
 

 

J. Cent. South Univ. (2015) 22: 1833−1840 
DOI: 10.1007/s11771-015-2702-8 

 

WordNet-based lexical semantic classification for text corpus analysis 
 

LONG Jun(龙军)1, WANG Lu-da(王鲁达)1, LI Zu-de(李祖德)1, ZHANG Zu-ping(张祖平)1, YANG Liu(杨柳)2 
 

1. School of Information Science and Engineering, Central South University, Changsha 410075, China; 
2. School of Software, Central South University, Changsha 410075, China 

 
© Central South University Press and Springer-Verlag Berlin Heidelberg 2015 

                                                                                                  
 

Abstract: Many text classifications depend on statistical term measures to implement document representation. Such document 
representations ignore the lexical semantic contents of terms and the distilled mutual information, leading to text classification errors. 
This work proposed a document representation method, WordNet-based lexical semantic VSM, to solve the problem. Using WordNet, 
this method constructed a data structure of semantic-element information to characterize lexical semantic contents, and adjusted EM 
modeling to disambiguate word stems. Then, in the lexical-semantic space of corpus, lexical-semantic eigenvector of document 
representation was built by calculating the weight of each synset, and applied to a widely-recognized algorithm NWKNN. On text 
corpus Reuter-21578 and its adjusted version of lexical replacement, the experimental results show that the lexical-semantic 
eigenvector performs F1 measure and scales of dimension better than term-statistic eigenvector based on TF-IDF. Formation of 
document representation eigenvectors ensures the method a wide prospect of classification applications in text corpus analysis. 
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1 Introduction 
 

Text corpus analysis is an important task. 
Meanwhile, clustering and classification are the key 
procedures for text corpus analysis. In addition, text 
classification is an active research area in information 
retrieval, machine learning and natural language 
processing. Most classification algorithms based on 
eigenvector prevail in this field, such as KNN, SVM, 
ELM. Eigenvector-based document classification is a 
widely used technology for text corpus analysis. 
Relevant classification algorithms and experiments are 
typically based on eigenvector of document 
representation. Moreover, the key issue is eigenvector- 
based classification algorithms depending on the VSM [1]. 

TF-IDF (term frequency–inverse document 
frequency) [2] is a prevalent method for characterizing 
document, and its essence is statistical term measure. 
Many methods of document representation based on 
TF-IDF can construct vector space model (VSM) of text 
corpus. Similarly, many methods of document 
representation exploit statistical term measures, such as 
Bag-of-Words [3] and Minwise hashing [4]. For 
document representation, these methods are perceived as 

statistical methods of feature extraction. 
However, in the information retrieval field, 

statistical term measures neglect lexical semantic content. 
It causes corpus analysis to perform on the level of term 
string basically, and disregard lexical replacement of 
document original at deceiving the text corpus analysis 
easily. 

Semantic approach is an effectively used technology 
for document analysis. It can capture the semantic 
features of words under analysis, and based on that, 
characterizes and classifies the document. Close 
relationship between the syntax and lexical semantic 
contents of words have attracted considerable interest in 
both linguistics and computational linguistics. 

The design and implementation of WordNet-based 
lexical semantic classification take account of lexical 
semantic content particularly. Unlike traditional statistical 
methods of feature extraction, our work developed a new 
term measure which can characterize lexical semantic 
contents, and provide a practical method of document 
representation to can handle the impact of lexical 
replacement. The document representation is normalized 
as the eigenvector; consequently, it shall be applied to 
current VSM-dependent classification algorithms. 
Theoretical analysis and a large number of experiments 
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are carried out to verify the effectiveness of this method. 
 
2 Analysis of statistical term measure 
 

In the information retrieval field, similarity and 
correlation analysis of text corpus needs to implement 
corresponding document representations for diverse 
algorithms. Many practicable methods of document 
representation share a basic mechanism, statistical term 
measure. 

Typical statistical methods of feature extraction 
include TF-IDF based on lexical term frequency and 
shingle hash based on consecutive terms [5]. Many TF- 
IDF-based methods of feature extractions employ a 
simple assumption that frequent terms are also 
significant [2]. And, these methods quantify the extent of 
usefulness of terms in characterizing the document in 
which they appear [2]. Besides, as for some hashing 
measures based on fingerprinted shingle, people call a 
sequence of k consecutive terms in a document of shingle. 
Then, a selection algorithm determines which shingles to 
store in a hash table. And various estimation techniques 
are used to determine which shingle is copied and from 
which most of the content originated [5]. 

In the above, these methods for document 
representation are perceived as the mode using statistical 
term measures. As a sort of ontology methods [6], 
document representations based on statistical term 
measures ignore recognition of lexical semantic contents. 
It causes the document representation to lose the mutual 
information [7] of term meanings which comes from 
synonyms in different samples. Moreover, lexical 
replacement of document original cannot be represented 
literally by radical statistical mechanisms of term 
measure. Our comment on statistical term measures and 
document representation can be clarified by analyzing a 
small text corpus example 1. 

Example 1. 
Sample A: Men love holiday. 
Sample B: Human enjoys vacation. 
In example 1, the two simple sentences are viewed 

as two document samples, and these two documents 
comprise the small corpus. Evidently, the meanings of 
sample A and sample B are extremely equivalent. Thus, 
the correlation and semantic similarity between these two 
documents are considerable. Meanwhile, sample B can 
be regarded as a derivative of sample A via lexical 
replacement of document original. The text segmentation 
shall divide each document into meaningful terms, such 
as words, sentences, or topics. As to example 1, all words 
of documents are divided as terms. Obviously, on behalf 
of statistical term measures, the document 
representations on Example 1 did not perform well, 
which are listed in Table 1 and Table 2. 

Table 1 Statistical term measures on Sample A 

Term Men Love Holiday Human Enjoys Vacation

Weight 
(frequency)

1 1 1 0 0 0 

 
Table 2 Statistical term measures on Sample B 

Term Men Love Holiday Human Enjoys Vacation

Weight 
(frequency)

0 0 0 1 1 1 

 
Comparing Tables 1 and 2, positive weights do not 

coexist in the same term of two samples. These two 
orthogonal vectors of term weight demonstrate that the 
statistical term measures for document representation 
cannot effectively signify semantic similarity of the 
corpus example 1. And they did not recognize and 
represent the lexical semantic contents of these two 
documents practically. As a result, these two vectors 
cannot provide mutual information of term meanings. 
 
3 Proposed program 
 
3.1 Motivation and theoretical analysis 

For text corpus analysis, document representations 
which depend on statistical term measures shall lose 
mutual information of term meanings. Besides, in 
different documents, term meanings are relevant to 
specific synonyms which are involved by lexical 
semantic contents. Thus, this new work resorts to 
WordNet [8], a lexical database for English, for 
extracting lexical semantic contents. Then, the method of 
document representation will construct a lexical semantic 
VSM of text corpus to define eigenvector for text 
classification. 

In WordNet, a form is represented by a string of 
ASCII characters, and a sense is represented by the set of 
(one or more) synonyms that have that sense [8]. 
Synonymy is WordNet’s basic relation, because WordNet 
uses sets of synonyms (synsets) to represent word senses. 
Videlicet, shown as Fig. 1, one word, refers to several 
synsets. 
 

 
Fig. 1 Common semantic-element of words 

 
In WordNet, because one word or term refers to 

particular synsets, our motivation is that several 
particular synsets can strictly describe the meaning of 
one word for characterizing lexical semantic contents. 
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Then, our method defines these particular synsets as the 
semantic-elements of word. 

Based on the above definition, involved semantic- 
elements can character the lexical semantic contents of 
Example 1, which shall accomplish feature extraction of 
lexical semantic contents. For instance, in Fig. 1, the 
words human and man belong to different document 
samples in Example 1, and the common semantic- 
element homo that simultaneously describes the 
meanings of human and man can gain mutual 
information [7] between term meanings. Moreover, our 
document representation is able to capture the lexical 
semantic mutual information between samples which lies 
in the same synonyms of different documents. 

According to the statistical theory of 
communications, our work needs further analysis for 
theoretical proof. The analysis first introduces some of 
the basic formulae of information theory [2, 7], which 
are used in our theoretical development of samples 
mutual information. Now, let xi and yj be two distinct 
terms (events) from finite samples (event spaces) X and Y. 
Then, let X or Y  be random variable representing 
distinct lexical semantic contents in sample X or Y, 
which occurs with certain probabilities. In reference to 
above definitions, mutual information between X  and 

,Y  represents the reduction of uncertainty about either 
X  or Y  when the other is known. The mutual 
information between samples, ( ; ),I X Y  is specially 
defined as 
 

( , )
( ; ) ( , ) lg

( ) ( )
i j

i j
i j

i jx X y Y

P x y
P x y

P x P yÎ Î

= å åI X Y               (1) 

 
In the statistical methods of feature extraction, 

probability P(xi) or P(yj) is estimated by counting the 
number of observations (frequency) of xi or yj in sample 
X or Y, and normalizing by N, the size of the corpus. 
Joint probability, P(xi, yj), is estimated by counting the 
number of times (related frequency) that term xi equals 
(is related to) yj in the respective samples of themselves, 
and normalizing by N. 

Taking the Example 1, between any term xi in 
Sample A and any term yj in Sample B, there is not any 
counting of times that xi equals yj. As a result, on corpus 
Example 1, the statistical term measures indicate P(xi, 
yj)=0 so the samples mutual information ( ; ) 0.=I X Y  
Thus, the analysis verifies that the statistical methods of 
feature extraction lose mutual information of term 
meanings. 

On the other hand, for feature extraction of lexical 
semantic contents, our method uses several particular 
semantic-elements to describe the meaning of one word 
or term. In different samples, words can be related to 
other words described by same semantic-elements. Then, 
lexical semantic mutual information between samples, 

( ; ),I X Y  is re-defined to be  
( ; ) =I X Y  

,
,

( ) mod
( ) mod lg

( ) mod ( ) mod
i j

i j

i ji j

x y
x y

x yx X y Y

F e N
F e N

F e N F e NÎ Î ´å å  

        (2)  
To denote probability P(xi) or P(yj), function 

( )
ixF e  or ( )

jyF e  is estimated by calculating the 

frequency of semantic-elements that describe the 
meaning of xi or yj in sample X or Y, and modulo N, the 
total of semantic-elements in corpus. Meanwhile, ,i jx ye  

is the common semantic-elements that simultaneously 
describe the meaning of xi and yj, to denote joint 
probability P(xi,  yj), and function ,( )

i jx yF e  is estimated 

by calculating the frequency ,e ,
i jx y  and modulo N. 

In example 1, joint probability P(xi, yj) is estimated 
by counting the frequency of the common semantic- 
elements, and modulo N. For instance, the words human 
and man are described by the common semantic-element 
homo (shown in Fig. 1). In reality, P(human, man)= 
F(homo) mod N>0, as a result, lexical semantic mutual 
information between Sample A and Sample B, 

( ; ),I X Y  is positive. Thus, the analysis proves that the 
semantic-elements and feature extraction of lexical 
semantic contents can provide the probability-weighted 
amount of information (PWI) [2] between document 
samples on the lexical semantic level. 
 
3.2 Lexical-semantic VSM of text corpus 

In our work, documents are represented using the 
vector space model (VSM). The VSM represents each 
document as a vector of identifiers [1]. Each dimension 
corresponds to a separate feature value. If a feature 
occurs in the document, its value in the vector is non- 
zero. Several different ways of computing these values, 
also known as (term) weights, have been developed. 

For organizing the lexical-semantic VSM of text 
corpus in the lexical-semantic space, the procedures are 
as follows. In the first place, for feature extraction of 
lexical semantic contents, our work makes a data 
structure of semantic-element information. Secondly, the 
work uses EM modeling to disambiguate word stems. 
Lastly, it constructs a lexical-semantic space and builds 
lexical-semantic eigenvectors in the space to characterize 
document samples. 

1) The data structure of semantic-element 
information comprises relevant information of each 
semantic-element in a document sample, which is 
formalized as a data element, listed in Table 3. It can 
record all important information of semantic-elements in 
a document, such as synset ID, weight, sample ID and 
relevant information of words. 

Note that, in a record of the data structure, each 
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Table 3 Data structure of semantic-element information 

Item Explanation 

Synset ID Identification of synset 

Set of synonym 
All synonyms in the identical synset 

WordNet uses sets of synonyms (synsets) 
to represent word senses [8] 

Weight (frequency) 
Frequency of semantic-element in a 
document sample (sum of semantic 

members frequency) 
Sample ID Identification of document sample 

Semantic member 

A linked list (shown in Fig. 2(a)) which 
carries all original words of terms 
referring to semantic-element and 

their word stem (s) 

Semantic members 
frequency 

A linked list (shown in Fig. 2(b)) which 
carries frequency of each original words 
of terms (that refer to semantic-element) 

one by one 

 
original word in inflected form [9] referring to the 
semantic-element and its word stem(s) in base form 
[9−10] are recorded by linked list of semantic member 
(shown in Fig. 2(a)). And, according to WordNet 
framework [8], when original word refers to more than 1 
word stem, the linked-list of semantic member will 
expend the very node of the original word to register all 
word stems. 
 

 
Fig. 2 Linked lists of semantic member (a) and semantic 

members frequency (b) 

 
Meanwhile, the linked-list of semantic members 

frequency is shown in Fig. 2(b). It records the frequency 
of each original word one by one in original word order 

of semantic member. Both of the two linked lists carry 
the essential information of original words and word 
stems in the semantic-element. 

2) On the basis of data structure of semantic- 
element information, semantic member needs to 
disambiguate word stems of original word. In the case of 
an original word referring to more than 1 word stem in 
base form, semantic-element must ensure that one 
original word refers to only 1 word stem. Then, in order 
to select only 1 word stem for an original word (shown in 
Fig. 3), this method employs the maximum entropy 
model [11]. ME modeling provides a framework for 
integrating information for classification from many 
heterogeneous information sources [12]. 

In our model, it is supposed that diversity [13] of 
semantic member implies the significance of the 
semantic-element and the rationality of existing semantic 
members. 

Assume a set of original words X and a set of its 
word stems C. The function cl(x): X→C chooses the 
word stem c with the highest conditional probability, 
which makes sure that original word x only refers to: 
c|(x)=arg maxc p(c|x). Each feature [12] of original word 
is calculated by a function that is associated to a specific 
word stem c, and it takes the form of Eq. (3), where Si is 
the number of semantic member of semantic-element i, 
Pj is the proportion of  the frequency of original word j 

to weight in semantic-element i, and the 2
1

log
iS

j j
j

P P
=

- ⋅å  

indicates semantic member diversity of semantic- 
element i in a document, in the form of Shannon-Wiener 
index [13−14]. 

The conditional probability p(c|x) is defined by   
Eq. (4). The parameter of the semantic-element i [12], αi, 
is the frequency of original word x in semantic- element i. 
K is the number of semantic-elements that word stem c 
refers to, and Z(x) is a value to ensure that the sum of all 
conditional probabilities for this context is equal to 1. 
 


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
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i
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)(                                               (4) 

 
Above equations aim at finding the highest 

conditional probability p(c|x), and using the function c|(x) 
to ensure that original word x refers to only 1 word stem 
(like Fig. 3). After semantic-elements characterizing 
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lexical semantic contents of a document preliminarily, 
the specified ME modeling is applied to implementing 
disambiguation of word stems. Necessarily, the relevant 
items in the data structure of semantic-element 
information shall be modified, such as the semantic 
member, the frequency of original word, and the weight. 
Furthermore, some relevant semantic-elements shall be 
eliminated. 
 

 
Fig. 3 1:1 reference of original word 

 
3) The document representation uses the vector 

space model (VSM). In text corpus, all referred 
semantic-elements are fixed by disambiguation of word 
stems, then, each identical synset ID of all semantic- 
elements fills one dimension in lexical-semantic VSM 
respectively. In lexical-semantic VSM, each document 
representation is marked in the lexical-semantic space of 
text corpus. Specifically, each document sample 
identified by sample ID is represented by the 
lexical-semantic eigenvector. The lexical-semantic VSM 
represents a document docx, using a lexical-semantic 
eigenvector dxRm, given as 
 

),,,( )()2()1( mxxxx dddd                                             (5) 
 
where m is the number of identical synset ID of all 
semantic-elements in corpus; dx(i) is the feature value on 
the ith synset, given as dx(i)=FS(si, docx)·FIDF(Si) for all 
i=1 to m. FS(si, docx) is the weight (frequency) of the ith 
corresponding semantic-element si in document docx. 
And FIDF(si)=lg(D/NDF(si)) is the inverse document 
frequency of si, where D is the sum of the documents in 
corpus, NDF(si) is the number of documents in which the 
ith synset appears at least once. 
 
4 Experiment and its results 
 

To test the lexical-semantic VSM and verify the 
lexical semantic classification, this work uses two sorts 
of eigenvector to represent document in two datasets, and 

employs an effective algorithm to classify the documents. 
After that, contrast between our method and typical 
statistical method displays the effect of this work. 
 
4.1 Eigenvectors for document representation 

In our work, experiments use two sorts of 
eigenvector to represent document sample: 1) lexical- 
semantic eigenvector in the lexical-semantic VSM 
shown in Eq. (5); 2) term-statistic eigenvector in the 
term-space which takes different numbers of selected 
features using information gain [15]. Using the typical 
statistical method of feature extraction, TF-IDF, the 
term-statistic eigenvector, dxRn, is given as [2]  

),,,( )()2()1( nxxxx dddd                                              (6) 
 
where n is the number of terms in corpus; dx(j) is the 
feature value on the jth term, given as dx(j)=FTF(wj, 
docx)·FIDF(wj) for all j=1 to n, and FTF(wj, docx) is the 
frequency of the term wj in document docx and FIDF(wj) is 
the inverse document frequency of wj. 
 
4.2 Datasets 

Our experiments use two corpora: Reuter 
(http://kdd.ics.uci.edu/databases/reuters21578/reuters215
78.html) and an adjusted corpus based on Reuter-21578. 

1) Reuter. The Reuters-21578 text categorization test 
collection contains documents collected from the reuters 
newswire in 1999. It is a standard text categorization 
benchmark and contains 135 categories. Our experiments 
used its subset: one consisting of 20 categories, which 
has approximately 3500 documents (listed in Table 4). 

2) Adjusted corpus (based on Reuter-21578). After 
selecting the subset of Reuter-21578, the datasets unite 
lexical-replacement documents deriving from 10% of the 
subset originals with it. Specifically, each lexical- 
replacement document is changed from an original 
document in the subset. For instance, in Table 5, the 
semantic contents of the lexical replacement and original 
are similar, and the meanings of them are extremely 
equivalent. 
 
4.3 Classification using NWKNN algorithm 

In the text corpus analysis, KNN classification is 
especially effective on selection of data eigenvectors. To 
tackle unbalanced text corpus, the experiments select an 
optimized KNN classification, the NWKNN (Neighbor- 
Weighted K-Nearest Neighbor) algorithm [14]. For 
NWKNN classification, each document d is represented  

 
Table 4 Distribution of all categories in subset of Reuter-21578 

Category Cotton Earn Cpi Rubber Sugar Money-fx Bop Grain Heat Money-supply 

Sample 27 761 75 40 145 574 47 489 16 113 

Category Silver Tin Crude Hog Nat- gas Jobs Cocoa Trade Housing Nickel 

Sample 16 32 483 16 48 50 59 441 16 5  
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Table 5 Lexical replacement of <REUTERS … NEWID="40"> 

Original Lexical replacement 

Stable interest rates and a 

growing economy are 

expected to provide favorable 

conditions for further growth 

in 1987, president Brian 

O’Malley told shareholders at 

the annual meeting. 

Standard Trustco previously 

reported assets of 1.28 billion 

dlrs in 1986, up from 1.10 

billion dlrs in 1985. Return on 

common shareholders' equity 

was 18.6% last year, up from 

15% in 1985. 

Unchanging accrual rates of 

deposit and an uprising economy 

are anticipated to render 

favourable status for further 

increment in 1987, president 

Brian O’Malley said to 

stockholders at the yearly 

meeting. 

Standard Trustco antecedently 

covered assets of 1.28 billion 

dlrs in 1986, upward from 1.10 

billion dlrs in 1985. Return on 

common stockholders’ equity 

was 18.6% last year, upward 

from 15% in 1985. 

 
[15−16] using both lexical-semantic eigenvector and 
term-statistic eigenvector. Formally, the decision rule [14] 
in NWKNN classification can be written as 
 







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where KNN(d) indicates the set of K-nearest neighbors of 
document d; Sim(d, di) denotes the similarity between 
document d and di using cosine value between 
eigenvectors of d and di [14]; δ(dj, ci) is the classification 
for document dj with respect to class ci. Besides, 
according to experience of NWKNN algorithm [14], a 
parameter of weighti, exponent [14], ranges from 2.0 to 
6.0. 
 
4.4 Performance measure 

To evaluate the text classification system, 
performance measure uses the F1 measure [17]. This 
measure combines recall and precision in the following 
way: 
 

PrecisionRecall

PrecisionRecall2
1

PR

PR
F




                                              (9) 

 
where RRecall is the recall; PPrecision is the precision. 

Using F1 measure, it can display the effect of 
different kinds of data on a text classification system [17]. 
For ease of comparison, our experiments summarize the 
F1 scores over the different categories using the 
macro-averages of F1 scores; in the same way, the 
Macro-Recall and Macro-Precision can be obtained [17]. 

Besides, to express the dimension reduction 
relatively, the experiments compare the numbers of 

dimension and increasing document number, which 
indicates the corpus scale. The comparison between two 
sorts of eigenvectors on dimensions can display 
optimization to the dimension problem [18]. 
 
4.5 Experimental results 

To accomplish three-fold cross validation, the 
experiments conduct the training-test procedure on 
datasets Reuter and adjust corpus three times alternately, 
and use the average of the three performances as final 
result. 

Using the NWKNN classification, Fig. 4 manifests 
the F1 measure curves of lexical-semantic eigenvector 
and term-statistic eigenvector on Reuter. Note that, the 
exponent takes 3 empirically [14]. It is obvious that the 
lexical-semantic eigenvector beats term-statistic 
eigenvectors under all selected feature numbers of term- 
space [16] by 4%−7% on Reuter. 
 

 
Fig. 4 Classification result of lexical-semantic eigenvector and 

term-statistic eigenvector with different term-space feature 

numbers on Reuter 

 
Using different exponents in NWKNN, Fig. 5 

illustrates the F1 measure comparison between lexical- 
semantic eigenvector and term-statistic eigenvector on 
Reuter, respectively. Note that the feature number of 
term-space takes 10000. With the increase of exponent, 
the lexical-semantic eigenvector performs better on 
Reuter, and beats term-statistic eigenvector by 
approximate 4% averagely. 

Using different exponent in NWKNN, Fig. 6 
describes the macro-precision and macro-recall 
comparison between lexical-semantic eigenvector and 
term-statistic eigenvector on Reuter, respectively. Note 
that the feature number of term-space takes 10000. It is 
an apparent phenomenon that with the increase of 
exponent, the curves accord with the experience of 
NWKNN [14]. Meantime, macro-precision or macro- 
recall of lexical-semantic eigenvector is superior to the 
term-statistic eigenvector by 7% or 8% on Reuter 
averagely. 
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Fig. 5 Classification result of l lexical-semantic eigenvector 

and term-statistic eigenvector with different exponents on 

Reuter 

 

 
Fig. 6 Classification recall and precision of lexical-semantic 

eigenvector with different exponents and term-statistic 

eigenvector on Reuter 

 
Using the NWKNN classification, Fig. 7 manifests 

the F1 measure curves for lexical-semantic eigenvector 
and term-statistic eigenvector on adjusted corpus. Note 
 

 
Fig. 7 Classification result of lexical-semantic eigenvector and 

term-statistic eigenvector with different term-space feature 

numbers on adjusted corpus 

that, the exponent takes 3 empirically [14]. It is obvious 
that the lexical-semantic eigenvector beats term-statistic 
eigenvectors under all selected feature numbers of term- 
space [16] by 10%−13% on adjusted corpus. 

Using different exponents in NWKNN, Fig. 8 
illustrates the F1 measure comparison between lexical- 
semantic eigenvector and term-statistic eigenvector on 
adjusted corpus, respectively. Note that the feature 
number of term-space takes 10000. With the increase of 
exponent, the lexical-semantic eigenvector performs 
better on adjusted corpus, and beats term-statistic 
eigenvector by 10% averagely. 
 

 
Fig. 8 Classification result of l lexical-semantic eigenvector 

and term-statistic eigenvector with different exponents on 

adjusted corpus 

 
Using different exponents in NWKNN, Fig. 9 

describes the macro-precision and macro-recall 
comparison between lexical-semantic eigenvector and 
term-statistic eigenvector on adjusted corpus, 
respectively. Note that the feature number of term-space 
takes 10000. It is an apparent phenomenon that with the 
increase of exponent, the curves accord with the 
 

 
Fig. 9 Classification recall and precision of lexical-semantic 

eigenvector with different exponents and term-statistic 

eigenvector on adjusted corpus 
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experience of NWKNN [14]. Meantime, macro-precision 
or macro-recall of lexical-semantic eigenvector is 
superior to the term-statistic eigenvector by 11% or 12% 
on adjusted corpus averagely. 

According to Eqs. (5) and (6), Fig. 10 reports the 
dimensionalities of lexical-semantic eigenvector and 
term-statistic eigenvector on Reuter. Note that number of 
document ranges from 200 to 2800. After the number of 
document reaching 1650, the dimensionality of lexical- 
semantic eigenvector is less than that of the term-statistic 
eigenvector. It indicates the improvement of dimension 
reduction in our method. 
 

 
Fig. 10 Dimensionalities of lexical-semantic eigenvector and 

term-statistic eigenvector on Reuter-21578 

 
5 Conclusion and future work 
 

1) A data structure of semantic-element information 
is constructed to record relevant information of each 
semantic-element in document sample. It can 
characterize lexical semantic contents and be adapted for 
disambiguation of word stems. 

2) The lexical-semantic eigenvector using the 
NWKNN algorithm achieves better performance of 
classification than term-statistic eigenvector which 
stands for the typical statistical method of feature 
extraction, especially, for impact of lexical replacement. 

3) Our method of document representation 
demonstrates the improvement of dimension reduction 
for text classification. 

As for this work, the future research includes using 
more current algorithms based on the lexical-semantic 
eigenvector for text corpus analysis, and developing a 
method for representing semi-structured document such 
as XML on the basis of semantic-element. 
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