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Abstract: By combining the results of laboratory model tests with relevant flow rules, the failure mode of shallow unsymmetrical 
loading tunnels and the corresponding velocity field were established. According to the principle of virtual power, the upper bound 
solution for surrounding rock pressure of shallow unsymmetrical loading tunnel was derived and verified by an example. The results 
indicate that the calculated results of the derived upper bound method for surrounding rock pressure of shallow unsymmetrical 
loading tunnels are relatively close to those of the existing “code method” and test results, which means that the proposed method is 
feasible. The current code method underestimates the unsymmetrical loading feature of surrounding rock pressure of shallow 
unsymmetrical loading tunnels, so it is unsafe; when the burial depth is less or greater than two times of the tunnel span and the 
unsymmetrical loading angle is less than 45°, the upper bound method or the average value of the results calculated by the upper 
bound method and code method respectively, is comparatively reasonable. When the burial depth is greater than two times of the 
tunnel span and the unsymmetrical loading angle is greater than 45°, the code method is more suitable. 
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1 Introduction 
 

Restricted by geological conditions and line 
direction, the tunnels with entrance and the sections next 
to mountains and valleys are commonly unsymmetrical 
loading tunnels. Compared to normal tunnels, the 
unsymmetrical loading tunnels have complex structural 
stress and large construction difficulty. Therefore, the 
engineering accidents and potential risks such as 
mountain slumping, initial support instability and 
secondary lining cracking may occur. The basic reason is 
insufficient knowledge of the characteristics of structural 
stress and surrounding rock pressure of unsymmetrical 
loading tunnels, which causes the design scheme to lack 
pertinence and results in unreasonable construction 
method and auxiliary measures [1]. Therefore, during the 
design process, it is crucial to accurately determine the 
structural stress of unsymmetrical loading tunnels, i.e. 
surrounding rock pressure [2−3]. 

At present, the calculation of the surrounding rock 
pressure of unsymmetrical loading tunnels is mainly the 
method recommended in the design codes of railway and 

road tunnels in China. An assumption that the 
distribution pattern of surrounding rock pressure of 
unsymmetrical loading tunnels is consistent with the 
ground slope is made, and then the limit equilibrium 
analysis method is used to obtain the results [4−5]. For 
years, it has been applied in engineering practice widely. 
However, due to too many assumptions, the model is 
simplified, and the calculated result shows a great 
difference with the actual situations. The model test 
results in Ref. [1] show that the method used for 
calculating the surrounding rock pressure of 
unsymmetrical loading tunnels, recommended by the 
above two codes,  underestimates the unsymmetrical 
loading feature, and is likely to bring about safety risks. 
Therefore, the research on the calculation methods for 
surrounding rock pressure of unsymmetrical loading 
tunnels is far from sufficient. 

The limit analysis method is popular among the 
researchers due to its distinct concept and mature theory. 
The upper and lower bound theorems have been applied 
to the stability issues of shallow tunnels and useful 
conclusions are obtained [6−8]. Moreover, based on 
previous achievements, a certain failure mode is assumed, 
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and the corresponding velocity field to obtain the upper- 
bound solution for the surrounding rock pressure of 
shallow buried tunnels is built [9−14]. However, these 
researches do not consider the unsymmetrical loading of 
terrain, so they can’t be applied in shallow-buried 
unsymmetrical loading tunnels [15]. 

In this work, the results of model test [1] are taken 
as the basis to establish the failure mode of surrounding 
rocks of shallow buried unsymmetrical loading tunnels, 
and then to derive the upper-bound solution for 
surrounding rock pressure of shallow-buried 
unsymmetrical loading tunnels based on the theory of 
upper bound method. Finally, a comparative analysis is 
made using application examples. 
 
2 Establishment of failure mode 
 
2.1 Basic assumptions 

In order to facilitate the analysis, the following 
assumptions are made: 

1) A tunnel surrounding rock is considered as an 
ideal elastic plastic body and the material c− relation 
conforms to Mohr-Coulomb yield criterion. 

2) The tunnel section is simplified into the one with 
vertical wall height H, span 2b, upper arc rise f, and 
burial depth h1 at the midline of tunnel roof. Vertical 
loads acting on the tunnel vault are q1 and q2, 
respectively, in a linear distribution. The evenly 
distributed horizontal surrounding rock pressures acting 
on the side wall are e1 and e2, respectively, and ei=kqi 
(i=1, 2), where k is an undetermined parameter, as shown 
in Fig. 1. 
 

 
Fig. 1 Distribution mode of surrounding rock pressure 

 
3) The movements of side wall and vault do not 

impact each other. The internal energy dissipation 
produced by friction is negligible, and the influence of 
construction method is not considered. 

4) The surrounding rocks in certain ranges above 

the tunnel vault and below ground surface are restrained 
by surrounding rock-soil mass, and their displacement is 
mainly vertical. 
 
2.2 Failure mode 

According to the above assumptions and the results 
of model test [1], it can be derived that the fracture lines 
on both sides of the tunnel are continuous parabola-like 
curves and tangent to the basement. Hence, the failure 
mode of the surrounding rock of shallow-buried 
unsymmetrical loading tunnel is established, as shown in 
Fig. 2. As shown, α is the angle of terrain unsymmetrical 
loading;  and  are fracture curves in shallow 
buried and deep-buried sides, respectively; AB is the 
ground surface line, and AA1O1B1B is the rigid body with 
only a trend of vertical sliding. 
 

 
Fig. 2 Failure mode of shallow buried tunnel 

 
The horizontal line passing through vault O1 

discretizes the fracture lines AF and BE into two parts 
containing m and n sections. With vertexes C and D of 
side wall and vault O1 as vertexes, the whole fracture 
body is divided into several small triangular sliding 
blocks, of which there are (m−1) blocks in the area above 
the side wall, and (n−1) blocks in the area below side 
wall. It is supposed that the included angles between 
each broken line and fracture line and between two 
adjacent broken lines are αi and βi (i=1, … , m+n), 
respectively, so the shape of the fracture body composed 
of all the triangular sliding blocks can be described by 
{αi, βi}. The required target value, i.e. surrounding rock 
pressure q is the function of {αi, βi}, that is, q=f(αi, βi). 
 
3 Velocity field and vector relation 
 
3.1 Establishment of velocity field 

According to assumption 4), the rigid sliding block 
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above the tunnel vault lies at a certain depth in soil, and 
is restrained in horizontal direction. So, its velocity 
vector in horizontal direction is negligible, and the 
velocity vector is vertical and points downwards. 

The rigid sliding blocks AA1O1O2 and A1A2O1 on the 
left side of the tunnel are analyzed, as shown in Fig. 3. 
Suppose that the downward velocity vector of AA1O1O2 
is v0, and the calculated friction angle of fracture plane of 
surrounding rock is . The relation between velocity 
vectors, as shown in Fig. 4, can be obtained based on the 
associated flow rule. 
 

 
Fig. 3 Velocity vector of sliding block 

 

 
Fig. 4 Vector relationship of v0−v1 

 
3.2 Derivation of velocity vector relation 

From the vector relation shown in Fig. 4 and sine 
theorem, it can be seen that the velocity vectors of all 
broken lines of the quadrilateral sliding block AA1O1O2 
should satisfy the following recursion relation: 
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Similarly, the velocity vector relations of all broken 

lines of the triangular sliding block D1D2D can be 

derived as 
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Further, by reference to the velocity field shown in 

Fig. 5, for any sliding block AiAi+1O1 (DiDi+1D) (Fig. 6), 
the recursion relation of the velocity vectors of all broken 
lines is 
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Fig. 5 Velocity field corresponding to failure mode 

 

 
Fig. 6 Velocity vector relationship of block AiAi+1O1 (DiDi+1D) 

 
In the fracture area above the vault, i=1,…, m−1; in 

the fracture area below the vault, i=m+1,…, m+n−1; θ1 is 
the angle of ∠O1D1D; v0,1 is the velocity vector of the 
broken line A1O1, vi (i=1, …, m+n) is the velocity vector 
of the small section of fracture line, and vi,i+1 (i=0,…, 
m+n−1) is the velocity vector of the broken line. 
 
4 Derivation of geometric relations of 

fracture sliding blocks 
 
4.1 Lengths of broken lines and fracture lines 

For sliding block DDn−1F, as shown in Fig. 7, the 
relation between the lengths of broken lines or fracture 
lines of all velocities can be derived from the geometric 
relation of the triangle: 
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where ,DF  1nDD   and 1nD F  are the lengths of the 
sides of sliding block DDn−1F. 

Thus, for any sliding block DDiDi+1, as shown in 
Fig. 8, there is 
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where iDD  and 1i iD D   are the lengths of the sides of 
sliding block DDiDi+1. 
 

 
Fig. 7 Geometrical relationship of block DDn−1F 

 

 
Fig. 8 Geometrical relationship of block DDiDi+1 

 
From recursive calculation of Eq. (4) and Eq. (5), 

the length of line 1 1D O  can be obtained by combining 
with .HDF   As shown in Fig. 9, ΔD1DO1 is analyzed 
to get 
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where 1 1D O , 1DO  and 1DD  are the lengths of the 

sides of ΔD1DO1, respectively, and 2 2
1 .DO b f   

 

 
Fig. 9 Geometrical relationship of block AmD1DO1 

 
Thus, the same method can be used to get the 

lengths of the broken lines and fracture lines of the 
fracture area above the vault (Figs. 9 and 10).  
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where 1mA D  and 1mA O  are the lengths of the sides of 
the quadrilateral sliding block AmD1DO1, respectively, 
while 1i iA A   and 1iA O  are the lengths of the sides of 
triangular sliding block O1AiAi+1. 
 

 
Fig. 10 Geometrical relationship of block O1AiAi+1 

 
Through the above recursion, the length of 1 1A O  

is obtained, and then the quadrilateral sliding block 
AA1O1O2 is analyzed, as shown in Fig. 11, combined 
with the associated flow rule:  
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where 1,AA  2AO  and 1 2O O  are the lengths of the 

sides of the sliding block AA1O1O2, with 1 2O O =h1 and 
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= .
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For the right side, each velocity vector iv  and the 
recursion relation of the length of each dashed line are 
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Fig. 11 Geometrical relationship of block AA1O1O2 

 
similar to the above derivation, except that 1AA  is 
different from 1 :BB   
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where 1BB  and 2BO  are the lengths of the sides of 
the quadrilateral sliding block BB1O1O2; i  and i    
are the included angles between broken line and sliding 
plane and between adjacent broken lines on the right side 
of the tunnel, respectively. 
 
4.2 Area of fracture area 

Through recursion of the above geometric relations 
between broken lines or fracture lines, these lengths are 
obtained, and the area S of each fracture sliding block 
can be further calculated: 
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where  and   , ,  are the character variables, and 
satisfy: 

1

1

=

=

A D

B C

     
     


  

, = , = ,

, = , = ,
                     (12) 

 
5 Solution of limit analysis method 
 
5.1 Gravity power 

It is assumed that the upper soil reaches the limit 
state after excavation of the tunnel, and has a trend to 
slide downwards. The soil belongs to uniform material, 
and the volume-weight is γ, so the power Pγ generated by 
the gravity is 
 

RP P P   L                               (13) 
 
where PγL and PγR are the gravity power of right and left 
side of the tunnel, respectively. 
where 
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The calculation formula of PγR is similar to that of 

PγL, as long as A→B, D→C, α→α', β→β', v→v' and 
F→E. 
 
5.2 Internal energy dissipation power 

The internal energy dissipation power Pc of each 
broken line is given by 
 

c c cP P P L R                               (14) 
 
where PcL and PcR are the internal energy dissipation 
power of the broken lines on the right and left sides of 
the tunnel, respectively. 
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The calculation formula of PcR is similar to that of 

PcL, as long as A→B, D→C, v→v' and F→E. 
 
5.3 Power of supporting force 

Supporting force is the counterforce acting on the 
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surrounding rocks by supporting structure to prevent the 
deformation and damage of the surrounding rocks. It is 
equivalent to surrounding rock pressure, but has an 
opposite direction, so the power of supporting force is 
negative. As shown in Fig. 1, it is supposed that the 
vertical and horizontal loads acting on the supporting 
structure are q1, q2 and e1, e2, respectively; they meet 
assumption 2) in Section 2.1, so the power of supporting 
force PT is 
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where PT is the power of supporting force. 
 
5.4 Upper-bound solution for surrounding rock 

pressure 
Equations (13) to (15) are substituted into virtual 

power equation Eq. (16). The load function (q1, q2) 
determined by a set of angles {αi, βi}, i=1, …, m+n, rock 
strength parameter (c, ) as well as tunnel geometric and 
burial depth parameters (b, f, H, h1) can be obtained: 
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Apparently, for any certain project, its rock strength 
parameter (c, ) as well as tunnel geometric and burial 
depth parameters (b, f, H, h1) are already determined in 
design and investigation stages, so Eq. (17) can be 
written as 
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From Eq. (18), it can be seen that the load function 
(q1, q2) can be completely determined by a set of angles 
{αi, βi}, i=1, …, m+n. 

According to the principle of upper bound method, 
the maximum load value determined by {αi, βi}, i=1, …, 
m+n is the upper bound solution for surrounding rock 
pressure of shallow-buried unsymmetrical loading tunnel. 
However, from Eq. (18), it can be seen that it contains 
two target parameters q1 and q2, and a limiting condition 
is still required in order to obtain the extreme value of 
the function. Therefore, it is assumed that 
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Equation (19) is substituted into Eq. (18) to get the 
function 
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From the velocity vector diagram shown in Fig. 5, it 
can be seen that all angle parameters of the left side of 

the failure mode should meet the corresponding 
constraint conditions in order to ensure velocity vector 
closure and geometric boundary condition, so do the 
right side. Therefore, the upper bound solution for the 
surrounding rock pressure of shallow-buried 
unsymmetrical loading tunnel is transformed into the 
extreme value problem of q determined by Eq. (20): 
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It can be seen that the upper bound solution for the 

surrounding rock pressure of shallow-buried 
unsymmetrical loading tunnel can be interpreted as the 
optimal solution for nonlinear programming of 
inequations. Through computer programming, the 
surrounding rock pressure q1, q2 and e1, e2 can be 
calculated respectively. 
 
6 Example of verification and analysis 
 
6.1 Example of verification 

In order to verify the reliability of the method 
derived in this work, a typical shallow-buried 
unsymmetrical loading tunnel is calculated as an 
engineering case. The result is compared with that by 
“code method” and test result [1]. 

The tunnel excavation height is taken as H+f=8 m, 
span 2b=10 m, specific weight of surrounding rock γ=  
19 kN/m3, cohesion c=30 kPa, internal friction angle 
=18°, angle of unsymmetrical loading α=30°, and burial 
depth h1=8 m. All calculated results are listed in Table 1. 
From the analysis on Table 1, it can be seen that: 

1) For load q1 in the shallow side, the relative 
deviations of the three results are within 10%; for load q2 
in the deep side, the relative deviations between upper 
bound solutions derived by the proposed method, the 
code method and test result are relatively large, because 
the sliding blocks in the example is few, which makes the 
dissipation of internal energy produced by soil cohesion 
can not be taken into account totally. Overall, the results 
calculated by the method proposed are reliable. 

2) In addition, the loads are considered as linear 
distribution, as shown in Fig. 12. It can be seen that the 
straight slopes obtained by the upper bound method and 
the model test are obviously larger than the calculated 
result of code method, which means that the calculated 
results of current code method underestimate the 
unsymmetrical loading feature of surrounding rock 
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Table 1 Comparison of results 

Burial 
depth/m 

Bias 
angle/(°) 

Deep-buried side Shallow-buried side 

q2/kPa Relative difference/% q1/kPa  Relative difference/%

Code 
method 

Upper bound 
method 

Test 
value 

E1 E2 E3 
Code 

method
Upper bound 

method 
Test 
value 

 E1 E2 E3

8 

15 162.4 218.3 197.6 34.4 10.5 −17.8 137.2 175.6 132.4  28.0 32.6 3.6

30 177.2 255.7 209.6 44.3 22.0 −15.5 122.8 125.6 119.6  2.3 5.0 2.7

45 195.6 283.5 217.6 44.9 30.3 −10.1 102.4 90.4 106.0  −11.7 −14.7 −3.4

28 

15 438.8 483.7 508.0 10.2 −4.8 −13.6 418.4 415.6 399.6  −0.7 4.0 4.7

30 477.2 489.9 582.0 2.7 −15.8 −18.0 430.4 396.3 392.0  −7.9 1.1 9.8

45 496.0 463.2 630.0 −6.6 −26.5 −21.3 414.8 341.2 387.2  −17.7 −11.9 7.1

Note: E1=[q(Upper bound method)–q(Code method)]/q(Code method), E2=[q(Upper bound method)−q(Test value)/q(Test value), and E3=[q(Code 
method)−q(Test value)/q(Test value). 

 

 
Fig. 12 Comparison of results: (a) h1=8 m, α=15°; (b) h1=8 m, α=30°; (c) h1=8 m, α=45°; (d) h1=28 m, α=15°; (e) h1=28 m, α=30°; (f) 

h1=28 m, α=45° 
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pressure. Therefore, the code method is unsafe. These are 
also consistent with the research conclusions in Ref. [1]. 
However, the calculated values of code method are 
obtained based on the assumption that the linear 
distribution of load is parallel to the unsymmetrical 
loading line of the terrain. This assumption has some 
errors and is inconsistent with the actual situation. 
 
6.2 Comparative analysis 

In order to further analyze the application of the 
method derived in this work, the above engineering case 
is used. The calculation is made under 5 combinations of 
conditions: burial depth of h1=28 m and unsymmetrical 
loading angles of α=15° and 45°. The specific calculated 
results are shown in Table 1, Figs. 12 and 13. 

1) When the burial depth is shallow, the result 
calculated by the upper bound method is slightly larger 
than that of code method and model test, but closer to the 
model test, with the maximum relative deviation of 
almost 30%; the result calculated by code method has the 
maximum relative deviation of 45%, and its relative 
deviation gradually increases with the increase of 
unsymmetrical loading angle, as reflected by load value 
of the deep side. 

2) When the burial depth is large, the result 
calculated by the upper bound method lies between that 
of “code method” and the model test. When the 
unsymmetrical loading angle is 15°, the three results are 
extremely close to each other, with the maximum relative 
deviation of only 10%; when the unsymmetrical loading 
angle is 45°, the relative deviations of the three results 
increase, with the maximum value of about 26%. 

In general, three results are very close to each other, 
which further means that the upper bound method is 
feasible for solving the surrounding rock pressure of 
shallow-buried unsymmetrical loading tunnels. 

3) With the increase of unsymmetrical loading angle, 
the surrounding rock pressure in deep side gradually 
increases. The increase amplitude of the upper bound 
method is larger than that of other two methods; the 
surrounding rock pressure in shallow side reduces a little, 
and the three results have similar changes and values. 
This also verifies the analysis results and conclusions in 
Ref. [1], i.e. the current code method underestimates the 
unsymmetrical loading feature of surrounding rock 
pressure of shallow-buried unsymmetrical loading 
tunnels. 

4) When the test result is taken as the reference 
value to analyze the relative deviations of the three result 
in each condition, it can be concluded that when h1<2D 
or h1>2D and α<45°, the result of the proposed method 
or the average values taken of both the proposed method 
and code method are more reasonable, and can more 

accurately reflect the unsymmetrical loading feature. 
When h1>2D and α≥45°, the code method is more 
suitable. 
 

 
Fig. 13 Change laws of surrounding rock pressure on bias 

angles: (a) h1=8 m; (b) h1=28 m 

 
7 Conclusions 
 

1) Combined with the analysis results of laboratory 
model test, the failure mode of shallow-buried 
unsymmetrical loading tunnels is established. The 
corresponding velocity field is built based on the 
associated flow rule, and the upper bound solution for 
the surrounding rock pressure is derived based on the 
principle of virtual power. 

2) Example analysis results show that the upper 
bound method is feasible for solving the surrounding 
rock pressure of shallow-buried tunnels under 
unsymmetrical loading, while the current code method 
underestimates the unsymmetrical loading feature, and it 
is unsafe. 

3) Through discussion on the application of the 
current code method and the proposed method, it can be 
concluded that when h1<2D or h1>2D and α<45°, the 
result by the proposed method or the average values 
taken of both the proposed method and code method are 
more reasonable, and more accurately reflect the 
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unsymmetrical loading feature. When h1>2D and α≥45°, 
the code method is more suitable. 
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