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Abstract: An improved multidirectional velocity model was proposed for more accurately locating micro-seismic events in rock 
engineering. It was assumed that the stress wave propagation velocities from a micro-seismic source to three nearest monitoring 
sensors in a sensor’s array arrangement were the same. Since the defined objective function does not require pre-measurement of the 
stress wave propagation velocity in the field, errors from the velocity measurement can be avoided in comparison to three traditional 
velocity models. By analyzing 24 different cases, the proposed multidirectional velocity model iterated by the Simplex method is 
found to be the best option no matter the source is within the region of the sensor’s array or not. The proposed model and the adopted 
iterative algorithm are verified by field data and it is concluded that it can significantly reduce the error of the estimated source 
location. 
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1 Introduction 
 

Most solids emit low-level seismic signals when 
they are stressed or deformed. A variety of terms, 
including acoustic emission, micro-seismic activity, 
seism-acoustic activity and micro-earthquake activity 
have been utilized by different disciplines to describe 
this phenomenon. In the fields of engineering geology 
and rock engineering, it is termed to be a micro-seismic/ 
acoustic emission (MS/AE) event [1]. Related 
technologies in monitoring the MS/AE events have 
become more and more important in assessing the 
stability of a rock mass, and they have been increasingly 
applied in the engineering fields including mining [2], 
hydropower dam [3], tunnel excavation [4] and other 
industries after years of development. In practical rock 
engineering, a micro-seismic event refers to the majority 
frequencies of the induced seismic waves within the 
range from 10 Hz to 103 Hz. 

The effectiveness of the micro-seismic monitoring 
technology greatly depends on the accuracy level that 
can be achieved in estimating the event location. Due to 

the existence of joints and fissures in a rock mass, 
attenuation of energy and velocity of a seismic wave 
inevitably occurs in the process of stress wave 
propagation. With the combined influence of all the 
reflections and refractions at the inherent discontinuities, 
a considerable positioning error in estimating the 
micro-seismic source location is often produced. To 
achieve higher precision positioning, a reasonable 
sensors’ array configuration and associated filtering and 
waveform identification technique have been suggested 
[5]. In the process, adoption of a suitable micro-seismic 
source locating method is critical. Over the years, lots of 
fruitful research has been carried out on this topic by 
scholars around the world. The existing source locating 
algorithms can be divided into two categories, i.e., the 
non-iterative algorithm and the iterative algorithm, as 
shown in Fig. 1. Among different non-iterative 
algorithms, the triaxial approach [6] and the zonal 
location method [7] are highly influenced by the 
geologic structure and characteristic of the rock material. 
Other early and widely used non-iterative algorithms 
include the INGLADA [8], the USBM algorithm [9] and 
so on. When the number of sensors is more than five, the 
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Fig. 1 Location principles based on different velocity model 

 
stress wave propagation velocity can be treated as an 
additional unknown. The non-iterative algorithm has 
advantage when the field measured data are reliable. 
However, the inevitable error of the data collected by 
sensors in practical engineering often leads to an 
unacceptable positioning accuracy. Besides, the number 
of nonlinear equations will increase drastically when the 
quantity of waves picked by the sensors is large. In this 
case, it will be difficult to accurately determine the 
location of micro-seismic event. 

On the other hand, an iterative algorithm is more 
suitable in finding the best approximation of the event 
location when the measured data have a certain degree of 
uncertainties. The implementation of an iterative 
algorithm requires selecting a proper velocity model and 
its associated objective function in minimizing errors. 
The commonly used velocity models include the field 
measurement based single velocity model, the inversion 
based single velocity model, and the field measurement 
based multidirectional velocity model. The difference of 
the field measurement and inversion based models is that 
the former uses pre-measured wave propagation velocity 
or velocities while the later considers the wave velocity 
as unknown in the analysis. A single velocity model 
assumes that the wave propagation velocities to different 
sensors are the same, while they can be different based 
on the multidirectional velocity model. Corresponding 

objective functions include the time residual function and 
the time residual cross functions, etc. The iterative 
algorithms can also be classified into the minimum 
absolute value method [10], the least square method [11], 
the Gauss-Newton iterative method [12] or the Geiger 
method [13], the Simplex method, and so on. Specifically, 
CHRISTY [14] and STRANG [15] respectively 
combined the INGLADA method and the USBM method 
with the least square method based on the single velocity 
model, which achieved better results than the 
non-iterative method. VANDECAR and CROSSON [16], 
MENKE [17], LI and DONG [18] introduced time 
residual cross functions as new objective functions in the 
iterative algorithm based on the single velocity model. 
AKI and LEE [19] put forward the theory of 3D 
inversion combining velocity and source. PAVLIS and 
BOOKER [20] made an improvement by separating the 
unknown velocities from the coordinates of source in the 
objective function. BULAND [12] used a Gauss-Newton 
iterative method to search the source with the 
multidirectional velocity model based on field velocity 
measurement. THURBER [21] proposed a residual to the 
second order for the objective function and solved the 
solution by iterations. PRUGGER and GENDZWILL [22] 
used Simplex method [23] to obtain the solution with the 
multidirectional velocity model. WALDHAUSER and 
ELLSWORTH [24] proposed a double difference 
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location method with the objective function of the same 
sensor’s residual function of different events. 

Since the stress wave propagation velocity from a 
micro-seismic source to different sensors may be 
different and the velocity models highly rely on the 
accuracy of the pre-measured stress wave propagation 
velocity at field or the applied inversion velocity, errors 
are always inevitable in practical micro-seismic 
monitoring. In order to reduce such error and more 
accurately locate the micro-seismic events in a rock mass, 
a new multidirectional velocity model without velocity 
inversion or pre-measurement of field velocity is 
proposed in this work. 24 different cases are analyzed 
with the proposed multidirectional velocity model 
iterated by the Simplex method. The proposed model and 
the adopted iterative algorithm are verified by field data. 
 
2 Traditional velocity models in micro- 

seismic monitoring 
Micro-seismic sensors to pick up stress waves 

induced by rock fracturing are set up with a certain array 
arrangement in the three-dimensional space. They are 
normally embedded in boreholes in rock. For each sensor 
i (i=1, 2, 3, … , n), assuming that the stress wave 
propagation velocity from a MS source is vi (i=1, 2, 
3, …, n), the three-dimensional coordinates of the sensor 
i and the MS source are (xi, yi, zi) and (x0, y0, z0), 
respectively, ti is the arrival time of stress waves from the 
MS source to the sensor i, and t0 is the origin time, it has 
the relation: 
 

2 2 2
0 0 0 0( ) ( ) ( ) ( )i i i i ix x y y z z v t t            (1) 

 
Assuming that the calculated coordinates of the 

source is ),,( 000 zyx   during the iteration process, where 
the origin time is ,0t  the velocity from the estimated 
source to the sensor i is ,tv  the arrival time tci from the 
estimated source to the sensor i can be calculated by 
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The residual time γi for each sensor i is then given 

by 
 

c 0i i it t t                                   (3) 
 

And the objective function for each coordinate of 
source ),,( 000 zyx   is 
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The traditional iterative algorithms aimed to 

minimize the objective function in Eq. (4) based on 

different velocity models. As the velocity tv  from each 
source to different sensors can be different, three velocity 
models and corresponding objective functions have been 
suggested. 

1) Field measurement based single velocity model 
Assuming that the velocities from a MS source to 

different sensors have the same value of vK1, which is 
determined by field measurement near the area of the MS 
source, the objective function in Eq. (4) can be rewritten 
as 
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0 0

1 1

[ (( ) ( )
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Since there are three unknowns only in Eq. (5), at 

least three sensors are required to locate the MS source 
based on this model. The effectiveness of this model 
depends on the accuracy of the pre-measured velocity vK1 
and the homogeneity of the rock mass. 

2) Inversion based single velocity model 
Assuming that the velocities from a MS source to 

different sensors have the same value ,1Kv  which is 
assumed to be an additional unknown just like the 
coordinates of an MS source, the objective function is 
changed to be 
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Due to the fact that the additional known, i.e. K1,v  

is introduced, at least four sensors are required based on 
this model. The disadvantage of this model is that the 
rock mass is also assumed to be homogenous. 

3) Field measurement based multidirectional 
velocity model 

Assuming that the velocities from different sources 
to sensor i have the same value vKi, which is determined 
by field measurements near the area of potential MS 
sources, the objective function then becomes 
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i i
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Obviously, the accuracy of this model highly relies 

on the field measurement of velocities vKi, which is 
dependent on the accuracy of the estimations of the MS 
sources. 

Besides the objective functions given in Eq. (4) to 
Eq. (7), other kinds of objective functions have also been 
proposed [16−18, 24]. Due to space limit, details of the 
coupled velocity models and their corresponding 
objective functions are not introduced here. 
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3 A new multidirectional velocity model 
 

Assuming that the wave velocities from a MS 
source to sensor j and two sensors k and u, which are the 
nearest sensors to sensor j, have the same value vj, the 
arrival times to sensors j, k and u are  
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Let  
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When Eq. (8) is respectively subtracted by Eq. (9) 

and Eq. (10), it has 
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1) If j k ut t t  , then 
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Taking the right side of the equation to the left, then 
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For sensor j, 
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The available data at a monitoring field include the 
coordinates of all the sensors and the measured arrival 
time to different sensors. The unknown entities are the 
coordinates of the MS source. In Eq. (18), a field 
pre-measured velocity is no longer necessary. The 
corresponding objective subdeterminant for each sensor 
can be confirmed in a similar way. By this way, a new 
objective function R of which the regression value is 0 
can thus be defined as 
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The coordinates of the estimated MS source 
),,( 000 zyx   can be calculated by iterations. 

2) If tj=tk (or tj=tu) 
Considering the assumption that the wave velocities 

to the three nearest sensors have the same value, 
equating Eq. (8) and Eq. (9), it gives 
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Reorganizing Eq. (20), it has 
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Equation (21) is the middle plane equation between 

point (xj, yj, zj) and point (xk, yk, zk) in the three- 
dimensional space, and the problem of searching the MS 
source is then simplified into searching the source on the 
middle plane. And a new objective function by ignoring 
sensor j or sensor k can be adopted. When another 
neighbor sensor is considered, Eq. (19) can be used again 
as the objective function. 

At the same time, the application conditions of the 
new velocity model should be noticed. First, the 
minimum number of sensors is four. Second, the number 
of sources and planes produced inside the sensors’ array 
should be as many as possible. 
 
4 Comparison of velocity models and error 

analysis 
 
4.1 Comparison of velocity models 

As shown in Fig. 1, there are four velocity models 
for identifying the micro-seismic location. For the 
convenience of analysis, the field measurement based 
single velocity model is called SFVM for short, and the 
inversion based single velocity model is denoted to be 
SIVM for short. The field measurement based 
multidirectional velocity model and the proposed 
multidirectional velocity in this work are denoted to be 
MFVM and MNVM for short, respectively. It can be 
found that different velocity models are based on 
different assumptions on stress wave propagation 
velocity from a MS source to sensors. 

Figure 2 illustrates how the velocity models work, 
in which Sensor 1 to Sensor 7 and Source 1 to Source 3 
are distributed, among which Source 1 is a calibration 
blasting test source for pre-measurement of the wave 
velocities, Source 2 is within the sensor’s array while 
Source 3 is outside. Velocities from each source to 
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Fig. 2 Location principles based on different velocity models 

 
different sensors are indicated in Fig. 2. 

For the models of SFVM and SIVM, an assumption 
is made that the values of velocities from different 
sources to different sensors are the same, which means 
vi-j=C (i is the number of source, j is the number of 
sensor, and C is a constant). C is determined by field 
measurement for the SFVM model and taken as an 
additional unknown for the SIVM model, which is 
suitable only for homogeneous rock mass and it may 
cause a big error in a practical engineering application 
where various discontinuities always exist. 

With respect to the MFVM model, the assumption 
is made that the velocities from different sources to some 
fixed sensors are the same, which means vi-j=Cj (i is the 
number of source, j is the number of sensor, and Cj is a 
constant). It can be assumed in Fig. 2 that v1-1=v2-1=   
v3-1=C1, v1-2=v2-2=v3-2=C2, v1-3=v2-3=v3-3=C3, …. And Cj 
are obtained by field measurements which are more 
suitable for the case of similar stress propagation paths to 
the calibration blasting test, for example, from Source 1 
and Source 2, the wave velocities to the sensors are more 
and less similar. For Source 3, the source is located 
outside the estimated region, and the wave propagation 
paths are different from those of Source 1, which may 
cause a significant error. 

Based on the MNVM proposed in this work, each 
sensor j corresponds to an objective subdeterminant Rj. It 
is assumed that from a MS source to sensor j and two 
sensors k and u, the nearest sensors to sensor j have the 
same velocities. The wave velocity may vary for 
different sources, which can better approximate the 
actual velocity from each source to different sensors 

compared with three traditional models. 
For the objective subdeterminant of Rj, it has 

vi-j=vi-k=vi-u (i is the number of source, sensor j is the 
sensor corresponding to Rj, and sensors k and u are the 
two nearest sensors to sensor j). And it can also be 
assumed in Fig. 2 that v1-2=v1-1=v1-3 (sensors 1, 3 are the 
two nearest sensors to sensor 2) and v1-3=v1-2=v1-4 
(sensors 2, 4 are the two nearest sensors to sensor 3), …. 
The coordinates of sources are obtained by different 
iteration methods based on the combined function of the 
objective subdeterminats. No matter where the source is 
and what the heterogeneity the rock mass has, the new 
multidirectional velocity model does not require field 
velocity pre-measurement and velocity inversion. 
 
4.2 Error analysis 

Micro-seismic monitoring for rock engineering 
using iterative velocity algorithms has the following 
possible errors. 

1) Random error 
Due to the heterogeneity of a rock mass, 

temperature change, rainfall and so on, a stress wave 
refracts and reflects at the discontinuities. The error 
caused by the heterogeneity of a rock mass is called 
random error, which exists in all the velocity models and 
it cannot be eliminated completely. 

2) Method error 
Considering that the wave velocities from different 

sources to different sensors vary, however, the SFVM 
and SIVM models both simplify the actual condition into 
a single velocity model; they cannot conform to the 
actual geological condition obviously. Moreover, the 
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deviation vector of coordinates is related to the deviation 
vector of the wave propagation velocity in the process of 
inversion for the SIVM model, resulting in further 
increase of the method error. Although the MFVM model 
takes different values in multiple directions, the 
assumption that the velocities from different sources to 
the same sensor are the same could introduce a big error. 
The MNVM model takes the actual condition into 
account, and the only assumption is that the velocities 
from a source to the nearest three sensors are the same 
during the iteration process. The error caused by the 
velocity models can be reduced by a suitable sensor 
distribution pattern, and this error by using the MNVM 
model is much smaller compared with that caused by the 
three traditional velocity models. 

3) Measurement error 
Considering that the rock mass structure is 

complicated, the wave propagation path of the 
calibration test can be very different from the one when a 
micro-seismic event actually occurs. The measured wave 
velocity may introduce errors in the analysis if the 
SFVM or MFVM model is used. The SIVM and MNVM 
models, however, do not have such errors. 

4) Instrument error 
The sensitivity and stability of the sensors may 

bring in an instrument error due to the limitations of the 
instrument itself. This error can be reduced by careful 
calibration of the instruments, although it is difficult to 
be completely avoided. 
 
4.3 Comprehensive analysis 

By analyzing the velocity models and their errors, 
potential levels of the errors from different methods are 
summarized in Table 1. 

For an engineering rock mass, the four velocity 
models will all cause random error. Based on the above 
analysis, it can be drawn preliminarily that the errors 
introduced by the MNVM model will be the smallest 
compared to those from the other three velocity models. 
This can be proved by case studies in the following 
sections. 
 
5 Verification 
 
5.1 Numerical case overview 

As shown in Fig. 3, an example model is set to 
verify the effectiveness of the proposed multidirectional 

velocity model. A cube array with eight sensor vertexes 
of A, B, C, D, E, F, G and H, three randomly selected 
internal sources of I, J and K, and three external sources 
L, M and N, are configured, and the coordinates of each 
point are given in Tables 2 and 3. 

In order to simulate the difference of stress wave 
propagation velocity in different directions, the velocity 
from each source to each sensor is selected by random 
numbers with a mean of 5000 m/s and a measurement 
error of 1%, 3% and 5%, respectively. The arrival time of 
each sensor from sources with different velocity 
variations is shown in Tables 4 −6. 

Three iterative algorithms, including the Levenberg- 
Marquardt method, the Gauss-Newton iteration method 
and the Simplex method are adopted to solve the non- 
linear least squares problem of the objective function. 
The Levenberg-Marquardt method is considered to be 
one of the most widely used damped least-squares (DLS) 
methods. The Gauss-Newton iteration method has been 
used to identify the MS source for a long time, and it has 
been called the Geiger method [18] in this field. The 
Simplex method was developed by NELDER and 
MEAD [23] and introduced into the field of MS location 
in late 1980s by PRUGGER and GENDZILL [22]. The 
first two methods solve the non-linear least squares by 
means of algebraic reconstruction technique, while the 
latter method searches the solution of non-linear least 
squares problem by the fixed rules. 

For example, the process with the Simplex method 
involves four general steps: 

1) Setting an initial Simplex figure; 
2) Calculating errors for vertices; 
3) Moving Simplex figures; 
4) Examining the status of convergence. 
An initial Simplex figure has to be set firstly, and 

then by rolling through the error space, expanding, 
shrinking, contracting and turning towards the minimal 
error point of the space. The movement of the Simplex 
figure is decided by the error distribution at its vertex, 
which is calculated each time when the Simplex figure is 
reshaped. 

These three methods are considered to be the most 
commonly used methods at present. Compared with 
those using three traditional velocity models and the new 
model, 24 examples are set up to verify the velocity 
anisotropy range of 1%, 3% and 5%, as listed in Table 7. 

 
Table 1 Error summary of different kinds of velocity models 

Velocity model Direction of velocity Origin of velocity parameter Random error Method error Measure error Instrument error

SFVM Single Field measurement Existent Big Small Middle 

MFVM Multiple Field measurement Existent Big Small Big 

SIVM Single Velocity inversion Existent Big Non-existent Small 

MNVM Multiple Without measurement and Existent Small Non-existent Small  
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Fig. 3 Calculation model 

 
Table 2 Coordinates of sensors 

Sensor X/m Y/m Z/m 

A 0 0 0 

B 0 1000 0 

C 1000 1000 0 

D 1000 0 0 

E 0 0 1000 

F 0 1000 1000 

G 1000 1000 1000 

H 1000 0 1000 

 
Table 3 Coordinates of sources 

Sensor X/m Y/m Z/m 

I 253 756 342 

J 497 329 751 

K 624 594 103 

L 675 1328 1745 

M 1681 974 1950 

N 2489 1567 1436 

 

Table 4 Arrival times of each sensor from sources (1% for 

velocity anisotropy range) (Unit: ms) 

Sensor 
Source 

I J K L M N 

A 172.46 191.37 173.88 463.51 554.96 649.41

B 98.08 225.06 151.22 382.20 520.14 588.14

C 172.44 226.50 112.57 359.57 417.30 431.57

D 222.40 193.93 141.25 443.36 457.64 519.03

E 206.32 129.45 248.25 336.49 429.09 595.86

F 150.71 176.03 235.49 210.23 383.91 520.03

G 172.79 226.05 112.13 363.19 412.31 428.99

H 251.51 131.16 227.93 312.02 303.69 439.27

 

5.2 Result analysis 
The results of the 24 examples with different 

velocity variation range and measurement errors are 
plotted in Figs. 4−6. They show that: 

Table 5 Arrival times of each sensor from sources (3% for 

velocity anisotropy range) (Unit: ms) 

Sensor
Source 

I J K L M N 

A 171.10 196.87 173.53 448.12 553.85 649.41

B 95.97 230.13 150.01 375.40 511.86 597.74

C 176.34 224.70 111.24 351.18 422.42 423.90

D 220.21 192.77 138.50 434.67 467.00 515.93

E 212.26 129.71 251.26 327.87 429.09 578.47

F 147.43 173.92 239.85 211.92 383.91 505.81

G 169.37 226.05 114.64 357.44 422.42 426.43

H 255.10 131.96 228.39 312.02 296.59 444.59

 

Table 6 Arrival times of each sensor from sources (5% for 

velocity anisotropy range) (Unit: ms) 

Sensor
Source 

I J K L M N 

A 166.50 190.61 171.13 453.44 569.90 635.54

B 96.54 231.08 157.23 384.52 538.63 612.75

C 165.13 229.74 113.03 355.33 405.83 414.88

D 225.10 188.98 146.80 466.70 440.00 521.11

E 200.72 124.70 257.50 324.68 444.98 600.67

F 144.57 183.44 235.49 213.20 385.44 540.65

G 175.98 236.50 109.29 374.49 426.79 447.79

H 263.16 124.16 231.64 325.73 315.66 464.24

 
1) As the velocity deviation range changes from 1% 

to 3% and 5%, the errors of the estimated MS location 
for all the 24 cases become drastically larger. As shown 
in Fig. 4, the location errors for Cases 1, 2 and 3 of 
source K are 9.28 m, 20.34 m and 38.16 m, respectively, 
when the velocity deviation range is 1%. In Fig. 5, these 
errors change into 15.92 m, 36.28 m and 67.85 m, 
respectively, when velocity deviation range is 3%. The 
errors further increase to 28.39 m, 41.07 m and 102.41 m, 
respectively, when the velocity deviation range becomes 
5%, as seen in Fig. 6. Similar trend can be found for the 
rest 21 cases in Figs. 4−6, which means that the velocity 
deviation is the key influence factor in locating the MS 
source. 

2) The errors based on the three traditional velocity 
models appear to be more significant than those based on 
the proposed MNVM model. When the MNVM velocity 
model is applied, the error is less sensitive no matter 
which iterative algorithm is adopted. The MNVM model 
assumes the same velocity from a MS to three nearest 
sensors, which is closer to the actual site situation 
compared with traditional models. Moreover, it not only 
avoids the error due to pre-measurement of the wave 
velocity compared with the SFVM and MFVM models, 
but also avoids the method error caused by the velocity  
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Table 7 Summary of location methods used in this example 
Velocity 
model 

Case 
No. 

Measured 
error range/% 

Iterative algorithm 

SFVM 

1 1 

Levenberg-Marquardt method2 3 

3 5 

4 1 
Gauss-Newton iteration 

method 
5 3 

6 5 

7 1 

Simplex method 8 3 

9 5 

MFVM 

10 1 

Levenberg-Marquardt method11 3 

12 5 

13 1 
Gauss-Newton iteration 

method 
14 3 

15 5 

16 1 

Simplex method 17 3 

18 5 

SIVM 

19 

— 

Levenberg-Marquardt method

20 
Gauss-Newton iteration 

method 

21 Simplex method 

MNVM 

22 

— 

Levenberg-Marquardt method

23 
Gauss-Newton iteration 

method 

24 Simplex method 

 

 
Fig. 4 Comparison of location errors for different cases (1% for 

velocity anisotropy range) 

 
inversion in the SIVM model. It is shown that MNVM is 
not sensitive to the velocity deviation in different 
directions during the process of iteration. 

3) Figures 4−6 also show that the Simplex method 
has better performance compared with the Gauss-Newton 
iteration method and the Levenberg-Marquardt method, 
especially when the sources are outside the sensors array 

 

 
Fig. 5 Comparison of location errors for different cases (3% for 

velocity anisotropy range) 

 

 
Fig. 6 Comparison of location errors for different cases (5% for 

velocity anisotropy range) 

 
sensors array. Using the same velocity model, the 
iterative algorithm has less effect if an MS source is 
within the sensors’ array. However, for the sources 
outside the sensors’ array, for example, the sources L, M 
and N, the final positioning errors are obviously different 
based on different iterative algorithms. The Levenberg- 
Marquardt method introduces the largest error while the 
Simplex method gives the lowest. 

4) It can also been seen from Figs. 4 to 6 that the 
measurement velocity error affects the final error 
apparently based on SFVM and MFVM. For the change 
of the measurement velocity error, the final error of 
Cases 1−3 and Cases 10−12 based on the Levenberg- 
Marquardt iteration method are much larger than those of 
Cases 4−6 and Cases 13−15 based on Gauss-Newton 
iterative method, and also those of Cases 7−9 and Cases 
16−18 based on the Simplex method. It is shown that the 
sequence of influence level of different iterative 
algorithms is Levenberg-Marquardt iteration method> 
Gauss-Newton iteration method>Simplex method. 

Based on the comprehensive analysis of the 24 
cases, it is verified that the proposed multidirectional 
velocity model with the Simplex iteration method always 
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gives the lowest error. It not only effectively solves the 
coordinates of sources whether the source is within the 
sensors’ array or not, but also is insensitive to the 
velocity deviation in different directions. 
 
5.3 Engineering application 

The new model is then applied to three blasting tests 
in the Dongguashan Mine [25], where a micro-seismic 

monitoring system is set up with 16 sensors. 
Coordinates of sensors and triggered times by 

sensors are listed in Table 8. The calculated locations and 
computed results of the blasting events based on SIVM 
with the time residual objective function (TT method), 
SIVM with the time residual cross objective function 
(TD method) and the proposed MSVM (new method) are 
shown in Fig. 7 and Table 9. 

 
Table 8 Coordinates of sensors and triggered times by sensors 

Number of sensor 
Direction/m Arrival time to sensors/ms 

X Y Z Event 1 Event 2 Event 3 

Site 1 84345.73 22474.0 −678.01 31.214136 0.563835 45.26793 

Site 2 84157.08 22717.2 −737.28   45.26493 

Site 3 84256.71 22587.9 −682.80 31.225969 0.574668 45.25826 

Site 4 84493.74 22395.4 −653.02 31.210303 0.567501  

Site 5 84299.94 22861.7 −764.74   45.26118 

Site 6 84377.81 22755.5 −722.01 31.222942 0.566903 45.24801 

Site 7 84487.86 22612.0 −704.33 31.195608 0.547570 45.25868 

Site 8 84580.14 22489.6 −693.73 31.196942 0.556570  

Site 9 84591.12 22453.2 −862.58 31.206442 0.556775  

Site 10 84349.47 22271.4 −862.79    

Site 11 84429.88 22332.3 −863.16 31.226608 0.573108  

Site 12 84509.80 22391.8 −862.91 31.213275 0.561441  

Site 13 84076.11 22705.4 −862.89   45.28031 

Site 14 84182.39 22775.1 −862.38   45.26864 

Site 15 84259.16 22840.2 −862.04   45.26714 

Site 16 84307.19 22943.1 −860.87   45.27964 

 

  

Fig. 7 Comparison of location errors in X, 

Y and Z directions: (a) X direction; (b) Y 

direction; (c) Z direction 



J. Cent. South Univ. (2015) 22: 2348−2358 

 

2357

 

 
Table 9 Locations and computed results of blasting 

Event Direction 
Blasting 

coordinate 
Computed 
coordinate 

Error 
Error computed by 

new method/m 
Error computed by 

TD method/m 
Error computed by 

TT method /m 

 X 84528.4 84531.2594 −2.8594    

1 Y 22556.2 22550.3166 5.8834 6.7540 10.9323 10.9935 

 Z −753.2 −751.5191 −1.6809    

 X 84479 84481.3952 −2.3952    

2 Y 22570 22573.2857 −3.2857 6.6574 8.4000 20.3198 

 Z −814.4 −819.6715 5.2715    

 X 84359 84357.0184 1.9816    

3 Y 22673 22670.9023 2.0977 4.8780 11.1376 32.4625 

 Z −795.5 −799.4329 3.9329    

 

From Fig. 7 and Table 9, the following results can 
be found: 

1) The results based on the new model have good 
agreement with the results of the three blasting tests. 
Compared with the TT method and the TD method, the 
errors from the new method are reduced from 10.9935 m 
and 10.9323 m to 6.7540 m for Event 1, 20.3198 m and 
8.4000 m to 6.6574 m for Event 2, and 32.4625 m and 
11.1376 m to 4.8780 m for Event 3. The maximum 
reduction of the error is 84.97% for Event 3. 

2) Different from the TD method and TT method, 
the errors in various directions based on the new method 
are all lower than 10 m for all the three events, which is 
acceptable for the engineering application. 

3) The new method shows good performance in the 
aspects of accuracy and stability for the three events, 
which further verifies the validity of this model. 
 
6 Conclusions 

 
1) A new multidirectional velocity model is 

proposed which does not require field pre-measurement 
of the wave propagation velocity and velocity inversion. 
The results of 24 case studies and an engineering 
application verify that the proposed model has advantage 
over the three traditional velocity models in more 
accurately locating micro-seismic sources. 

2) The error when identifying the micro-seismic 
source is significantly affected by the velocity deviation. 
Its influence is much more obvious than other factors. 
Considering that the laws of the velocity deviation are 
difficult to be completely avoided, choosing a suitable 
velocity model to reduce its influence is important. 

3) The new multidirectional velocity model assumes 
that the wave propagation velocities from a 
micro-seismic source to three nearest sensors are the 
same. Since the proposed velocity model does not 
require pre-measurement of the wave velocity and 
velocity inversion, the measurement error and method 

error are reduced compared to the three traditional 
velocity models. The 24 numerical examples and the 
engineering application indicate that the new velocity 
model with Simplex method always gives the lowest 
error. 

4) It is also found that the new velocity model with 
the Simplex method has good stability when the velocity 
deviation changes from 1% to 3%. And both the internal 
and external sources for the sensors array can be 
effectively searched based on the proposal velocity 
model. 
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