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Abstract: A wireless body area network offers cost-effective solutions for healthcare infrastructure. An adaptive transmission 
algorithm is designed to handle channel efficiency, which adjusts packet size according to the difference in feature-point values that 
indicate biomedical signal characteristics. Furthermore, we propose a priority-adjustment method that enhances quality of service 
while guaranteeing signal integrity. A large number of simulations were carried out for performance evaluation. We use 
electrocardiogram and electromyogram signals as reference biomedical signals for performance verification. From the simulation 
results, we find that the average packet latency of proposed scheme is enhanced by 30% compared to conventional method. The 
simulation results also demonstrate that the proposed algorithm achieves significant performance improvement in terms of drop rates 
of high-priority packets around 0.3%−0.9 %. 
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1 Introduction 
 

Recent advances in wireless communications 
technology and low power consumption devices make 
novel healthcare applications come true. The applications 
aim to monitor the condition of the body, and 
furthermore, diagnose disease that may occur. There are 
a few networks that can be applied to such applications, 
but a wireless body area network (WBAN) is the most 
ideal solution for wireless communications in portable, 
wearable, or implantable sensors that monitor biomedical 
signals [1]. A WBAN provides preferential delivery for 
multiple devices that require quality of service (QoS) 
guarantees by ensuring sufficient bandwidth, latency and 
jitter, and reducing data loss. 

Because WBAN devices are located around the 
human body, a star-shaped topology with a centered 
data-gathering master device and multiple biomedical 
signal sensing slave devices is commonly used [2−3]. A 
biomedical signal sensing device periodically senses and 
transmits sensed data to the data-gathering device. For 
example, an electrocardiogram (ECG) sensing device 
periodically (typically at 200 Hz) senses the heartbeat 
and transmits to the data-gathering device. A lot of 
WBAN healthcare systems continuously monitor ECGs, 
electroencephalograms (EEGs), and electromyograms 
(EMGs) because they can be the key to prevention and 
early detection of disease. But the problem is, monitoring 

those signals can place a heavy load on the entire WBAN 
network because the sensing operations for those signals 
are carried out at a high sampling rate, which is over  
200 Hz. 

In this work, we propose an adaptive transmission 
algorithm that utilizes the characteristics of the periodic 
biomedical signal, or biomedical signals with certain 
patterns, such as the ECG and the EMG. The goal of the 
algorithm is to minimize the loss of important 
information and to maximize utilization of the entire 
WBAN network. The proposed algorithm dynamically 
adjusts packet size and transmission priority according to 
a value obtained from the characteristics of the 
biomedical signal. Performance evaluation was carried 
out using the Massachusetts Institute of Technology– 
Beth Israel Hospital (MIT-BIH) arrhythmia database [4] 
and the EMGlab N2001 database [5], with a WBAN 
network that has 10 nodes, including ECG and EMG 
monitoring devices, and forms a star topology.  
 
2 Related works 
 
2.1 Wireless body area network 

A WBAN is a wireless network of wearable, body 
attachable, or body implantable computing devices, 
defined in the IEEE 802.15.6 standard [6]. The main 
characteristics of a WBAN are low power consumption, 
QoS support, high scalability, and continuous data 
transfer. All of these characteristics come from the 
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operational environment of WBAN devices—a series of 
sensors or mobile devices that operate outside of, on, or 
in the human body. Currently, a WBAN utilizes the 
2360−2400 MHz band with various data transfer rates up 
to 10 Mb/s. Under the 802.15.6 standard, a WBAN offers 
four access modes, as shown Fig. 1. The superframe 
consists of the exclusive access phase (EAP), the random 
access phase (RAP), the managed access phase (MAP) 
and the contention access phase (CAP). In EAP, RAP 
and CAP, nodes contend for channel access using either 
carrier sense multiple access with collision avoidance or 
a slotted ALOHA access procedure. The EAP is used for 
the highest priority traffic, such as reporting emergency 
events. The RAP and CAP are used for regular traffic 
only. In particular, the CAP is used for additional traffic, 
announcing via B2. In the MAP, scheduled access 
method and polling access method are used for resource 
allocation. 
 

 
Fig. 1 A superframe structure of WBAN standard 

 
A WBAN has a variety of applications: healthcare, 

sports, personal entertainment, etc. Among those, 
healthcare applications attract the most attention owing 
to growing concerns about health. Figure 2 shows an 
example of a WBAN healthcare application. The goal of 
the WBAN healthcare application is to prevent or 
diagnose disease. To achieve the goal, the WBAN 
healthcare application monitors the condition of the 
human body with various sensors: an ECG monitoring 
sensor, an EEG monitoring sensor, an EMG monitoring 
sensor, a body temperature monitoring sensor, etc. The 
main challenges for the WBAN healthcare application 
are the support for QoS and extremely low power 
 

 
Fig. 2 An example of WBAN healthcare application 

consumption, and various researchers are working on 
them [7−8]. 
 
2.2 Periodic, or patterned, biomedical signals 

Some of the biomedical signals are periodic or have 
certain patterns. Typical examples are the ECG, the EMG, 
and the EEG. 

The ECG is an uninterrupted electrical recording of 
the activity of the heart. The ECG is mostly used to 
measure the heart’s condition for early detection of 
heart-related disorders, such as cardiac arrest. The ECG 
signal consists of multiple cardiac cycle pulses. Since the 
heart beats periodically, the cardiac cycle pulses in an 
ECG are periodic. A cardiac cycle pulse consists of the 
P-Q-R-S-T waves, and those P, Q, R, S, T points are 
called feature points. The interval or period of the points, 
and the presence or absence of points, are main concerns 
of ECG analysis. Among them, the QRS complex, the 
RR interval, and the QT interval are the most important, 
giving valuable information. 

The EMG is a recording of electrical activity 
produced by skeletal muscles. The electrical activity 
comes from the electrical potential generated by muscle 
cells when they are electrically or neurologically 
activated. The EMG is used to diagnose neuromuscular 
diseases or disorders in motor control, etc. The EMG 
signal consists of an F wave, an H wave (reflex), and an 
M wave. Movement in the muscles produces a specific 
combination of waves—a pattern. And the pattern 
repeatedly occurs with the movement of the muscles [9]. 

The EEG is an uninterrupted electrical recording of 
brain activity via the scalp. The EEG is mostly used to 
diagnose epilepsy, sleep disorders, coma, etc. The EEG 
signal has certain wave patterns (alpha, beta, gamma, 
delta, mu, and theta waves), which symbolize brain 
activity. The appearance of a particular EEG activity has 
periodicity, even though it has more or less regular 
intervals [10]. 
 
2.3 Feature extraction of biomedical signals 

Automated feature extraction of a biomedical signal 
or a patterned signal is essential for wireless body area 
network devices, because the devices have to monitor 
and report the status or the activities of the human body. 
There are various examples in the literature of automated 
feature extraction algorithms. 

PAN and TOMPKINS [11] presented an automated 
real-time QRS complex detection and RR interval 
calculation method, which is one of the most commonly 
used ECG feature extraction methods. First, the ECG 
signal passes through a digital bandpass filter, which 
consists of cascaded high-pass and low-pass filters. 
Second, the filtered signal is differentiated to provide 
QRS complex slope information. The authors used a 



J. Cent. South Univ. (2015) 22: 1762−1768 

 

1764

 

five-point derivative method. Then, the signal is squared, 
point by point, to intensify the slope and restrict false 
positives caused by T waves. Next, the wave form 
feature information and the slope of the R wave are 
obtained thorough the moving window integrator. Finally, 
the QRS complex is determined from the rising edge of 
the window, and the RR interval is calculated with the 
consecutive R points, which are the peaks of two 
consecutive QRS complexes. In addition, the authors 
used two sets of thresholds to improve reliability of 
detection, which thresholds the filtered ECG signal 
produced by the moving window integration. These 
threshold values are dynamically and automatically 
adjusted. 

XU and LIN [12] presented an ECG feature point 
extraction and RR interval calculation method based on a 
slope vector waveform. The algorithm consists of two 
parts; a variable stage differentiation and a non-linear 
amplification. The variable stage differentiation obtains 
the desired slope vector of the ECG signal for feature 
point extraction, and the non-linear amplification 
improves signal-to-noise ratio (SNR) to increase QRS 
complex detection performance, even if the ECG signal 
is contaminated with noise. After extracting the ECG 
feature points, an interval between two consecutive R 
points in each QRS complex is calculated. 

CHU et al [13] presented an EMG pattern 
recognition and feature detection method based on a 
wavelet transform. The algorithm uses a wavelet packet 
transform to extract a feature vector from the EMG 
signal. Then, the dimension of the wavelet packet feature 
is reduced by an algorithm called principal component 
analysis. To recognize the pattern from the signal, and to 
separate the class of the pattern, the algorithm builds 
clusters of feature sets. Finally, a cluster of feature sets 
becomes a pattern, which symbolizes a movement. 

NAZIMOV et al [14] presented an EEG pattern 
recognition method based on a wavelet transform. First, 
the algorithm applies a continuous wavelet transform 
(CWT) to the EEG signal. Then, the algorithm filters the 
signal with the proposed Phi filter. Third, the algorithm 
uses two threshold values to increase the performance of 
pattern identification. Finally, the algorithm optimizes 
the parameters of the CWT with values obtained through 
the filtering process to improve pattern recognition 
accuracy of the oscillating EEG signals. 
 
3 Proposed algorithm 
 

To extract the feature points of a biomedical signal, 
most of the schemes reviewed thus far focus on signal 
compression or pattern recognition. In this work, we 
propose a new adaptive transmission algorithm that 
enhances QoS by adjusting packet priority according to a 

value obtained from the characteristics of the biomedical 
signal. 
 
3.1 Extracting feature points of periodic biomedical 

signals 
As shown in Fig. 3, biomedical signal traces are 

periodic waveforms that consist of some waves that have 
particular characteristics. In this subsection, we derive 
the fundamental period of a periodic biomedical signal 
and extract feature points that represent the peculiar 
quality of a wave within the fundamental period. The 
local extrema (maxima and minima) of each wave are 
selected as feature points. 
 

 
Fig. 3 An example of biomedical signal tracing: (a) ECG; (b) 

EMG 

 
The periodic function is strictly defined as a 

function that repeats itself after a fundamental period. 
Depending on the biomedical signal, the signal repeats a 
geometric pattern instead of an exact signal value, and a 
periodic biomedical signal repeats the curvature value 
after a fundamental period. Curvature refers to the 
deviation rate of a curve or the curved surface from a 
straight line or a plane surface tangent to it. A function 
that represents a biomedical signal trace based on time 
variable t is represented as 
 

( ) ( ( ), ( ))Y t s t a t                              (1) 
 
where s(t) is a sample index at t, and a(t) is a signal 
amplitude.  

Since a typical biomedical signal trace contains 
noise, a noise removal process is needed for accurate 
feature point extraction. We use a Gaussian low-pass 
filter, which provides a smoothed biomedical signal trace 
to eliminate noise. The smoothed biomedical signal trace 
is given by 
 

( , ) ( ( , ), ( , ))y t S t A t                         (2) 
 
where S(t, σ) and A(t, σ) are expressed by the following 
equations. 
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where g(t, σ) is a Gaussian function for smoothing with a 
standard deviation σ.  

After noise removal, we get the curvature, which 
represents the bending degree of each wave: 
 

2 2 3/ 2
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where S′(t, σ), S′′(t, σ), A′(t, σ), and A′′(t, σ) are given by 
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For fundamental period estimation, we group sets of 

similar values (95% boundary) in calculated values of 
curvatures and calculate the average difference of the 
sample index in each set. These values are possible 
fundamental periods. In order to get a precise 
fundamental period, we apply the average magnitude 
difference function (AMDF) to the curvature value [15]. 
ADMF is an efficient tool for estimating the period of a 
1-D periodic signal and a variation on autocorrelation, 
but it is faster to implement in integer arithmetic as there 
are no multiples. The AMDF formula is defined as 
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where y[n] is a biomedical signal sequence that is a 
function over a domain of the sample index, τ is a lag, 
and N is the size of the sequence. The range for τ is 
between 0 and N−1, and the constant term outside 
summation is for normalization.  

In general, an estimation of a fundamental period is 
derived by 
 

Min ( )T D


                                (8) 

 
where τ corresponds to possible fundamental periods. 

After the fundamental period T calculation, we 
select local minima and maxima, which have larger 
curvature values than the threshold of feature points in 
each period. 

3.2 Priority adjusting and data compression method 
for transmission 

In Section 3.1, we derive the feature point 
extraction method for biomedical signals. The extracted 
feature points are represented with index i as 
 

[ ] ( [ ], [ ])n n nf i s i a i                            (9) 
 
where sn[i] is a sample index of feature point i in cycle n, 
and vn[i] is a signal amplitude. The proposed algorithm 
adjusts packet size and priority based on the similarity 
between two neighboring cycles. The similarity can be 
calculated with the percentage of root mean square 
difference (PRD) [16]. Let fn[i] and fn−1[i] be the current 
and the previous feature points, respectively. The PRD 
formula is expressed with the following equation. 
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If the PRD value does not exceed the threshold, 

there is no significant change in two adjacent cycles. 
Therefore, a signal compression process is carried out to 
reduce packet size. The signal compression process is 
divided into three phases: 

1) Calculate signal difference from the previous 
cycle. 

2) Perform 1-D discrete wavelet transform (DWT). 
3) Eliminate the high frequency component using a 

window filter based on the PRD value. 
On the other hand, if the PRD value between two 

neighboring cycles is greater than the threshold, it can be 
assumed that there is a significant change in the 
biomedical signal. In this case, only the DWT is carried 
out among the three phases of the signal compression 
process in order to prevent the loss of data. 

In a WBAN, transmission delay or collisions may 
take place even in the case of emergency data 
transmission in RAP, which uses a random access 
mechanism for resource allocation. To handle this 
situation, IEEE 802.15.6 defines a user priority for data 
types and EAP. In EAP, transmission of the highest 
priority packet is allowed for erroneous emergency 
transmissions or medical implant event-report traffic. 
Table 1 shows user priority according to designations of 
the traffic. 

The proposed scheme adjusts user priority when 
there is a significant change in a biomedical signal, 
reflecting a degree of emergency. Therefore, in order to 
guarantee QoS, the priorities of the compressed packet 
and the non-compressed packet above, are determined as 
medical data (priority level 5) and emergency or medical 
implant event report (priority level 7), respectively. 
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Table 1 User priority mapping 

User priority Traffic designation 

0 Background (BK) 

1 Best effort (BE) 

2 Excellent effort (EE) 

3 Video (VI) 

4 Voice (VO) 

5 Medical data or network control 

6 High-priority medical data or network control

7 Emergency or medical implant event report 

 

After per cycle processing, signal assembling and 
Huffman coding are performed to generate a data packet 
[17]. Figure 4 shows the complete process of the 
proposed algorithm. 
 

 
Fig. 4 Diagram of proposed algorithm 

 
4 Simulations and analyses 
 

To evaluate the performance of the proposed 
scheme, we set up a simulation environment using NS-2. 
The simulations were carried out under the assumption 
that a WBAN network has a star topology with a 
centered hub as a central controller. Table 2 shows the 
values of the simulation parameters. The sampling 
frequency of the MIT-BIH arrhythmia database and the 
N2001 database are 360 Hz and 20 kHz, respectively. In 
our simulation, the WBAN network includes two ECG 
devices, two EMG monitoring devices, and six nodes 
that generate backlog traffic. It is assumed that the 
offered backlog load suddenly and randomly changes 
within the limit of an average value. The threshold PRD 
value is set to be 7, and the window size for post-DWT 
filtering is determined as follows: 
 

100 10s P                                (11) 

Table 2 Simulation parameter 

Parameter Value 

Number of ECG nodes 2 

Number of EMG nodes 2 

Number of backlog nodes 6 

ECG database 
(MIT-BIH arrhythmia) 

112 ML II 
116 ML II 

EMG database 
(EMGlab N2001) 

ALS 
(biceps brachii) 

Myopathy 
(tensor fasciae latae) 

Signal acquisition time/s 1800 

PRD threshold 7 

 
The window size determines the integrity of the 

compressed data using elimination of high-frequency 
signals and is expressed as a percentage of the original 
data size. 

First, we compare the evolution of average packet 
transmission latency. Average packet transmission 
latency is defined as the time between the point that a 
transmitting node starts to prepare, and transmits, the 
data through a wireless network, and the point at which a 
receiving node finishes receiving and decompressing the 
data. Prior research into a WBAN that utilizes feature 
point extraction methods only focused on compressing 
data. In this work, we compare the proposed scheme, 
which compresses data and adjusts packet priority with 
extracted feature point characteristics, to a compression 
scheme that only compresses the data and a conventional 
scheme that does nothing to the data. 

In general, the conventional scheme has lower 
transmission latency than the compression scheme. 
However, the conventional method has a lot more traffic 
to transmit. Therefore, collision probability and packet 
retransmission rate for devices using the conventional 
scheme are increased in accordance with the increasing 
amount of backlog traffic in the entire network. 

Figure 5 shows the relationship between average 
packet transmission latency of an ECG device (112 ML 
 

 
Fig. 5 Average packet latency versus backlog traffic 
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II) and backlog traffic. When the average transmission 
rate of the backlog traffic is 50 kb/s, the conventional 
scheme has the lowest packet transmission latency. 
However, as the amount of backlog traffic increases, 
packet transmission latency of the conventional scheme 
greatly increases when compared to the others. 

Table 3 outlines the average packet transmission 
latencies of medical devices in the network (two ECG 
devices and two EMG devices). We can see that the 
proposed scheme shows better performance (up to 30%) 
in terms of average packet latency when compared to 
both the compression scheme and the conventional 
scheme. The proposed scheme performs lossless 
compression using full window size when the biomedical 
signal has significant changes, and raises priority to 
reduce packet transmission latency by cutting down 
decompression time. In addition, the average packet 
latencies of the proposed scheme are not noticeably 
affected by an increase in the congestion level of the 
network. Furthermore, the average packet transmission 
latency of the proposed scheme is reduced by 30% when 
compared to the compression scheme, since medical 
devices using the proposed scheme compress the data 
only if compression is needed to reduce decompression 
overhead. 
 
Table 3 Average packet latency comparisons (ms) 

Data base Algorithm 

Average transmission rate of 

backlog/(kb·s−1) 

50 100 200 

112 ML II 

Conventional 6.8 7.73 8.01 

Compression 7.6 7.61 7.91 

Proposed 7.42 7.36 7.71 

116 ML II 

Conventional 6.98 6.78 7.40 

Compression 7.06 6.63 7.16 

Proposed 6.68 6.15 6.86 

Myopathy 

Conventional 3.64 3.92 4.89 

Compression 4.17 3.73 4.84 

Proposed 3.78 3.64 4.39 

ALS 

Conventional 6.17 7.37 10.07 

Compression 6.42 7.33 9.97 

Proposed 6.33 7.23 9.82 

 

Second, we compare the packet drop rate of high- 
priority packets, the most important metric for medical 
data transmission. Figure 6 shows measurements for the 
high-priority packet drop rate when the accompanying 
backlog traffic in the network increases from 50 kb/s to 
200 kb/s. We use the log scale for the high-priority 
packet drop rate graph due to the considerable 
differences in the rate. From Fig. 6, we can see that the 

 

 
Fig. 6 Drop rates of high-priority packets 

 

packet drop rates of the proposed algorithm are 
extremely low compared to the others. The packet drop 
rates of the compression scheme and the conventional 
scheme are about 5%−31% and 7%−47%, respectively, 
while those of the proposed scheme are about 0.3%− 
0.9%. In addition, it can be seen that the packet drop 
rates are not noticeably affected by increases in backlog 
traffic in the network. 

And finally, we compare channel efficiency of the 
proposed algorithm to the others. Figure 7 shows the 
relationship between channel efficiency and the average 
transmission rate of backlog traffic. When the average 
transmission rate of backlog traffic is less than 50 kb/s, 
channel efficiency is not noticeably affected by the 
increase in congestion level in the network. On the other 
hand, when the average transmission rate of backlog 
traffic is higher than 100 kb/s, channel efficiency of the 
conventional scheme fluctuates by nearly 10%, and when 
the average transmission rate of backlog traffic is higher 
than 180 kb/s, channel efficiency of the compression 
scheme also decreases by around 12%. The proposed 
scheme achieves the best channel efficiency even in 
cases where the average transmission rate of backlog 
 

 
Fig. 7 Comparison of channel efficiency 
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traffic increases up to 250 kb/s. The proposed scheme 
adjusts the priority of all packets when it recognizes 
significant changes in a biomedical signal. The 
transmission of these packets is guaranteed by 
transmitting those packets in EAP. Thus, the proposed 
scheme can transmit emergency packets of medical 
devices even if a collision occurs during transmission 
between normal devices. Therefore, we can say the 
proposed algorithm improves QoS, because the proposed 
algorithm guarantees the reliability of important medical 
data transmission, even in a congested network. 
 
5 Conclusions 
 

1) We propose a novel adaptive transmission 
scheme to improve QoS for medical devices in a WBAN. 
In a WBAN, there are various devices trying to transmit 
medical or non-medical data. The medical devices set the 
packet priority to an apposite value that fits the 
characteristics of the biomedical signal information to 
guarantee QoS and maximize the channel efficiency. 

2) The proposed scheme extracts the feature points 
of a biomedical signal based on a curvature value, and 
adjusts packet size and packet priority with the extracted 
feature points that represent the human body information. 
In addition, the proposed scheme compresses 
non-medical data packets to reduce transmission 
overhead and adjusts the priority of emergency medical 
data (which has significant changes in signal) to 
guarantee QoS. 

3) From the simulation results, we find that the 
average packet transmission latency of the proposed 
scheme is reduced. The simulation results also show that 
the average high-priority packet drop rate decreases even 
if the average offered load increases. 
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