
 

 

0J. Cent. South Univ. (2015) 22: 1606−1613 
DOI: 10.1007/s11771-015-2677-5 

 

Generalized thermoelastic interaction in functional graded material with 
fractional order three-phase lag heat transfer 

 
Ibrahim A. Abbas1, 2, 3 

 
1. Department of Mathematics, Faculty of Science and Arts - Khulais, University of Jeddah, Saudi Arabia; 
2. Nonlinear Analysis and Applied Mathematics Research Group (NAAM), Department of Mathematics, 

King Abdulaziz University, Jeddah, Saudi Arabia; 
3. Department of Mathematics, Faculty of Science, Sohag University, Sohag, Egypt 

 
© Central South University Press and Springer-Verlag Berlin Heidelberg 2015 

                                                                                                  
 

Abstract: The present work is concerned with the solution of a problem on thermoelastic interactions in a functional graded material 
due to thermal shock in the context of the fractional order three-phase lag model. The governing equations of fractional order 
generalized thermoelasticity with three-phase lag model for functionally graded materials (FGM) (i.e., material with spatially varying 
material properties) are established. The analytical solution in the transform domain is obtained by using the eigenvalue approach. 
The inversion of Laplace transform is done numerically. The graphical results indicate that the fractional parameter has significant 
effects on all the physical quantities. Thus, we can consider the theory of fractional order generalized thermoelasticity an 
improvement on studying elastic materials. 
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1 Introduction 
 

The linear theory of elasticity is of paramount 
importance in the stress analysis of steel, which is the 
commonest engineering structural material. However, the 
theory does not apply to the behavior of many of the new 
synthetic materials of the elastomer and polymer type. In 
such cases, one needs to use a generalized 
thermoelasticity theory based on an anomalous heat 
conduction model involving time-fractional (non-integer 
order) derivatives. ABEL [1] who applied fractional 
calculus in the solution of an integral equation gave the 
first application of fractional derivatives. CAPUTO [2] 
gave the definition of fractional derivatives of order 
0<α≤1 of continuous function. CAPUTO and 
MAINARDI [3−4] and CAPUTO [5] have employed the 
fractional order derivatives for the description of 
viscoelastic materials and have established the 
connection between fractional derivatives and the theory 
of linear viscoelasticity and found a good agreement with 
the experimental results. Among the few works devoted 
to applications of fractional calculus to thermoelasticity, 
we can refer to the works of POVSTENKO [6−7] who 
introduced a fractional heat conduction law and found 
the associated thermal stresses. SHERIEF et al [8], 
YOUSSEF [9] and EZZAT [10−11] introduced new 
models of thermoelasticity using a fractional heat 
conduction equation. 

The generalization of the thermoelasticity theory is 
known as the dual-phase-lag thermoelasticity developed 
by TZOU [12] and CHANDRASEKHARIAH [13]. 
TZOU considered micro-structural effects in the delayed 
response in time in the macroscopic formulation by 
taking into account that increase of the lattice 
temperature is delayed due to photon-electron 
interactions on the macroscopic level. TZOU [12] 
introduced a two-phase-lag (2PHL) into both the heat 
flux vector and the temperature gradient. According to 
this model, classical Fourier’s law K   q  has 
been replaced by ( , + ) = ( , + ),q TP t K P t   q  
where the temperature gradient   at a point P of the 
material at time + Tt   corresponds to the heat flux 
vector q at the same point in time + .qt   Here K is the 
thermal conductivity of the material. The delay time T  
is interpreted as that caused by the micro-structural 
interactions and is called the phase-lag of the 
temperature gradient. The other delay time τq is 
interpreted as the relaxation time due to the fast transient 
effects of thermal inertia and is called the phase-lag of 
the heat flux. 

The generalization is known as three-phase-lag 
(3PHL) thermoelasticity, which is due to Roychoudhuri 
[14]. According to this model, 
 

*( , + ) = [ ( , + ) + ( , + )]q TP t K P t K P t       q  
 
where ( )T    is the thermal displacement gradient 
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and K* is the additional material constant and   is the 
phase lag for the thermal displacement gradient. To study 
some practical, relevant problems found in heat transfer 
problems involving very short time intervals and in the 
problems of very high heat fluxes, the hyperbolic 
equation gives significantly different results from the 
parabolic equation. According to this phenomenon, the 
logging behavior in the heat conduction in solid should 
not be ignored particularly when the elapsed times during 
a transient process are very small, i.e., about 10−7 s or the 
heat flux is very much high. Recently, EZZAT et al [15] 
investigated the fractional order theory in thermoelastic 
solid with three-phase lag heat transfer. 

Functionally graded material (FGM) as a new kind 
of composites was initially designed as thermal barrier 
materials for aerospace structures, in which the volume 
fractions of different constituents of composites vary 
continuously from one side to another [16]. These novel 
nonhomogeneous materials have excellent thermo- 
mechanical properties to withstand high temperature and 
have extensive applications to important structures, such 
as pressure vessels, chemicals plants, aerospace, pipes 
and nuclear reactors. MALLIK and KANORIA [17], 
DAS and KANORIA [18] studied a periodically varying 
heat source in generalized thermoelastic functionally 
graded solid. Applying the above theories of generalized 
thermoelasticity, several problems have been solved by 
finite element method and analytical method [19−35]. 

The main object of the present work is to study the 
fractional order generalized thermoelasticity in a 
functionally graded material with three-phase lag in the 
presence of thermal shock by Laplace transform and 
eigenvalue approach. Then, the inversion of Laplace 
transform is carried out numerically by a method of 
numerical inversion of Laplace transform based on 
Stehfest technique [36]. Numerical results for all 
variables in physical space–time domain are represented 
graphically. The graphical results indicate that the effects 
of fractional parameter, nonhomogeneity parameter and 
different theories on all the physical quantities. 
 
2 Basic equation 
 

Following EZZAT et al [15], the basic equations of 
fractional order theory of thermoelasticity for a 
functionally graded material in the absence of body 
forces and heat sources are considered. 

The equations of motion: 
 

2

, 2
i

ij j
u
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                                                               (1) 

 
The equation of heat conduction: 
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The constitutive equation: 
 

02 [ ( )]ij ij ije e T T                                           (3) 
 
where , , , , .iie e i j x y z   

Putting 1,  0, 0T       and 0,q   Eq. (2) 
becomes 
 

*
, , , , e 0( ) ( )i i i iK T KT c T T e                                       (4) 

 
which is the heat conduction equation of Green–Naghdi 
theory of type III [37−38] admitting damped 
thermoelastic wave solutions. α is the fractional 
parameter; λ, μ are the Lame’s constants; ρ is the density 
of the medium; ce is the specific heat capacity at constant 
strain; αt is the coefficient of linear thermal expansion; t 
is the time; T is the temperature; T0 is the reference 
temperature; K is the thermal conductivity; K* is an 
additional material constant; ,  delay time is called 
the phase-lag of thermal displacement gradient; τT, the 
other delay time, is called the phase-lag of the 
temperature gradient and τq is called the phase-lag of the 
heat flux; ij  is the Kronecker symbol; ij  are the 
components of stress tensor; ui are the components of 
displacement vector. Thus, we replace *,  ,  ,  ,  K K    
and ρ by 0 0 0 0( ),  ( ),  ( ),  ( ),f f f K f        

*
0 ( )K f   and 0 ( )f  where *

0 0 0 0 0,  ,  ,  ,  K K    
and 0 are assumed to be constants and f(X) is a given 
dimensionless function of the space variable X=(x, y, z). 
Then, Eqs. (1) to (3) take the following forms:  

0 0 0 0 , , 0( )[2 [ ( )] ] ( ) [2ij ij j j ijf e e T T f e            
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0 e 0 0( ( ) ( ) ),0 1f c T f T e                         (6) 
 

0 0 0 0( )[2 [ ( )] ]ij ij ijf e e T T                           (7) 

 
3 Formulation of problem 
 

Let us consider a functionally graded isotropic 
thermoelastic body at a uniform reference temperature T0, 
occupying the region x≥0 where the x-axis is taken 
perpendicular to the bounding plane of the half-space 
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pointing inwards. It assumed that the state of the medium 
depends only on x and the time variable t, so that the 
displacement vector u and temperature field T can be 
expressed in the following form:  

( ( , ),0,0) , ( , )u x t T T x t u                                        (8) 
 

It is assumed that the material properties depend 
only on the x-coordinate. So, we take f(X) as f(x). In the 
context of the fractional order of generalized 
thermoelasticity theory based on three-phase-lag model, 
the equation of motion, heat equation, and constitutive 
equation can be written as  
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We define the following dimensionless quantities:  
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Upon introducing in Eqs. (9)−(11), and after 
suppressing the primes, we obtain  
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4 Exponential variation of non-homogeneity 
 

We take f(x)=enx, where n is a dimensionless 
constant. Then, Eqs. (12), (13) and (14) reduce to 
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5 Application 
 

We assume that the medium is initially at rest. Then, 
we have 
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We consider the problem of a thick plate of finite 

high l. Choosing the x-axis perpendicular to the surface 
of the plate with the origin coinciding with the lower 
plate, the region Ω under consideration becomes: 
 

{( , , ) : 0 , , }x y x x l y z             
 

The surface of the plate is taken to be traction free. 
The lower plate is subjected to a thermal shock. The 
upper plate is kept at zero temperature. These can be 
written mathematically: 
 

1(0, ) 0, (0, ) ( )xx t T t T H t                                        (19) 
 

( , ) 0, ( , ) 0xx l t T l t                                                  (20) 
 
where H(t) denotes the Heaviside unit step function. 
 
6 Governing equations in Laplace transform 

domain 
 

Applying the Laplace transform for Eqs. (15)−(20) 
by the formula: 
 

0
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Hence, we obtain the following system of 
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differential equations: 
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Equations (22) and (23) can be written in a vector- 

matrix differential equation as follows [39]: 
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7 Solution of vector-matrix differential 

equation 
 

Let us now proceed to solve Eq. (27) by the 
eigenvalue approach proposed in Ref. [39]. The 
characteristic equation of the matrix A takes the form: 
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The roots of the characteristic Eq. (28) which are 

also the eigenvalues of matrix A are of the form p=p1, 
p=p2, p=p3, p=p4. The eigenvector T

1 2 3 4[ , , , ] ,x x x xX  
corresponding to eigenvalue η, can be calculated as 
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From Eq. (29), we can easily calculate the 

eigenvector Xj, corresponding to eigenvalue pj, j=1, 2, 3, 
4. For further reference, we shall use the following 
notations: 
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The solution of Eq. (27) can be written from as 
follows: 
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where B1, B2, B3 and B4 are constants to be determined 
from the boundary condition of the problem. Thus, the 
field variables can be written for x and s as 
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To complete the solution, we have to know the 

constants B1, B2, B3 and B4, by using the boundary 
conditions (25) and (26): 
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11 1 3 4 12 2 3 4 13 3 3 4,  ,  ,H p x x H p x x H p x x         

4 4
14 4 3 4 ,H p x x  11 1

21 1 3 4( )e ,p lH p x x   

22 2
22 2 3 4( )e ,p lH p x x  33 3

23 3 3 4( )e ,p lH p x x   

44 4
24 4 3 4( )e ,p lH p x x  1 2

31 4 32 4, ,H x H x   
3 4

33 4 34 4, ,H x H x  1 21 2
41 4 42 4,  e ,p l p lH x e H x   

3 43 4
43 4 44 4e ,  e .p l p lH x H x   

 
8 Numerical inversion of Laplace transforms 
 

For the final solution of temperature, displacement 
and stress distributions in the time domain, we adopt a 
numerical inversion method based on the STEHFEST 
[36]. In this method, the inverse f(t) of the Laplace 
transform f(s) is approximated by the relation:  

1

ln2 ln2
( )

N

j
j

f t V F j
t t

   
 

                                          (37) 
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where Vj is given by 
 

min 1
2 21

2

1

2

(2 )!
( 1)

! !( )!(2 1)!
2

N N
i,N

i
i

k

k k
V

N
k k i k k

            
 




 
    
 

       (38) 

 
and the parameter N is the number of terms used in the 
summation in Eq. (36) and should be optimized by trial 
and error. Increasing N increases the accuracy of the 
result up to a point, and then the accuracy declines 
because of increasing round-off errors. Thus, the 
solutions of all variables in physical space–time domain 
are given by 
 

1

ln2 ln2
( , ) ,

N

i
i

u x t V u x i
t t

   
 

                                      (39) 

 

1

ln2 ln2
( , ) ,

N

i
i

T x t V T x i
t t

   
 

                                     (40) 

 

1

ln2 ln2
( , )

N

xx i xx
i

x t V x, i
t t

 


   
 

                               (41) 

 
9 Numerical results and discussion 
 

The copper material was chosen for purposes of 
numerical evaluations and the constants of the problem 
were taken as follows [20]: λ0=7.76×1010 kg/(m·s2), 
μ0=3.86×1010 kg/(m·s2), T0=  293 K, K0=3.86×102 
kg·m/(K·s3), ce=3.831×102 m2/(K·s2), T1=1, l=4, 
ρ0=8.954×103 kg/m3, αt=17.8×10−6 K−1, τT=0.1, τq=0.15. 

Figures 1−3 display the temperature, displacement 
and the stress distributions for wide range of x 0≤x≤l for 
two different theories ( three-phase lag model 3PHL and 
Green–Naghdi model of type III GNIII) in presented two 
values of time t=0.5 and t=1 with n=0.5 and α=0.5. In 
Fig. 1, we display the temperature for different values of 
t to show its effect on the field in the two types (3PHL) 
and (GNIII) and we have noticed that 1) in the (GNIII) 
theory, the speed of the wave propagation of the 
conductive temperature vanished at larger distance than 
in the (3PHL) theory; 2) the time t has a significant effect 
on the temperature for the two theories. 

In Fig. 2, we display the displacement u for 
different values of t to show its effect on the filed in the 
two types (3PHL) and (GNIII) and we have noticed that 
1) in the (GNIII) theory, the speed of the wave 
propagation of the displacements u and v vanished at 
larger distant than in the (3PHL) theory; 2) the time t has 
a significant effect on the displacement u for the two 
theories. 

In Fig. 3, we display the stress xx  for different 
values of t to show its effect on the filed in the two types 
(3PHL) and (GNIII) and we have noticed that 1) in the 
(GNIII) theory, the speed of the wave propagation of the 

stress xx  vanished at larger distant than in the (3PHL) 
theory; 2) the time t has a significant effect on the stress 

xx  for the two theories. 
Figures 4−6 represent the variation of the physical 

quantities versus the distance x without fraction 
parameter α=1 and with two values of the fraction 
parameter α=0.1, 0.5 for 3PHL model and we have  
 

 
Fig. 1 Temperature distribution with distance x for different 

theories and time 

 

 
Fig. 2 Displacement distribution with distance x for different 

theories and time 

 

 
Fig. 3 Stress distribution with distance x for different theories 

and time 
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Fig. 4 Temperature distribution with distance x for different α 

values 

 

 
Fig. 5 Displacement distribution with distance x for different α 

values 

 

 
Fig. 6 Stress distribution with distance x for different α values 

 
noticed that as expected, the fractional order has a great 
effect on the distribution of the field quantities. 

In order to study the effect of non-homogeneity on 
temperature, displacement and stress, we now present 
our results in the form of graphs (Figures 7−9) at (α=0.5, 
t=0.5). Figure 7 show that the variation of temperature 
with distance x. It is seen from Fig. 7 that as the value of  

 

 
Fig. 7 Temperature distribution with distance x for different n 

values (α=0.5, t=0.5) 

 

 
Fig. 8 Displacement distribution with distance x for different n 

values (α=0.5, t=0.5) 

 

 
Fig. 9 Stress distribution with distance x for different n values 

(α=0.5, t=0.5) 

 
n increases the magnitude of the temperature decreases 
for fixed x and ultimately the temperature approaches to 
zero value. Figure 8 depicts the variation of displacement 
versus distance. It is observed that as the value of the 
non-homogeneity parameter n decreases the peak of 
thermal displacement also decreases. Figure 9 shows the 
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variation of the stress with distance x. It is clear from  
Fig. 9 that the variations of stress increase initially for 
0≤x≤0.8, decrease for 0.8≤x≤1.35 and then increase 
continuously for other values until become steady with 
the effect of different values of n. 
 
10 Conclusions 
 

1) The time t has significant effects on all the field 
quantities. 

2) Comparisons with predictions are also made in 
which there is a three-phase lag parameters term, and we 
have found that this parameters has a significant effect 
on all the fields and on the speed of the wave 
propagation. 

3) The fractional parameter α has significant effects 
on all the field quantities. 

4) The non-homogeneity parameter n has significant 
effects on all the field quantities. 
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