
 

 

J. Cent. South Univ. (2015) 22: 1563−1573 
DOI: 10.1007/s11771-015-2673-9 

 

Detailed string stability analysis for bi-directional optimal velocity model 
 

ZHENG Liang(郑亮) 
 

School of Traffic & Transportation Engineering, Central South University, Changsha 410075, China 
 

© Central South University Press and Springer-Verlag Berlin Heidelberg 2015 
                                                                                                  

 
Abstract: The class of bi-directional optimal velocity models can describe the bi-directional looking effect that usually exists in the 
reality and is even enhanced with the development of the connected vehicle technologies. Its combined string stability condition can 
be obtained through the method of the ring-road based string stability analysis. However, the partial string stability about traffic 
fluctuation propagated backward or forward was neglected, which will be analyzed in detail in this work by the method of transfer 
function and its H∞ norm from the viewpoint of control theory. Then, through comparing the conditions of combined and partial 
string stabilities, their relationships can make traffic flow be divided into three distinguishable regions, displaying various combined 
and partial string stability performance. Finally, the numerical experiments verify the theoretical results and find that the final 
displaying string stability or instability performance results from the accumulated and offset effects of traffic fluctuations propagated 
from different directions. 
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1 Introduction 
 

One representative microscopic model is the car 
following model, especially the optimal velocity (OV) 
model proposed by BANDO et al [1], which is widely 
explored due to its simple differential equation 
formulation, the single-variable OV function with respect 
to prevailing spacing to determine desired velocity, and a 
rich source of dynamical behaviors. Since then, many 
researchers have explored the OV model from different 
aspects. Recent modifications to the OV model include 
the incorporation of driver reaction time [2−8] and the 
relative speed [9−10]. Moreover, what attracts our 
attention is that with the development of intelligent 
transport systems (ITS) several new variations to the OV 
model that incorporate spatial headways of multiple 
preceding vehicles appear over the last decades [11−17] 
and it is proved that the multiple preceding vehicles’ 
spatial information benefits the stability of traffic flow 
through the analytical and numerical methods. 
Furthermore, in reality drivers usually not only obtain the 
frontal traffic stimuli but also receive the backward 
traffic information through rear-view mirrors and the 
following vehicles’ honk or headlight stimuli, which can 
even be enhanced by the emergence of connected vehicle 
technologies (CVT). Therefore, highlighted by the 
bi-directional looking context, except some improved 

cellular automaton (CA) models involving the bi- 
directional vehicle information [18−20], many scholars 
are also committed to present the modified OV models 
based on the bi-directional looking effect [21−26] and 
verify that the backward traffic information contributes 
to the traffic flow stability through the analytical and 
numerical methods. Moreover, besides the stability 
analysis for the macroscopic traffic flow models [27−29], 
it should be noted that the traffic flow stability 
mentioned above represents the string stability analysis 
for the microscopic models and it is just one of the three 
classical stability types, which will be described in detail 
as the following. 

Based on the general framework of the car 
following models proposed by WILSON [30], most car 
following models (including the OV models) can be cast 
within this framework and written as  

 
( , , )n n n nv f y v v                             (1) 

 
where vn is vehicle n’s velocity and dot denotes the 
differentiation with respect to time; yn=xn+1−xn is vehicle 
n’s distance headway with the preceding vehicle n+1; 
Δvn=vn+1−vn is the relative velocity between vehicle n 
and its preceding vehicle n+1; xn denotes the position of 
vehicle n. Therefore, the desired state of vehicle n (i.e., 
the equilibrium state of vehicle n) can be described as 
 

* *( ,0, ( )) 0f y V y                             (2) 
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where y* and V(y*) respectively indicate the vehicle n’s 
distance headway and velocity in the equilibrium state, 
V(y*) is equivalent to the optimal velocity function 
dependant on the distance headway. On the basis of the 
general framework (Eq. (1)) and the equilibrium state 
(Eq. (2)), three kinds of stability types concerned with 
small amplitude perturbations, that is, platoon stability, 
string stability and convective stability, will be 
respectively defined as follows [31]. 

The prerequisite is as follows. Under the traffic 
scenario that a group of vehicles are running in an open 
road without the lane changing and overtaking behaviors, 
where each vehicle only responds to its frontal stimuli, 
not to its successor, and meanwhile initially keeps in the 
equilibrium state, that is, the velocity and distance 
headway of all the following vehicles are respectively 
V(y*) and y* and the leading vehicle is given a fixed 
velocity V(y*), if the “hand of god” is applied to “kick” 
the first following vehicle out of the equilibrium state, 
the 2nd, 3rd, 4th, … , following vehicles are 
subsequently disturbed from equilibrium and fluctuate. 

Definition 1: This group of vehicles are platoon 
stable at the speed V(y*) if the initial fluctuations will 
decay as time progresses and each individual vehicle will 
eventually return to its own equilibrium state. In contrast, 
if these fluctuations are permanent, such group of 
vehicles has platoon instability. 

Definition 2: If the initial fluctuations will 
gradually dissolve when propagated upstream relative to 
the vehicle group, that is, the maximum deflection and 
duration of the fluctuation reduce when propagated 
upstream, the vehicle group has string stability. 
Otherwise, such group of vehicles are string unstable. 

Definition 3: Consider that the “information” can 
only propagate upstream relative to the vehicles, and 
meanwhile the vehicles themselves are moving forward 
with respect to the frame of the road, therefore, whether 
fluctuations propagate upstream or downstream relative 
to the road depends on two velocities of upstream and 
downstream edges of one triangular “wedge” resulting 
from the instantaneous “kick” to the second following 
vehicle. This stability type called convective string 
stability includes convectively upstream, absolute and 
convectively downstream string stabilities. More details 
can be refered to Ref. [31]. 

From above three definitions, it is found that 
whether the fluctuation grows or decays depends on the 
frame of the observer, namely, the frame is defined as the 
individual vehicle, upstream direction relative to the 
vehicle group and the road for the platoon stability, string 
stability and convective string stability, respectively. 
Therefore, the platoon stable vehicle group may possess 

the string instability when the observing frame changes 
from the individual vehicle to the upstream direction 
relative to the vehicles. Obviously, these three definitions 
about the stability are beneficial to better understand the 
differences between each other and search the 
appropriate methodologies to resolve the corresponding 
stability conditions of Eq. (1). However, this work 
concentrates on the methods for the string stability 
condition of Eq. (1), which mainly include the ring-road 
based string stability analysis and H∞ norm of transfer 
function from the frequency domain according to 
previous studies. 

Since BANDO et al [1] firstly proposed the 
ring-road based linearized stability theory to obtain the 
string stability condition of the OV model [1], many 
scholars followed to apply this method to resolving the 
string stability conditions of their improved OV models 
[2−25]. Obviously, because the traffic fluctuation cannot 
escape the whole vehicular system due to the ring road 
setup, the string instability will result in cyclic effects 
(e.g., stop and go waves) in traffic flow. Meanwhile, in 
numerical experiments the traffic perturbation will 
remain bounded and not display an exponential growth 
due to the nonlinear terms. However, different from the 
ring-road based string stability analysis, there is another 
way to analyze the string stability of the OV models 
from the frequency domain. In this approach, the transfer 
functions can describe the transferring relationship of 
traffic information in car following models, and its H∞ 

norm can also be employed to determine whether the 
traffic disturbance is amplified or decayed when 
propagated to one direction [32−36]. Moreover, this 
method was also treated as the theoretical framework of 
designing the advanced driver assistance (ADA) systems, 
such as the adaptive cruise control (ACC) [37−40], the 
cooperative adaptive cruise control (CACC) [41]. 

Obviously, this method about transfer function can 
describe how one vehicle’s dynamics is forced by its 
preceding or following vehicles, which is just 
appropriate for the detailed analysis about the partial 
string stability for different parts of a vehicular system, 
while the ring-road based linearized stability analysis 
only gives the combined string stability condition. 
Coincidentally, the aim of this work is to investigate the 
partial string stability conditions of a bi-directional OV 
model for different directions, compare them and its 
combined string stability condition and then analyze the 
formulation mechanism of the final traffic fluctuation. 
Therefore, these two methods for the string stability 
analysis will be reviewed and then employed for one 
classical bi-directional OV model [21]. The remainder of 
this work can be organized as follows. First of all, two 
methods about the string stability analysis for the 
original OV model are reviewed. Then, two partial string 
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stability conditions of the bi-directional OV model are 
derived and then compared with combined string 
stability condition. After that, a series of numerical 
experiments are conducted to verify the obtained 
theoretical results. Finally, some important conclusions 
are drawn. 
 
2 Two methods about string stability analysis 

for original OV model 
 

The original OV model was presented by BANDO 
et al [1] and can be formulated as 

 
d ( ) d { [ ( )] ( )}n n nv t t V y t v t                    (3) 
 
where the car number is n (n=1, 2, …, N); N is the total 
number of vehicles in the vehicle group; α is the 
sensitivity of drivers; V[yn(t)] is called the optimal 
velocity function (OV function) dependent on the 
distance headway with the nearest preceding vehicle. 
Obviously, the vehicle acceleration or deceleration is 
determined based on the difference between the optimal 
velocity and the immediate velocity and the driver’s 
sensitivity. 

The string stability condition of the original OV 
model can be obtained through the method of ring-road 
based linearized stability analysis [1], where a small 
position perturbation around the equilibrium solution εn 
can be linearized and then expanded by the Fourier 
modes as the following forms. 

 
exp(i )n k n zt                              (4) 

 
where 2π ( ),k N k    k=0, 1, 2, …, N−1 and z=u+iv, 

or 
 

exp(i )n kn zt                               (5) 
 
where 2

1 2

(i ) (i )z z k z k   , and k=0, 1, 2, …, N−1. 

Then, the string stability can be guaranteed if u<0 
for Eq. (4) or z2>0 for Eq. (5). Therefore, the string 
stability condition of the OV model Eq. (3) can be 
calculated as 2V′<α, where V′(b)=∂V(y)/∂y|y=b and b is the 
distance headway in the equilibrium state. 

On the other hand, the string stability condition can 
also be obtained through the method of transfer function 
and its H∞ norm [32]. In this approach, the upstream 
propagation of a small velocity perturbation around the 
equilibrium state can be described by its transfer function 
after the Laplace transformation and is formulated as 

 
o o

1( ) ( ) ( )n n nV s G s V s                         (6) 
 
where Vn(s)° and Vn+1(s)° are respectively the velocity 
perturbation of vehicle n and its preceding vehicle n+1 
after Laplace transformation; s=jw with the imaginary 
unit denoted by j and the frequency indicated by w; Gn(s) 
is the transfer function. Moreover, whether such a small 

velocity fluctuation would be amplified and finally 
results in traffic congestion is mainly determined by the 
H∞ norm of the transfer function in Eq. (6), i.e., 

( )nG s  , and if the following condition (Eq. (7)) is 
satisfied, we can have Eq. (8). 
 

( ) 1nG s    for n=1, 2, …, N−1                (7) 
 

,1 1 2 1 1 2 1 1k k k k kG G G G G G G      
       

k=2, 3, …, N                         (8) 
 

When Eq. (8) is satisfied, the velocity perturbation 
propagated from vehicle k (k ≥2) to vehicle 1 (i.e., the 
last following vehicle) will decay, that is also to say, the 
string stability of the vehicle group can be satisfied. 
Therefore, according to the conditions (Eqs. (7) and (8)), 
the string stability condition of the OV model (Eq. (3)) 
can also be solved out as 2 ,   where    

( ) .y bV y y    
Although the same string stability condition is 

reached by two different methods, their derivation 
processes and viewpoints are different from each other. 
The position perturbation around the equilibrium 
solution is treated as the observed quantity when 
applying the ring-road based linearized stability theory, 
which is further expanded as Fourier series, and the 
string stability condition can be reached only if the small 
disturbances with long wavelengths are mitigated. 
However, the method about the transfer function is 
focused on the transfer process of velocity fluctuation 
around the equilibrium solution and employing its H∞ 

norm to judge whether the string stability condition can 
be guaranteed is from the perspective of control theory. 
Therefore, these two methods can also be used to analyze 
the stability performance of the bi-directional OV model 
from different viewpoints. 
 
3 String stability conditions of bi-directional 

OV model 
 
3.1 Review of bi-directional OV model and its 
combined string stability condition 

In reality, a driver not only usually pays attention to 
the preceding vehicles but also perceives the states of the 
following vehicles through various ways, e.g., honk, 
headlight, rear-view mirrors or CVT, which results in the 
emergence of the bi-directional OV models (Fig. 1). One 
representative bi-directional OV model was proposed by 
NAKAYAMA et al [21], which in that work is called the 
backward looking OV (BL-OV) model and can be 
treated as an alternative way to mitigate the traffic 
congestion. Moreover, such model is formulated as 

 
F B 1d ( ) d { [ ( )] [ ( )] ( )}n n n nv t t V y t V y t v t           (9) 

 
where yn−1(t)=xn(t)−xn−1(t) is the distance headway of the 
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following vehicle (n−1), VF(y) and VB(y) are the optimal 
velocity functions for forward and backward looking, 
respectively. Moreover, VF(y) is monotonically 
increasing function with respect to the distance to the 
preceding vehicle and VB(y) is monotonically decreasing 
function with respect to the distance to the following 
vehicle. In this way, the optimal velocity is not only 
determined by VF(y) from downstream but also by VB(y) 
from upstream. 
 

 
Fig. 1 Illustration of bi-directional OV model 

 
Moreover, through the method of ring-road based 

string stability analysis [21], the string stability condition 
for such bi-directional OV model (i.e., the combined 
string stability condition) can be expressed as α> 

2
F B F B2[ '( ) '( )] [ '( ) '( )],V b V b V b V b  where F '( )V b   

F ( ) / |y bV y y   and B B'( ) ( ) .y bV b V y y    Meanwhile, 

F B e( ) ( ) ,V b V b V   where Ve is the steady velocity in 
the equilibrium state. Note that F ( )V b  and B ( )V b  will 
be denoted as ΛF and ΛB, respectively. Therefore, the 
combined string stability condition can be simplified as 

 
LC                                      (10) 

 
where 2

F B F B2( ) ( ).LC        
 
3.2 Partial string stability conditions of bi-directional 

OV model 
From the bi-directional OV model (Eq. (9)), the 

vehicular dynamical system can be written as 
 

F B 1

1

1
1

d ( )
{ [ ( )] [ ( )] ( )}

d
d ( )

( ) ( )
d

d ( )
( ) ( )

d

n
n n n

n
n n

n
n n

v t
V y t V y t v t

t
y t

v t v t
t

y t
v t v t

t

 






    

  



 


      (11) 

 
Then, vehicular dynamical system (Eq. (11)) can be 

linearized around the steady state (i.e., 

F B e( ) ( ) )V b V b V  as 
 

F B 1

1

1
1

d ( )
{ ( ) ( ) ( )}

d
d ( )

( ) ( )
d

d ( )
( ) ( )

d

n
n n n

n
n n

n
n n

v t
y t y t v t

t
y t

v t v t
t

y t
v t v t

t

   






      

  



 


     (12) 

 
where e( ) ( ) ,n nv t v t V  ( ) ( )n ny t y t b  . 

From the viewpoint of control theory, the dynamic 

system (Eq. (12)) can be rewritten as a linear time- 
invariant system, that is 

 

1 1

1
1

( )
( ) 0 0

( ) ( ) 1 ( ) 0 ( )

0 1( )
( )

n
n

n n n n

n
n

v t
v t

y t y t v t v t

y t
y t





 





 
                                    
  

M  (13) 

 

where 
F B

1 0 0 .

1 0 0

   
   
  

M  

After Laplace transformation, the resulting dynamic 
system in the frequency domain becomes 
 

1
1

1

( ) 0

( ) ( ) 1 ( )

0( )

n

n n

n

V s

Y s s V s

Y s






                 

I M  

1
1

0

( ) 0 ( )

1

ns V s


 
   
  

I M              (14) 

 
where I is the unit matrix, ( ) L[ ( )],n nV s v t  ( )nY s   
L[ ( )],ny t  ( ) [ ( )],n nY s L y t and L denotes the Laplace 
transformation. 

Solving system (Eq. (14)), it is obtained that vehicle 
n’s velocity disturbance results from the velocity 
disturbances from its nearest preceding vehicle n+1 and 
following vehicle n−1, whose transferring relationship is 
formulated as 

 
1 1F B( ) ( ) ( ) ( ) ( )n n nV s G s V s G s V s              (15) 

 
where F F( ) d( ),G s s B B( ) d( )G s s  and d(s)= 

2
F B( ).s s       

Moreover, such relationship can also be depicted as 
the following block diagram. 

As illustrated in Fig. 2, input signals of the system 
include velocity perturbations from the preceding vehicle 
(n+1) and following vehicle (n−1). The transfer functions 
GF(s) and GB(s) can illustrate the transfer performance of 
velocity disturbance when propagated backward or 
forward. Then, the final velocity perturbation of vehicle 
n is the combined results of vehicle disturbance from 
both directions. It should be noted that the forward 
looking term of Eq. (15) (i.e., the first term of the right 
hand side) deals with the disturbance that propagates in 
 

 
Fig. 2 Block diagram for transferring relationship of velocity 

disturbances 
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the opposite direction of traffic, that is, backward 
disturbance; while, the backward looking term (i.e., the 
second term of the right hand side) formulates the impact 
of forward disturbance. 
3.2.1 Partial string stability analysis for backward 

disturbances 
The magnitude of backward disturbance will not 

increase if the following condition is met. 
 

2
F B Β F B2( ) 2 2                        (16) 

 
As for F F( ) d( ) ,G s s when the characteristics 

polynomial d(s) is stable, it is necessary for us to make 

F ( ) 1G s    to guarantee that backward disturbance will 
not be amplified. Moreover, according to the definition 
of H∞ norm of transfer function [32], the condition 

F ( ) 1G s    can be rewritten as 
 

2
F

F 2 2 2 2
F B

( )
(j ) 1

( ( ) )
G




     
 

  
 for [0, )   (17) 

 
On one hand, it is obtained from Eq. (17) that 

4 2 2 2 2 2
F B F B F[ 2 ( )] ( ) ( ) 0                for [0,

), which can also be written as 2 2( ) [h q q     
2 2 2

F B F B F2 ( )] ( ) ( ) 0q           fo q=ω2   
[0, ) . Moreover, according to the features of h(q), the 
inequality h(q)≥0 can be guaranteed if the following 
condition is met. 

 
2

2 F B

2 2 2 2 2
F B F B F

2 ( )
0

2

[ 2 ( )] 4[ ( ) ( ) ] 0

q
   



        

  
  


       

 

(18) 
 

Then, from condition (Eq. (18)) we can derive the 
following inequality: 

 
2

F B Β F B F B2( ) 2 2 2( )                 (19) 
 

On the other hand, another stability condition can be 
obtained by checking the following three conditions    
1) F(j0) 1;G   2) F ( j ) 0;G   3) 2( ) 2 (2g         

2
F B(2 ( ) )) 0      for (0, ),  where g(ω)= 

2 2 2 2
F B( ( ) ) .         After a series of algebraic 

operations, the following inequality can be gotten. 
 

F B2( )                                 (20) 
 

From Eqs. (19)−(20), it is obviously known that the 
backward disturbance would not be enlarged if the 
condition (Eq. (16)) is satisfied. 
3.2.2 Partial string stability analysis for forward 

disturbances 
Similarly, the forward disturbance will not increase 

if the following condition is conformed. 
 

2
F B F F B2( ) 2 2                       (21) 

Comparing Eqs. (16) and (21), their relationships 
between two partial string stabilities from different 
directions can be summarized in Table 1. 
 
Table 1 Relationship between forward and backward string 

stabilities 

Inequality FS/BS FS/NBS NFS/BS NFS/NBS

|ΛB|>|ΛF| α≥CB CF≤α<CB — α<CF 

|ΛB|<|ΛF| α≥CF — CB≤α<CF α<CB 

Note: 2
F  F  B  Β F  B2( ) 2 2C         and 2

B  F  B  F  F  B2( ) 2 2 .C          
FS and BS denote the stable transferring relationships of backward and 
forward disturbances, respectively; NFS and NBS indicate their unstable 
relationships. 
 
3.3 Comparison of two kinds of string stability 

conditions 
The combined string stability condition by the 

ring-road based linearized stability analysis has been 
reviewed in section 3.1, while section 3.2 has verified 
that the partial string stability conditions for forward and 
backward traffic disturbance can be reached by the 
method of transfer function and its H∞ norm. In this 
section, a more detailed comparison is conducted to 
investigate the relationship between these two kinds of 
string stability performance. Moreover, it is set that 

B F   because drivers are usually more sensitive to 
the traffic information from downstream than that from 
upstream. 

First of all, from Eqs. (10) and (16), it is assumed 
that F LC C  and after some algebra operations we can 
obtain the following relationship. 

 
3 2( ) 4 11 2 0f p p p p                      (22) 

 
where B F ( 1,  0).p      Then, there are three roots: 
p1=−1.7198, p2=−0.1966 and p3=5.9164 for ( ) 0f p  . 
Moreover, according to the characteristics of f(p) (Fig. 3), 
it is known that 1 2( , )p p p  so as to f(p)>0. On the 
other hand, 1 2( , ) ( ,0)p p p    in order to f(p)<0, that 
is, CF<CL. 

Secondly, from Eqs. (10) and (21), assume that 
 

 
Fig. 3 Characteristics of f(p)  



J. Cent. South Univ. (2015) 22: 1563−1573 

 

1568

 

CB>CL, after some algebra operations, the following 
inequality can be achieved by 

 
3 2( ) 2 11 4 1 0g p p p p                      (23) 

 
where  B  F ( 1, 0).p      Then, There are three roots 
p′1=−5.0876, p′2=−0.5815 and p′3=0.1690 for g(p)=0. 
Furthermore, according to the characteristics of g(p)  
(Fig. 4), 1 2( , )p p p   so as to g(p)>0. Moreover, 

1 2( ,  ) ( ,  0)p p p     in order to satisfy g(p)<0, that is, 
CB<CL. 

 

  
Fig. 4 Characteristics of g(p)  

 

Moreover, according to the relationship of 

B F  , we have CF>CB. Therefore, based on the 
above derivation and analysis, their relationships can be 
summarized as follows. 

Case 1: If 2( ,0),p p  CL is above CF and CB, that 
is CL>CF>CB. 

Case 2: If 1 2( , )p p p  and 2( ,  0)p p  (i.e., 

2 2( ,  )),p p p CL is between CF and CB, that is CF>CL> 
CB 

Case 3: If 2( 1,  )p p  , CL is below CF and CB, 
that is CF>CB>CL. 

Based on above summary and Eqs. (10), (16) and 
(21), the relationship between combined string stability 
and partial string stability from different directions is 
given in Table 2. 

It is obviously known that if the velocity 
perturbations from both directions can be mitigated 
efficiently though their transfer functions (i.e., FS/BS), 
the original uniform traffic flow would be recovered 
finally; meanwhile, if the traffic fluctuations decay as 
time progresses and all vehicles finally return to their 
original equilibrium (i.e., CS), then the traffic 
disturbances transferred from upstream and downstream 
would vanish gradually. Therefore, three situations (i.e., 
FS/BS/NCS, NFS/BS/CS and NFS/NBS/CS) in Table 2 
do not exist in the realistic traffic flow. Therefore,  
Table 2 can be modified as the following Table 3. 

Table 2 Relationships between combined and partial string 

stability 

Case Condition Status 

1 

CL<α FS/BS/CS 

CF<α<CL FS/BS/NCS 

CB<α<CF NFS/BS/NCS 

α<CB NFS/NBS/NCS 

2 

CF<α FS/BS/CS 

CL<α<CF NFS/BS/CS 

CB<α<CL NFS/BS/NCS 

α<CB NFS/NBS/NCS 

3 

CF<α FS/BS/CS 

CB<α<CF NFS/BS/CS 

CL<α<CB NFS/NBS/CS 

α<CL NFS/NBS/NCS 

Note: CS and NCS denote the combined stability and instability of the 
traffic flow, respectively. 

 
Table 3 Revised relationships between combined and partial 

string stabilities 

Case condition Status 

1 

CF<α FS/BS/CS 

CB<α<CF NFS/BS/NCS 

α<CB NFS/NBS/NCS

2 

CL<α FS/BS/CS 

CB<α<CL NFS/BS/NCS 

α<CB NFS/NBS/NCS

3 
CL<α FS/BS/CS 

α<CL NFS/NBS/NCS

 
4 Numerical experiments 
 

In the numerical experiments, N vehicles are 
distributed evenly in a ring road with uniform distance 
headway b. The length of the road is L=N·b and the 
steady-state velocity is Ve=VF(b)+VB(b). The optimal 
velocity functions for forward looking and backward 
looking are VF(y)=αF·[tanh(y−yc)+tanh(yc)] and VB(y)= 
−αB·[tanh(y−yc)+tanh(yc)], where αF, αB and yc are 
positive constants and αF>αB. The initial conditions are 
set as follows: the time step of simulation Δt is 0.1 s, the 
total number of vehicles N is 100, the steady distance 
headway b is 10 m and the length of the ring road L is 
1000 m, x1(0)=b for n=1, xn(0)=xn−1(0)+b for n=2, …, N, 
and vn(0)=Ve for 2,n N e(0) 2nv V  for n=N/2. 
 
4.1 Three string stability regions 
 

According to the expressions of three neutral 
stability lines, i.e., CF, CB and CL, traffic flow can be 
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divided into two regions differently by various neutral 
stability line, that is, traffic flow is stable above the 
critical line and traffic jam would not happen, while 
below this line traffic flow is unstable and traffic 
fluctuation appears. The critical point (hc, αc) exists for 
each neutral stability line under different parameters, 
which is indicated by the apex of each curve. Once α>αc, 
the uniform state irrespective of vehicle headway is 
always linearly stable; while the stability would be 
broken for α<αc when headway distance is in the 
neighborhood of hc. 

Figure 5 illustrates three neutral stability lines  
 

 
Fig. 5 Neutral stability lines in headway-sensitivity space under 

various situations: (a) αB=0.1, αF=1; (b) αB=0.4, αF=1;  (c) 

αB=0.7, αF=1 

obtained by two methods under various situations. When 
αB=0.1 and αF=1, that is, 2( ,0),p p  then CL>CF>CB 
and the headway-sensitivity space is in fact divided into 
three parts by two neutral stability lines CF and CB, in 
which the stability performance of the traffic disturbance 
transferred to different direction is different from each 
other (Case 1 in Table 3). Similarly, when αB=0.4 and 
αF=1, i.e., 2 2( ,  )p p p , then CF>CL>CB and the 
headway-sensitivity space is also composed of three 
efficient regions separated by two neutral stability lines 
CL and CB, which is due to the relationship between the 
combined string stability and partial string stability  
(Case 2 in Table 3). However, when αB=0.7 and αF=1, 
that is, 2( 1,  ),p p   then CF>CB>CL and the headway- 
sensitivity space actually consists of two efficient regions 
divided by the neutral stability line CL (Case 3 in   
Table 3). 

Under the prerequisite that drivers are more 
sensitive to the traffic information from downstream than 
that from upstream, the coefficient αF should be always 
larger than αB. Therefore, in the case of αF≤αB the critical 
sensitivity is set as zero (Fig. 6). Figure 6(a) illustrates 
that when αF is fixed, the critical sensitivity decreases 
with the increase of αB, that is, the more attention to 
traffic information from upstream benefits the stability of 
backward traffic disturbance, which on the other hand 
would be worsened when αB is a fixed value while αF 
increases gradually (i.e., the more sensitive to the traffic 
information from downstream). Different from Fig. 6(a), 
Fig. 6(b) reflects almost the opposite relationship among 
αB, αF and α, that is, when αF is fixed, the sensitivity of 
critical points increases gradually with the increase of αB, 
that is, the more attention to traffic information from 
upstream deteriorates the stability of forward traffic 
disturbance, which would be improved when αB is not 
changed while the critical αF decreases gradually (i.e., 
the less attention to the traffic information from 
downstream). 

Moreover, Fig. 6(c) demonstrates the ultimate 
critical sensitivity for such bi-directional OV model 
under different αB and αF, which is a little similar to the 
change trend in Fig. 6(a), that is, the critical sensitivity 
would increase gradually with the increase of αF or with 
the decrease of αB, which also illustrates the effect of 
traffic information from downstream in the stability of 
traffic flow outweighs that of traffic information from 
upstream. To sum up, by detailed comparison of three 
sub-figures in Fig. 6, the stable regions for forward 
looking, backward looking and bi-directional looking are 
different from each other, which reveal the difference 
between the transfer performance of traffic disturbance 
from different direction and the final stability 
performance of traffic flow. 
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Fig. 6 Sensitivity of critical points under different situations:  

(a) Critical sensitivity values of CF; (b) Critical sensitivity 

values of CB; (c) Critical sensitivity values of CL 

 

4.2 Offset effect of velocity fluctuations from different 
directions 

Based on the bi-directional OV model, velocity 
perturbation of vehicle n around the equilibrium state can 
not only be transferred to upstream (i.e., vehicle n−1) 
through GF(s), but also be transferred to downstream (i.e., 
vehicle n+1) through GB(s). Whether velocity 
perturbation of vehicle n amplifies when propagating 
backwards or forwards is determined by H∞ norm of GF(s) 
or GB(s) respectively. Therefore, when αF and αB are set 
as 1 and 0.1 respectively (i.e., p=−0.1(p2, 0)) and α is 
chosen as 0.5, then according to case 1 in Table 3 (or   
Fig. 5(a)) the transferring relationship of backward 

disturbance is unstable while that of forward disturbance 
is stable, which can also be illustrated by the responses 
of vehicle 49 and 51 to half reduction of vehicle 50’s 
velocity for 10 s set in Fig. 7. 
 

 
Fig. 7 Responses of two nearest vehicles to vehicle 50’s 

velocity fluctuation (αF=1, αB=0.1 and α=0.5) 

 
According to above analysis, H∞ norm of GF(s) is 

larger than 1 but that of GB(s) is smaller than 1. This 
indicates that the backward velocity fluctuation is 
amplified but the forward fluctuation is not. Therefore, in 
the ring road, the velocity perturbations of all vehicles 
(Fig. 8(a)) due to the initial half velocity reduction of 
vehicle N/2 are transferred to upstream and cause larger 
and larger amplitude of velocity fluctuations (Fig. 8(b)). 
On the other hand, such disturbance can also be 
transferred to downstream; however, smaller amplitudes 
of velocity fluctuations (Fig. 8(c)) are yielded due to the 
suppression effect of GB(s). Furthermore, when 
comparing three subfigures in Fig. 8, it is found that 
ultimate velocity fluctuation is a little less serious than 
velocity fluctuation to upstream but much more severe 
than that to downstream, which implies the offset effect 
when the velocity fluctuation from different direction 
meets somewhere in the ring road. 
 
4.3 Relationship between partial and final velocity 

fluctuations 
According to case 2 in Table 3, when αF and αB are 

respectively set as 1 and 0.4 (i.e., 2 20.4 ( ,  ))p p p    
and α is chosen as 0.3, then CB<α<CL<CF. In this case, 
H∞ norm of GF(s) is larger than 1 while that of GB(s) is 
smaller than 1. Moreover, on one hand, according to the 
first term of the right hand side of Eq. (15), the 
transferring relationship about velocity fluctuation from 
vehicle n to its k-th following vehicle becomes 

 
2 1

F F F( ) ( ) ( )n k n n
n k nV G s G s G s V  
    , k≥1      (24) 

 
where n kV  denotes the velocity fluctuation of the k-th 
following vehicle caused by vehicle n’s velocity  
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Fig. 8 Space−time evolution of velocity fluctuation (αF=1, 

αB=0.1 and α=0.5): (a) Ultimate velocity fluctuation; (b) 

Velocity fluctuation to upstream; (c) Velocity fluctuation to 

downstream 

 
fluctuation, F ( ),n iG s for i=1, 2, …, k is the transfer 
function between vehicle (n-i+1) and vehicle (n−i). 

From Eq. (24), the following relationship can be 
easily derived. 

 
2 1

F F F( ) ( ) ( )n k n n
n k nV V G s G s G s  


 
       (25) 

 
When F ( ) 1n iG s



  , for i=1, 2, … , k, from    
Eq. (25) it is easily known that 1.n k nV V


  In 

other words, the velocity fluctuation transferred from 
vehicle n to its k-th following vehicle becomes larger 
gradually as the k value increases (Fig. 9(a)). 

On the other hand, on the basis of the second term 
of the right hand side of Eq. (15), the following 
transferring relationship about velocity fluctuation from 
vehicle n to its m-th preceding vehicle can be reached by 

 
2 1

B B B( ) ( ) ( )n m n n
n m nV G s G s G s V  
    , m≥1     (26) 

 
where n mV   indicates the velocity fluctuation of the  
m-th preceding vehicle due to vehicle n’s velocity 
fluctuation, B ( ),n jG s for j=1, 2, …, m is the transfer 
function between vehicle (n+j−1) and vehicle (n+j). 

From Eq. (26), we can gain the relationship as 
 

2 1
B B B( ) ( ) ( )n m n n

n m nV V G s G s G s  


 
      (27) 

 
When B ( ) 1,n jG s


  for j=1, 2, … , m, from  

Eq. (27) we have 1,n m nV V

  that is also to say, 

the suppression of velocity fluctuation from vehicle n to 
its m-th preceding vehicle becomes more significant as 
the m value increases (Fig. 9(b)). 
 

  
Fig. 9 Velocity fluctuation of vehicle N/2 transferred to 

upstream and downstream (αF=1, αB=0.4 and α=0.3):        

(a) Backward velocity fluctuation; (b) Forward velocity 

fluctuation 

 
Based on above analysis about the transfer 

relationship of velocity fluctuation towards different 
directions, it is then possible to analyze the detailed 
cause of the combined space-time evolution of velocity 
fluctuation in Figs. 10(a) and (c). Obviously, because of 
the amplification effect of GF(s), the velocity 
perturbation of vehicle N/2 propagates backwards (i.e., to 
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Fig. 10 Velocity fluctuation (αF=1, αB=0.4 and α=0.3): (a) Space−time evolution of velocity fluctuation during first 200 s; (b) 

Velocity fluctuation at different time; (c) Space−time evolution of velocity fluctuation during last 200 s; (d) Velocity fluctuation at 

different time 

 
upstream) with increasing amplitude; while it vanishes 
when transferred forwards (i.e., to downstream) as a 
result of the suppression effect of GB(s) (Fig. 10(b)). 
Moreover, Figs. 10(c) and (d) illustrate that because all 
vehicles are running in a circular road, the growing 
backward velocity perturbation cannot escape from the 
vehicular system but rather be transferred and 
accumulated within the road and finally results in the 
periodically unstable traffic fluctuation (i.e., stop and go 
waves), which can also explain why the backward 
velocity perturbation would not always be amplified in 
the ring road. 
  
5 Conclusions 
 

1) By comparison of combined and two partial 
string stability conditions, the final string stability 
performance of traffic flow depends on the sensitivity of 
drivers to the forward and backward traffic stimuli.  

2) The combined string instability does not 
necessarily indicate the partial string instability for both 
directions.  

3) Velocity fluctuation from different directions 
cannot escape from the vehicular system and will meet 

somewhere in the ring road, which produces the offset 
effect and make the velocity fluctuation not always be 
amplified. In summary, besides of the ring-road based 
string stability analysis, applying the method of transfer 
function and its H∞ norm to getting the partial string 
stability conditions can help grasp traffic flow dynamics 
for the bi-directional OV models in details and clearly 
understand how the ultimate traffic fluctuation or 
congestion forms. 
 
References 
 
[1] BANDO M, HASEBE K, NAKAYAMA A. Dynamical model of 

traffic congestion and numerical simulation [J]. Physical Review E, 

1995, 51(2): 1035−1042. 

[2] BANDO M, HASEBE K, NAKANISHI K. Analysis of optimal 

velocity model with explicit delay [J]. Physical Review E, 1998, 

58(5): 5429−5435. 

[3] DAVIS L C. Comment on “Analysis of optimal velocity model with 

explicit delay” [J]. Physical Review E, 2002, 66(3): 038101. 

[4] DAVIS L C. Modifications of the optimal velocity traffic model to 

include delay due to driver reaction time [J]. Physica A, 2003, 319: 

557−567. 

[5] OROSZ G, WILSON R E, KRAUSKOPF B. Global bifurcation 

investigation of an optimal velocity traffic model with driver reaction 

time [J]. Physical Review E, 2004, 70: 026207. 



J. Cent. South Univ. (2015) 22: 1563−1573 

 

1573

[6] OROSZ G, KRAUSKOPF B, WILSON R E. Bifurcations and 

multiple traffic jams in a car-following model with reaction-time 

delay [J]. Physica D, 2005, 211: 277−293. 

[7] YU L, LI T, SHI Z K. Density waves in a traffic flow model with 

reaction-time delay [J]. Physica A, 2010, 389(13): 2607−2616. 

[8] CHEN J Z, SHI Z K, HU Y M. Stabilization analysis of multiple 

look-ahead model with driver reaction delays [J]. International 

Journal of Modern Physics C, 2012, 23(6): 1250048. 

[9] HELBING D, TILCH B. Generalized force model of traffic 

dynamics [J]. Physical Review E, 1998, 58(1): 133−138. 

[10] JIANG R, WU Q S, ZHU Z J. Full velocity difference model for a 

car-following theory [J]. Physical Review E, 2001, 64(1): 017101. 

[11] LENZ H, WAGNER C K, SOLLACHER R. Multi-anticipative 

car-following model [J]. The European Physical Journal B, 1999, 

7(2): 331−335. 

[12] HAESBE K, NAHWMAA A, SUGIYAMA Y. Equivalence of linear 

response among extended optimal velocity models [J]. Physical 

Review E, 2004, 69: 017103. 

[13] GE H X, DAI S Q, DONG L Y. Stabilizaiton effect of traffic flow in 

an extended car following model based on an intelligent 

transportation system application [J]. Physical Review E, 2004, 70: 

066134. 

[14] SHI W, CHEN N G, XUE Y. An asymptotic solvable multiple 

“look-ahead” model with multi-weight [J]. Conmmunications in 

Theoretical Physics, 2007, 48(6): 1088−1092. 

[15] YU L, SHI Z K, ZHOU B C. Kink-antiKink density wave of an 

extended car following model in a cooperative driving system [J]. 

Communicaitons in Nonlinear Science and Numerical Simulation, 

2008, 13(10): 2167−2176. 

[16] XIE D F, GAO Z Y, ZHAO X M. Stabilizaiton of traffic flow based 

on the multiple information of preceding cars [J]. Communications in 

Computational Physics, 2008, 3: 899−912. 

[17] PENG G H, SUN D H. A dynamical model of car following with the 

consideration of the multiple information of preceding cars [J]. 

Physics Letters A, 2010, 374: 1694−1698. 

[18] ZHENG L, MA S F, ZHONG S Q. Analysis of honk effect on the 

traffic flow in a cellular automaton model [J]. Physica A, 2011, 

390(6): 1072−1084. 

[19] ZHENG L, MA S F, JING J, RAN B, ZHONG S Q. Incorporating 

backward-looking behavior into cellular automaton model [C]// 91st 

Annual Meeting of Transportation Research Board, Washington D. C: 

TRB, 2012: 12−0835. 

[20] ZHENG L, ZHONG S Q, MA S F. Towards the bi-directional cellular 

automaton model with perception ranges [J]. Physica A, 2013, 

392(14): 3028−3038. 

[21] NAKAYAMA A, SUGIYAMA Y, HASEBE K. Effect of looking at 

the car that follows in an optimal velocity model of traffic flow [J]. 

Physical Review E, 2001, 65: 016112. 

[22] HASEBE K, NAKAYAMA A, SUGIYAMA Y. Dynamical model of 

a cooperative driving system for freeway traffic [J]. Physical Review 

E, 2003, 68: 026102. 

[23] GE H X, ZHU H B, DAI S Q. Effect of looking backward on traffic 

flow in a cooperative driving car following model [J]. The European 

Physical Journal B, 2006, 54: 503−507. 

[24] SUN D H, LIAO X Y, PENG G H. Effect of looking backward on 

traffic flow in an extended multiple car-following model [J]. Physica 

A, 2011, 390(4): 631−635. 

[25] YANG D, PETER J, PU Y, RAN B. Safe distance car-following 

model including backward-looking and its stability analysis [J]. The 

European Physical Journal B, 2013, 86(3): 86−92. 

[26] PETER J, YANG D, RAN B, PU Y. Bi-directional control 

characteristics of general motors (GM) and optimal velocity 

car-following models: Implications for coordinated driving in 

connected vehicle environment [J]. Journal of the Transportation 

Research Board, 2013, 2381(1): 110−119. 

[27] TANG T Q, LI C Y, HUANG H J, SHANG H Y. Macro modeling 

and analysis of traffic flow with road width [J]. Journal of Central 

South University of Technology, 2011, 18(5): 1757−1764. 

[28] ZHANG H M. Analyses of the stability and wave properties of a new 

continuum traffic theory [J]. Transportation Research Part B, 1999, 

33: 399−415. 

[29] JIANG R, WU Q S, ZHU Z J. A new continuum model for traffic 

flow and numerical tests [J]. Transportation Research Part B, 2002, 

36: 405−419. 

[30] WILSON R E. Mechanisms for spatiotemporal pattern formation in 

highway traffic models [J]. Philosophical Transactions of the Royal 

Society Part A, 2008, 366: 2017−2032. 

[31] WILSON R E, WARD J A. Car-following models: fifty years of 

linear stability analysis — A mathematical perspective [J]. 

Transportation Planning and Technology, 2011, 34(1): 3−18. 

[32] KONISHI K, KOKAME H, HIRATA K. Decentralized delayed- 

feedback control of an optimal velocity traffic model [J]. The 

European Physical Journal B, 2000, 15: 715−722. 

[33] ZHAO X M, GAO Z Y. Controlling traffic jams by a feedback signal 

[J]. The European Physical Journal B, 2005, 43(4): 565−572. 

[34] ZHENG L, MA S F, ZHONG S Q. Influence of lane change on 

stability analysis for two-lane traffic flow [J]. Chinese Physics B, 

2011, 20(8): 088701. 

[35] ZHENG L, ZHONG S Q, MA S F. Controlling traffic jams on a 

two-lane road using delayed-feedback signals [J]. Journal of 

Zhejiang University: Science A, 2012, 13(8): 620−632. 

[36] JIN Y F, HU H Y. Stabilization of traffic flow in optimal velocity 

model via delayed-feedback control [J]. Commun Nonlinear Sci 

Numer Simulat, 2013, 18: 1027−1034. 

[37] LIANG C Y, PENG H. Optimal adaptive cruise control with 

guaranteed string stability [J]. Vehicle System Dynamics, 1999, 31: 

313−330. 

[38] LIANG C Y, PENG H. String stability analysis of adaptive cruise 

controlled vehicles [J]. JSME International Journal Series C, 2000, 

43(3): 671−677. 

[39] BOSE A, IOANNOU P. Analysis of traffic flow with mixed manual 

and semiautomated vehicles [J]. IEEE Transactions on Intelligent 

Transportation Systems, 2003, 4(4): 173−188. 

[40] ZHOU J, PENG H. Range policy of adaptive cruise control vehicles 

for improved flow stability and string stability [J]. IEEE Transactions 

on Intelligent Transportation Systems, 2005, 6(2): 229−237. 

[41] NAUS G J L, VUGTS R P A, PLOEG J, VAN DE MOLENGRAFT 

M J G, STEINBUCH M. String-stable CACC design and 

experimental validation: A frequency-domain approach [J]. IEEE 

Transactions on Vehicular Technology, 2010, 59(9): 4268−4279. 

(Edited by DENG Lü-xiang) 

 


