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Abstract: A new failure mechanism is proposed to analyze the roof collapse based on nonlinear failure criterion. Limit analysis 
approach and variational principle are used to obtain analytical findings concerning the stability of potential roof. Then, parametric 
study is carried out to derive the change rule of corresponding parameters on the influence of collapsing shape, which is of 
paramount engineering significance to instruct the tunnel excavations. In comparison with existing results, the findings show 
agreement and validity of the proposed method. The actual collapse in certain shallow tunnels is well in accordance with the 
proposed failure mechanism. 
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1 Introduction 
 

In the analysis of tunnel stability, linear failure 
criterion was widely used due to its simplicity, and it can 
satisfy the engineering demand to some extent [1−2]. 
However, many experiments have validated nonlinear 
mechanical characteristics of geotechnical materials 
rather than simply linear identities in the stress space, 
particularly in the range of small normal stress [3]. 
Meanwhile, there was a tough problem that was involved 
in calculating the rate of energy dissipation and the work 
rate done by external forces along with velocity 
discontinuities to adopt nonlinear failure criterion. To 
resolve this intractable issue, a generalized tangential 
methodology was introduced. It utilized a tangential line 
point on the nonlinear curve to reflect the characteristic 
of nonlinear failure criterion. Thus, the tangential 
parameters were formulated to compute the power of 
energy dissipation and external loads with ease. Since 
limit analysis approach was first used in 1975, the upper 
and lower bound theorems have been effectively 
compulsory methods to estimate the stability of 
geotechnical materials. Therefore, numerous actual 
engineering cases have been tackled with a reasonable 
range of results. A kinematical multi-block collapse 
mechanism was constructed to derive the upper bound 
solution of stability coefficient. The results had 
agreement for shallow tunnels in comparison with the 
experiments. SLOAN and ASSADI [4] derived the 
analytical bounds of supporting pressure on the basis of 

limit analysis approach and finite element (FE) technique. 
Thereafter, based on 3D failure mechanism, the 
centrifugal model tests were employed to reflect the 
practical failure mode of tunnels. CHAMBON and 
CORTÉ [5] verified the findings of supporting pressure. 
LAM and FREDLUND [6] utilized the 3D pattern to 
estimate the cylinder stress function of the slope model. 
Meanwhile, DONALD and CHEN [7] obtained the slope 
minimal safety coefficient by constructing 3D failure 
mechanism, based on the plane analytical method. 

In the previous work, most scholars devoted to face 
stability analysis of tunnel excavations with analytical 
method and numerical simulation. ANAGNOSTOU and 
KOVÁRI [8] studied the stability of excavation face 
under drainage condition, constructing 3D failure 
mechanism in the excavation face of earth-pressure- 
balanced shield tunnel. The typical 3D conical-shaped 
rotational collapse mechanism was employed. In this 
case, the precise upper bound solution of supporting 
pressure was derived in the excavation face of shallow 
tunnels. An elliptical scope, inscribed to the circular 
tunnel face, was involved in failure block, and the 
remaining area of the tunnel face was at test. Faced with 
such problem, spatial discretization technology by point- 
to-point methodology was adopted by MOLLON et al [9] 
to generate a 3D failure mechanism, so as to obtain more 
exact solutions. 

The stability of tunnel roof remained significant in 
the tunnel excavations. Recently, some scholars shifted 
the focus to this respect, and have gained fruitful 
achievements. FRALDI and GUARRACINO [10−11]  
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firstly gained the analytical expression of velocity 
detaching line, which described the collapsing scope of 
tunnel roof in deep-buried tunnels. Then, the failure 
mechanism was extended from the roof to the ground 
with arch effect taken into account to calculate critical 
depth. This depth was used to distinguish the deep and 
shallow tunnel according to the failure mechanism. 
Actually, a large number of tunnels were built under 
water table where seepage forces exert. The pore water 
pressure cannot be neglected when investigating the roof 
stability. HUANG et al [12−13] adopted the similar 
collapse mechanism in deep tunnels to discuss the 
influence of pore pressure on collapsing shape for 
circular tunnels. The rate of pore pressure was 
incorporated into virtual equation as an external force. 
Under the 3D collapse mode of shallow tunnel, QIN et al 
[14] introduced the rate of seepage forces to estimate 
how seepage forces influence the roof stability, and the 
results were in accordance with actual engineering 
situation. 

Many tunnels were built in shallow strata, 
especially in underground construction. The analysis of 
very shallow tunnels was of the same significance to 
instruct the design and in-site construction. Importantly, 
a new collapse mechanism should be constructed to 
approximate the real potential failure. OSMAN et al [15] 
investigated stability number and surface settlement 
profile in undrained clay with plastic deformation 
mechanism. Thereafter, ASHRAF and OSMAN [16] 
studied the stability problem of twin tunnels excavated in 
soft layer through constructing a compatible 
displacement field. In the limit analysis of slope stability, 
the failure mechanism was constructed to work out the 
analytical upper bound solution of stability [17−18]. In 
this work, a new curved collapse mechanism referring to 
practical failure mode was presented regardless of arch 
effect, since its effect in very shallow tunnels was 
relatively small. Meanwhile, circular and rectangle cross- 
sections were selected to calculate the exact velocity 
discontinuities with upper bound theorem and nonlinear 
failure criterion. Analytical solutions were presented for 
practical use in engineering. 
 
2 Principle theory 
 
2.1 Nonlinear failure criterion 

Nonlinear mechanical characteristic of geotechnical 
material was extensively adopted in engineering. And it 
has been the dominant formula in nonlinear analysis of 
geotechnical engineering. Generally, it was written with 
two different forms, expressed by major and minor 
principal stresses and normal and shear stresses, 
respectively [19]. Considering the simplicities of 

calculating the rate of internal energy dissipation, it is 
very convenient to employ the latter form, expressed as 

 
1

c n t c[( ) ]BA                             (1) 
 
where τ and σn are the shear and normal stresses, 
respectively. A and B represent physical parameters 
describing the characteristics of material. σc and σt are 
the uniaxial compressive strength and the tensile strength, 
respectively. The failure criterion [19] is widely used in 
soil and rock mechanics. 
 
2.2 Upper bound theorem 

Based on the merits of the upper bound theorem, it 
has been broadly used in engineering. And it is indicated 
that the actual collapsing load is no more than the load 
gained by equating the rate of energy dissipation to the 
external work rate in any kinematically admissible 
velocity field, when the velocity boundary condition is 
satisfied. The upper bound theorem in the framework of 
limit analysis is expressed as 

 
d d dij ij s i i i iT v s X v                     (2) 

 
where σij is the stress, and ij  means strain rate in any 
kinematically admissible velocity field. Ti represents a 
surcharge load on boundary s, and Xi indicates the body 
force. Ω shows the volume of the potential collapsing 
block, and vi is the velocity. To simplify the calculation 
process, certain hypothesis is introduced when estimating 
the stability of tunnels with the upper bound theorem. 
First, the geotechnical material is perfectly plastic and 
follows an associated flow rule. Second, the collapsing 
block is regarded as a rigid block without considering 
volumetric strain. 
 
3 Failure mode of collapsing block 
 

As introduced before, a new curved collapse 
mechanism is constructed without taking arch effect into 
consideration to probe into the potential roof failure with 
limit analysis approach. According to existing research 
and actual failure mode of tunnel roofs, the proposed 
mechanism resembles pour eight-shaped curve from the 
circumference of tunnel stretching to the ground surface, 
as shown in Fig. 1. From the mechanism, it is manifest 
that the collapsing area tends to increase with the 
increasing buried depth. The failure mode is solely 
suitable for those very shallow tunnels. 
 
4 Upper bound solutions with variational 

method 
 

Under the limit state, the tunnel roof is about to slip 
along with the detaching line. The energy dissipation at a 
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Fig. 1 Potential roof collapse of tunnels: (a) Square cross-section; (b) Circular cross-section 

 
random point along the velocity discontinuity caused by 
normal and shear stresses is expressed as Eq. (9) in   
Ref. [10]. The total energy dissipation rate along the 
velocity discontinuity line can be worked out by 
integrating Di over the interval (L1, L2): 

 
2

1

1/(1 ) 1
t cd [ ( ) (1 )

L B
is L

D D t s AB B          

1/(1 )( ) ] dBf x v x                          (3) 
 

where f ′(x) is the first derivative of f(x); t means the 
thickness of the detaching surface; L1 and L2 are the 
widths of collapsing block, as illustrated in Fig. 1. In 
terms of unbiased tunnel under homogeneous and 
isotropous material, the failure mechanism of unbiased 
tunnel presents symmetry with respect to Z-axis. The 
work rate of collapsing block caused by weight can be 
computed as 

 
2 1

1 0
( ) d ( ) d

L L

L
P f x v x g x v x                    (4) 

 
where γ is the unit weight of rock/soil mass, and g(x) 
describes the tunnel cross-section, including circular and 
rectangle profile. 

Tunnels are often built in very shallow strata. To 
ensure the safety and stability of tunnel structure, 
supporting structure is imposed inside the inner surface 
of tunnel. Therefore, the work rate of supporting pressure 
in shallow circular and rectangle tunnel remains the same 
pattern: 

 
vqLPq 1                                    (5) 

 
where q is equal to the supporting pressure imposed on 
the circumference of tunnel lining. 

Surcharge load also acts on the collapsing block due 

to its specific mechanism. The work rate of surcharge 
force results in 

 
vLP 2ss

                                 (6) 
 
where σs is the surcharge force applied on the ground 
surface. 

The virtual equation of an objective function, 
constituted by the rate of external work and energy 
dissipation, can be formulated as 

 

sqD P P P                                (7) 
 

Substituting Eqs. (3)−(6) into Eq. (7) yields 
 

2

1

1/(1 ) 1 1/(1 )
t c[ ( ) (1 ) ( )

L B B

L
AB B f x          

1

1 s 20
( )] d ( ) d

L
f x v x g x v x qL v L v      

2 1

1
1 s 20

[ ( ), ( ), ] d ( ) d
L L

L
f x f x x v x g x v x qL v L v        

(8) 
 
where the form of [ ( ),  ( ),  ]f x f x x  is 
 

1/(1 ) 1
t c[ ( ),  ( ),  ] ( ) (1 )Bf x f x x AB B          

1/(1 )( ) ( )Bf x f x                        (9) 
 

Based on upper bound theorem, there exist 
numerous solutions which belong to a part of upper 
bound solutions. As to a specific problem, an optimal 
finding can be derived which makes the virtual equation 
reach an extremum by optimizing the objective function 
to achieve the minimum. The integral function ψ is 
shifted to a differential equation by variational 
calculation. According to variational principle and the 
condition of customary regularity, the expression of ψ is 
translated into Euler’s equation to make the integral over 
the interval [L1, L2] acquire a stationary value: 
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δ 0  0
( ) ( )f x x f x

 
   

       
            (10) 

 
According to Eq. (9), the explicit form of Euler’s 

equation is 
 

1/(1 ) 1 (2 1) /(1 )
c ( ) (1 ) ( ) ( ) 0B B BAB B f x f x         (11) 

 
It is a second-order homogeneous differential 

equation, and the final expression of the velocity 
discontinuity surface, f(x), can be determined through 
twice integral calculation: 
 

(1 ) / 1/
1/ 0

c

( )=
B B B

Bf x A x h


 


    

     
  

       (12) 

 
where τ0 and h represent the integration constants 
determined by geometric and mechanical boundary 
conditions, respectively. Based on mechanical condition 
on the ground surface, the distribution of shear stress is 
zero. Consequently, an implicit mechanical equilibrium 
equation is satisfied: 
 

 2 , 0 0xz x L z                            (13) 
 

Meanwhile, there still exist two geometrical 
boundary conditions needed to determine the explicit 
expression of f(x). The following conditions are 
introduced here to calculate the constants, and build the 
geometrical relationship of collapsing block: 
 

2( , 0)=0f x L z                            (14) 
 

1 1( )= ( )f x L g x L                           (15) 
 

According to Eqs. (13)−(15), the analytical form of 
f(x) is written as 
 

   (1 ) / 1/1/
c 2( )= /

B B BBf x A L x             (16) 
 

Then, by combining Eq. (9) and Eq. (16), the 
expression of ψ results in 
 

 1/1/ 1 ( 1) / 1/
t c 2[ ( ), ( ), ]

BB B B Bf x f x x A B L x          

(17) 
 

As mentioned before, the circular and square tunnel 
profiles are considered to estimate the potential roof 
collapse. The collapsing scale with different cross- 
section presents distinctive scope. In the following 
analysis, the discussion is divided into two parts owing 
to two kinds of cross profiles, though the expression of 
the work rate of supporting pressure is identical. 
 
4.1 Collapsing block in circular tunnel 

According to the coordinate system illustrated in 
Fig. 1, the expression of g(x) for describing the shape of 

circular profile gives 
 

2 2( ) ( )g x H R R x                       (18) 
 

Substituting Eq. (18) into Eq. (15), a geometric 
relationship of collapsing block is built: 
 

   (1 ) / 1/1/ 2 2
c 2 1 1/ =

B B BBA L L H R R L       (19) 
 

In order to get the upper bound solution of potential 
collapse, some integral calculations should be performed, 
for instance, 
 

1
2

1
10

π
( )d ( ) arccos

2 2

L LR
g x x H R L

R
       

2 2
1 1

2

L R L

R

 



                         (20) 

 
By combining Eqs. (17), (20) and Eq. (8), the 

expression of ζ turns into 
 

1/ 1 ( 1) / 1/
t 2 1 c( ) (1 )B B B BL L v A B           

 
2

(1 ) / 1
2 1 1( ) arccos

2
B B LR

L L v H R L v
R

     
 

2 2
1 1

1 s 22

π

2

L R L
v qL v L v

R


   



           (21) 

 
Equating virtual equation to zero means making the 

energy dissipation rate equivalent to the rate of external 
work: 
 

1/ 1 ( 1) / 1/
t 2 1 c( ) (1 )B B B BL L A B         

 (1 ) /
2 1 s 2 1( )

B B
L L L H R L       

2 22
1 11

12

π
arccos =0

2 2

L R LLR
qL

R R

     
 
 

  (22) 

 
By solving Eqs. (19) and (22) simultaneously, the 

solutions of L1 and L2 are obtained and the final results of 
potential roof failure in circular tunnel are determined. 
 
4.2 Collapsing block in rectangle tunnel 

The square profile is widely selected in the design 
of subway station. The analysis of roof stability in 
rectangle tunnels is inevitably a very stimulating research 
aspect as well. Likewise, the exact form of g(x) remains 
a concise expression, g(x)=−H. Putting this into Eq. (15), 
the relationship of the collapsing block gives 

 

   (1 ) / 1/1/
c 2 1/ =

B B BBA L L H                (23) 
 

Again, substituting g(x)=−H into Eq. (8), then 
 

1/ 1 ( 1) / 1/
t 2 1 c( ) (1 )B B B BL L v A B           
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 (1 ) /
2 1 1 1 s 2

B B
L L v HL v qL v L v           (24) 

 
Applying upper bound theorem and making the 

virtual equation approach zero, it is 
 

1/ 1 ( 1) / 1/
t 2 1 c( ) (1 )B B B BL L A B          

 (1 ) /
2 1 1 1 s 2 =0

B B
L L HL qL L           (25) 

 
After calculating Eqs. (23) and (25), the analytical 

expressions of collapsing block, L1 and L2, are given as 
follows:  

1
(1 ) t s

1 c
s

(1 )
= ( / ) B B B H

L A H
q H

  
 

 


   

 
      (26) 

 

  1
t(1 )

2 c
s

1
= ( / ) B B B B H q

L A H
q H

 
 

 


   

 
     (27) 

 
5 Consistency of proposed failure mechanism 
 

To evaluate the validity of suggested collapse 
mechanism, it should be of overriding necessity to 
compare the theoretical results with precious research 
findings and practical failure mode in site. The proposed 
mechanism is similar to that of OSMAN et al [15]. The 
results gained in this work can verify its correctness with 
referring to that. Since the research object is constructed 
in undrained clay, the failure criterion in purely clay is 
linear and even a constant τ=c, where c is the internal 
cohesion. The velocity discontinuity line is an inclined 
straight line with f ′(x)=cotφ, where φ is an internal 
frictional angle. In this case, the collapse mechanism is 
composed of two vertical lines. Considering the 
symmetric characteristic, the corresponding calculation 
process is as follows. 

Under the condition of τ=c, the work rate of soil 
weight is computed as 
 

0
= ( ) d ( )

L
P g x v x H R Lv       

2 2 2

2

π
arccos

2 2

R L L R L
v

R R

    
  

          (28) 

 
where L is the collapse width of failure block which 
shares the same magnitude in ground surface and at the 
circumference of the tunnel roof, and H shows the height 
of collapsing block. Meanwhile, the internal energy 
dissipation is expressed as 
 
D=chv                                     (29) 
 

With regard to the power generated by supporting 
pressure, it gives 
 
Pq=qLv                                    (30) 

 
Moreover, the work rate of surcharge load imposed 

on the ground surface results in 

 
ss

P Lv                                  (31) 
 

Based on the upper bound theorem of limit analysis, 
the virtual equation is formulated by equating the 
internal energy dissipation to external work rate:  

2 2 2

s2

π
( ) arccos =

2 2

R L L R L
H R L L

R R

 
      
  

 

ch qL                               (32) 

In this case, the supporting pressure can reach the 
extreme value when the collapse width L attains R. In 
order to compare the results gained in this work with that 
in Ref. [15], the parameters should be the same: γ=20 
kN/m3, σs=50 kPa, R=5 m, H=10 m, sm=0 m, c=26 kPa, 
and H=h−R. Substituting these parameters into Eq. (32), 
the value of supporting pressure is q=114.92 kPa, and 
then the comparative results are presented. It is found 
that the present solution is 0.16, which approaches to the 
OSMAN et al’s solution. 

The solution obtained in this work is in accordance 
with that obtained in the research of OSMAN et al [15]. 
The relative error between the two attains 6.7%, which 
indicates that the analytical results of failure mechanism 
proposed in this work are valid, compared with the 
existing study. 
 
6 Numerical results and parametric study 
 

The nonlinear failure criterion is characterized by 
certain parameters, which play varying influence on the 
dimensions of collapsing block. As a consequence, the 
analysis of different parameters on the failure block is of 
typical significance from the perspective of engineering. 
Numerical calculation with single variable is considered 
to look insight into the sensitivity and change rule of 
various parameters. Based on the form of profile, the 
effects of parameters on the impending collapse in 
circular and square tunnels are illustrated in Figs. 2−5. 

From the results, it is found that the change law is 
completely in accordance with the previous research. 
With the decrease of A, σc and σs, the width of collapsing 
block tends to decrease to varying degree. However, it 
follows a negative correlation with q, R and B changing. 

The regular pattern of arguments in rectangle 
tunnels follows the similar form, though the actual value 
of collapse scale varies. On the whole, the range of 
failure block in square tunnels is a bit greater than that in 
circular tunnels without taking the effect of arch into 
account. Theoretically, the lower the values of B, q and γ, 
the larger the volume and the width of impending 
collapse. Inversely, the impact of A, σc and σs is 
positively proportional to the scope of potential failure 
volume. 
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Fig. 2 Effect of different parameters on 

shallow circular tunnel collapse mechanisms 

(I): (a) Parameter A; (b) Parameter B;  

(c) Parameter σc 

Fig. 3 Effect of different parameters on 
shallow circular tunnel collapse mechanisms 
(II): (a) Parameter q; (b) Parameter σs; 
(c) Parameter R 
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Fig. 4 Effect of different parameters on 
shallow square tunnel collapse mechanisms 
(I): (a) Parameter A; (b) Parameter B;  
(c) Parameter γ 

Fig. 5 Effect of different parameters on 
shallow square tunnel collapse mechanisms 
(II): (a) Parameter σc; (b) Parameter q;  
(c) Parameter σs 
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7 Conclusions 
 

1) A new curved failure mechanism is proposed to 
estimate the stability of impending collapsing block 
under the limit state. Based on the nonlinear failure 
criterion, the analytical solutions are derived for circular 
and square tunnels with limit analysis approach and 
variational principle. The proposed mechanism shows 
great agreement and validity in comparison with existing 
solutions. The current engineering cases are also in 
accordance with the failure mode. 

2) From the perspective of engineering, the analysis 
of influence of various parameters on the roof collapse 
has important significance to instruct the design and 
construction of underground cavities and tunnels. The 
results indicate that the higher values of B, q and γ and 
the lower values of A, σc and σs are beneficial to 
diminishing the scope of collapsing volume and attaining 
the roof stability. 
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