profiles of the flow. NAZIR and MAHMOOD  
[3] investigated flow and heat transfer of viscous fluid 
between heated contracting rotating disks. They used von 
KARMAN similarity transformations to reduce the 
Navier–Stokes equations to a system of ordinary 
differential equations. The analysis shows that the 
velocity components and especially radial component of 
velocity have a strong influence on the temperature 
distribution inside the flow regime. SI et al [4] examined 
the laminar flow on heat transfer of viscous fluid 
between two heated contracting rotating disks 
considering the viscous dissipation effects in the energy 
equation or not. IBRAHIM [5] studied the unsteady flow 
of a viscous incompressible fluid between two parallel 
disks. The governing Navier-Stokes and energy 

equations are transformed to a system of ordinary 
differential equations. The results show that the rotation 
of two disks has a little effect on the heat transfer process, 
while the rapid normal motion of the upper disk has a 
powerful effect on the temperature of the fluid. ERSOY 
[6] studied the flow of a viscous fluid between two disks 
rotating about distinct vertical axes at different speeds. 
HATAMI et al [7] investigated the asymmetric laminar 
flow and heat transfer of nanofluid between contracting 
rotating disks. HATAMI and GANJI [8] examined heat 
transfer and flow of nanofluid through two parallel disks 
in suction and blowing process in the presence of the 
magnetic field. 

A general theory of micropolar fluid has been 
introduced by ERINGEN [9] in order to describe some 
physical systems which do not satisfy the Navier-Stokes 
equations. His theory includes new material parameters 
of the flow and new constitutive equations for 
Newtonian fluid flows. Later, the development of the 
theory is motivated by the need to model the flow of 
non-Newtonian fluids containing rotating micro- 
constituents. Many studies show that the model has a 
wide range of applications in blood flow, polymeric 
suspensions, lubricants and turbulent shear flows. 

In this section, a review of the related works which 
principally concerns the solution of the flow and heat 
transfer of micropolar fluid between two parallel disks is 
reported. ANWAR et al [10] examined the steady, 
incompressible and laminar flow of a micropolar fluid 
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driven by injection between two porous coaxial disks. 
The numerical study of axisymmetry of an electrically 
conducting micropolar fluid between two porous disks 
was considered by ASHRAF and WEHGAL [11]. 
DARVISHI et al [12] investigated the flow of micropolar 
fluid in a porous channel with expanding and contracting 
walls. They applied spectral homotopy analysis 
collocation method to obtain a series solution for the 
flow. 

Motivated by the above mentioned work, the aim of 
this study is to obtain the approximate solution of the 
micropolar flow between two porous disks. By applying 
an extension of von KARMAN’s similarity 
transformations, we reduce the governing partial 
differential equations to a system of ordinary differential 
equations. Recently, several analytical methods have 
been applied in many engineering problems by 
GHASEMI et al [13−17], but to solve the governing 
equations of this problem, one of the newest analytical 
methods named optimal homotopy asymptotic method 
(OHAM) is used. This method is one of the strong and 
effective methods for solving nonlinear problems and is 
investigated and developed by some authors to solve 
nonlinear equations arising in engineering problems 
[18−21]. 
 
2 Description of problem 
 

The steady, laminar and incompressible flow of 
micropolar fluid between two parallel porous disks is 
considered. The micropolar fluid is uniformly injected at 
a constant velocity v through the upper disk. The flow is 
fully developed and the effects of the body couples and 
body forces are neglected. 

As shown in Fig. 1, a cylindrical coordinate system 
may be chosen with the origin at the center between 
porous disks. Two stationary porous disks of radius R0 
are located at the plane (z=±L) and the centers of the 
disks coincide with the axis (r=0). Consider u and w as 
the velocity components in the direction of r- and z-axes, 
respectively. Assume that N is the microrotation of the 
flow. Under these assumptions, the governing equations 
of the flow can be expressed as follows:  

0
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where ρ and v are the density and kinematic viscosity, 
respectively; j is the microinteria viscosity; κ and γ are 
the microrotation parameter and spin gradient viscosity, 
respectively. 
 

 
Fig. 1 Model for micropolar fluid flow between two porous 

disks 

 
The boundary condition at the two lower and upper 

disks for the velocity and microrotation field can be 
written as 

 
( , ) 0

( , ) 0,  ( , ) 2

( , ) 0

u r L

w r L w r L v

r L

 
   
  

                     (5) 

 
Notice that as the fluid is extracted from the lower 

disk, the velocity v is assumed to be positive, and if it is 
injected through the upper disk, the velocity will be 
negative. 

Define the following extension of von KARMAN’s 
similarity transformations [1]: 

 
( ) , 2 ( ) , ( )u rF z w F z rG z                (6) 

 
By substituting Eq. (6) into Eqs. (2), (3) and (4), we 

have 
 

( )( ) 2 0ivF G FF                         (7) 
 
where 2 / 0p r z    . 
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2 ( 2 ) 0G F G j F G FG                     (8) 
 

Define the following parameters: 
 

2( ) ( )
( ) , ( ) ,

F z L G z z
f g

v v L
               (9) 

 
Upon substituting Eq. (9) into Eqs. (7) and (8) , one 

obtains the following equations: 
 

( )
1 2 0ivf c g Reff                        (10) 

 

2 3( 2 ) ( 2 ) 0g c f g c f g fg                    (11) 
 
where /( )Re VL     is the Reynlods number and 

1 /( ),c     2
2 / ,c L  3 /c jLV  are the vortex 

viscosity parameter, the spin gradient viscosity parameter 
and the microinertia density parameter, respectively. 
Here, c1, c2 and c3 are the micropolar parameters. 

The boundary condition in the dimensionless form 
can be written as 
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3 Basic idea of optimal homotopy asymptotic 

method (OHAM) 
 

The following nonlinear differential equation is 
considered: 
 

( ( )) ( ( )) ( ) 0

s.t.  ( ) 0

  
 

L u N u g

B u

  
                  (13) 

 
where L is a linear operator, N is a nonlinear operator, u(τ) 
is an unknown function, g(τ) is a known analytical 
function and B is a boundary operator. 

By means of OHAM, one first constructs a set of 
equations [22]: 

 
(1 )[ ( ( , )) ( )] ( )[ ( ( , )) ( )p L p g H p L p g           

( ( , ))] 0N p                           (14) 
 

And the boundary condition is 
 

( ( , )) 0B p                                 (15) 
 
where f(τ, p) is an unknown function, [0,  1]p  is an 
embedding parameter and H(p) denotes a nonzero 
auxiliary function for p≠0 and H(0)=0. So, when p=0 and 
p=1, it holds that 
 

0( ,0) ( ),u    ( ,1) ( )u                    (16) 
 

Thus, when p increases from 0 to 1, the solution  
f(τ, p) approaches from initial solution u0(τ) to the 
solution u0(τ), where u0(τ) is obtained from Eq. (14) 
when p=0. 
 

0 0( ( )) ( ) 0, ( ) 0L u g B u     

Consider the auxiliary function, H(p), in the form: 
 

2
1 2( )H p pC p C                        (17) 

 
where C1, C2, … are constants which can be determined 
later. 

Expand f(τ, p) in a series with respect to p in the 
following manner: 
 

0
1

( , , ) ( ) ( , ) , 1,  2,  i k i k
k

p C u u C p i   


      (18) 

 
Substituting Eq. (18) into Eq. (14), collecting the 

same powers of p, and equating the coefficient of like 
powers of p to zero, the set of differential equation with 
boundary conditions is obtained. Thus, we obtain u0(τ), 
u1(τ, C1), u2(τ, C3), … by solving differential equation 
with boundary conditions. Generally speaking, the 
solution of Eq. (13) can be determined approximately in 
the form of 
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( ) ( , )
m
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k i

k
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                      (19) 

 
Substituting Eq. (19) in Eq. (13), it results the 

following expression for residual: 
 

( ) ( )( , ) ( ( , )) ( ) ( ( , ))m m
i i iR C L u C g N u C        (20) 

 
If R(τ, Ci)=0, then ( ,  )iu C  is the exact solution of 

the problem. Generally, it does not happen, especially in 
nonlinear problems, but we can minimize the functional: 

 


b
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2
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And the constants Ci can be determined from the 
conditions: 
 

1 2

0
J J

C C

 
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                           (22) 

 
4 Application of optimal homotopy 

asymptotic method (OHAM) 
 

In this section, we try to solve Eqs. (10) and (11) 
using OHAM. Consider f(η), H1(p), g(η) and H2(p) as the 
following: 
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Substitute f(η), g(η), H1(p) and H2(p) from Eq. (23) 

into Eqs. (10) and (11) and rearrange them based on the 
powers of p-terms. 
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f3(−1)=0,  f3(1)=0, 0)1(  ,0 33  ff          (27c) 
 
g3(−1)=0,  g3(1)=0                         (27d)  

Solving Eqs. (24)−(27) with boundary conditions: 
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The terms f3(η) and g3(η) are too long to be written 

in the above. So, the final expressions for f(η) and g(η) 
are  

0 1 2 3

0 1 2 3
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    

           (31) 

 
Substituting f(η) and g(η) from Eq. (31) into    

Eqs. (10) and (11) yields the residuals R1(η, d1, d2, d3) 
and R2(η, e1, e2, e3). Then the functional J1 and J2 are 
obtained as the following:  

2
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0

2
2 1 2 3 2 1 2 3

0
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
 




J d d d R d d d

J e e e R e e e

 

 
        (32) 

 
The constants d1, d2, d3, e1, e2 and e3 are obtained 

from Eq. (32) for the special case (c1=c2=c3=Re=1):  
d1=0.03306062640,  
d2=−0.07733921182,  
d3=0.2353528166,  
e1=0.6879526470,  
e2=−0.01932908977,  
e3=1.500384566.  

In order to validate the present solution of the 
problem and find the accuracy, the comparison between 
our solution and numerical result is done. An excellent 
agreement between the present OHAM and numerical 
solution is observed in Fig. 2, which confirms the 
validity of the proposed solution. 

 

 
Fig. 2 Comparison between OHAM solution and numerical 

results when C1=C2=C3=Re=1: (a) f(η); (b) f '(η); (c) g(η) 

 

5 Results and discussion 
 

The graphical results are displayed to understand 
the effects of the Reynolds number, vortex viscosity, spin 
gradient viscosity and micro-interia density on the 
velocity profiles f(η), f′(η) and microrotation g(η). 

Figure 3 illustrates the behavior of streamwise and 
normal velocities and microrotation for different values 
of vortex viscosity parameter. Figure 3(a) shows that the 
values of normal velocity profile are positive in the first 
half region and negative in the second half region, which 
shows a reverse velocity near the boundaries of the two 
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Fig. 3 Normal velocity profile for different values of vortex 

viscosity (C1) when C2=C3=Re=1: (a) f(η); (b) f '(η); (c) g(η) 

 

disks. As a general trend, the normal velocity takes its 
dimensionless value 1 at the upper disk and −1 at the 
lower disk with a point of inflection on the central plane 
z=0, where the concavity is changed. The normal 
velocity profiles are concave downward in the lower half 
while they are concave upward in the upper half.  
Figure 3(b) depicts the behavior of streamwise velocity 
profile for different values of vortex viscosity. The 
streamwise velocity profiles are parabolic in nature for 
all the values of the vortex viscosity. The streamwise 
velocity increases near the central plane, while its 
profiles fall near the boundaries of the disks with an 

increase of C1. The magnitude of the microrotation 
increases with the increase of vortex viscosity as seen in 
Fig. 3(c). The microrotation has opposite signs near the 
disks. The shear stresses at the two disks tend to rotate 
the fluid in opposite directions, and the point of zero 
microrotation marks the position across the disks where 
the effects of the opposite rotations balance each other. 

Figure 4 illustrates the influence of spin-gradient 
viscosity on velocity and microrotation fields when C1, 
C3 and Re are fixed at typical value of 1. As seen in     
Fig. 4(a), a slight increase near the upper disk and a 
slight decrease near the lower disk in f are noted with an 
 

 
Fig. 4 Normal velocity profile for different values of spin- 

gradient viscosity (C2) when C1=C3=Re=1: (a) f(η); (b) f '(η);  

(c) g(η) 
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increase in the magnitude of spin-gradient viscosity. 
Figure 4(b) shows that by increasing C2, the streamwise 
velocity decreases near the disks. The significant effect 
of spin-gradient viscosity on microrotation is seen in  
Fig. 4(c). An increase in the magnitude of the 
microrotation is observed with an increase in the values 
of the magnitude of spin-gradient viscosity. 

From Fig. 5(a), it is clear that the normal velocity 
profile has no change for different values of micro-interia 
viscosity. Moreover, the axial velocity (f ′(η)) does not 
have significant change by varying the values of C3, as 
seen in Fig. 5(b). It is seen from Fig. 5(c) that the 
magnitude of the microrotation decreases with the 
increase in C3. 
 

 
Fig. 5 Normal velocity profile for different values of 

micro-inertia density (C3) when C1=C2=Re=1: (a) f(η); (b) f '(η); 

(c) g(η) 

The effect of Reynolds number on the flow 
velocities and the microrotation is investigated in Fig. 6. 
The results are obtained when C1, C2 and C3 are fixed at 
1. Figure 6(a) depicts the effects of Reynolds number on 
the normal velocity. The Reynolds number has an 
obvious effect on the normal velocity distribution for 
both suction and injection. For an increase in injections, 
the magnitude of normal velocity increases and a reverse 
phenomena may be noticed in the case of suction. 

Figure 6(b) shows that the axial velocity is 
parabolic for the negative values of Reynolds number 
(injection), and for the cases Re>0, the axial velocity 
exhibits the characteristic flattering. Another point of  
Fig. 6(b) is that for the cases Re<0, as the imposed 
 

  
Fig. 6 Normal velocity profile for different values of Reynolds 

Number (Re) when C1=C2=C3=1: (a) f(η); (b) f'(η); (c) g(η) 
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injection through the disks increases, the fluid is pushed 
towards the central region between the disks, and 
therefore, the axial velocity increases significantly with 
the increase in Re in the magnitude. And for the cases 
Re>0, velocity decreases near the central plane and the 
fluid is pushed towards the boundaries by increasing Re. 
Figure 6(c) presents the influence of Reynolds number 
on the variation of the microrotation between two disks. 
For all cases, the point microrotation getting zero lies 
near the central plane and the extreme values are almost 
equal in magnitude. For the cases Re<0, an increase in 
the magnitude of the microrotation is observed with an 
increase in the values of the magnitude of Reynolds 
number and a reverse phenomenon is noticed in the case 
of Re>0 (suction). 
 
6 Conclusions 
 

1) Two dimensional micropolar flow between two 
porous disks is studied by optimal homotopy asymptotic 
method (OHAM). The approximate solutions for 
streamwise and normal velocities and microrotation are 
obtained by the proposed technique.  

2) The present results are in excellent agreement 
with the numerical ones. Also this method is an efficient 
and accurate technique for finding science and 
engineering non-linear differential equations. 

3) The streamwise velocity increases near the 
central plane by increasing the vortex viscosity 
parameter whereas its profiles fall near the boundaries of 
the disks. 

4) Changing microrotation parameters does not 
have any significant effect on the axial velocity and they 
have slight effect on the normal velocity while they have 
significant effect on the microrotation profile g(η). 

5) The magnitude of the microrotation increases 
with the increase of injection velocity and a reverse 
phenomenon is noticed for the positive Reynolds number 
(suction). 
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