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Abstract: The magnetohydrodynamic (MHD) boundary layer flow of Casson fluid in the presence of nanoparticles is investigated. 
Convective conditions of temperature and nanoparticle concentration are employed in the formulation. The flow is generated due to 
exponentially stretching surface. The governing boundary layer equations are reduced into the ordinary differential equations. Series 
solutions are presented to analyze the velocity, temperature and nanoparticle concentration fields. Temperature and nanoparticle 
concentration fields decrease when the values of Casson parameter enhance. It is found that the Biot numbers arising due to thermal 
and concentration convective conditions yield an enhancement in the temperature and concentration fields. Further, we observed that 
both the thermal and nanoparticle concentration boundary layer thicknesses are higher for the larger values of thermophoresis 
parameter. The effects of Brownian motion parameter on the temperature and nanoparticle concentration are reverse. 
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1 Introduction 
 

Solar power is a quite natural way to produce heat, 
electricity, water, and etc. In fact, sustainable energy 
generation is one of the major issues of present society. 
Solar energy perhaps has a natural solution with the 
hourly solar flux incident on the Earth’s surface greater 
than all of the human consumption of energy in a year. 
The solar is regarded one of best sources of renewable 
energy with a minimal environmental impact. Hence, 
much attention is paid to solar power and solar power 
technologies utilizations. Nanomaterials are introduced 
as new energy materials because these materials have 
particles with size as the same as or smaller than the size 
of de Broglie wave [1]. The use of nanoparticles is now a 
subject of abundant studies. It is due to their Brownian 
motion and thermophoresis properties. A new class of 
heat transfer fluids is known as nanofluids (a base fluid 
and nanoparticles). The nanoparticles are utilized to 
enhance the heat transfer performance of the base fluids 
[2]. The cooling rate requirements cannot be obtained by 
the ordinary heat transfer fluids because their thermal 
conductivity is not adequate. Brownian motion of the 
nanoparticles enhance the thermal conductivity of base 
fluids. Further, the magnetic nanofluid is a unique 

material that has properties of both liquid and magnet. 
The magnetonano-fluid is important for cancer therapy, 
construction of loud speakers, blood analysis, and etc. 
Many of physical characteristics of nanofluids can be 
controlled and adjusted by varying an applied magnetic 
field. HOSSEINI and GHADER [3] provided a model to 
analyze the viscosity of nanofluid with temperature and 
particle volume fraction. KANDASAMY et al [4] 
investigated the MHD boundary layer flow over a 
vertical stretching surface in the presence of 
nanoparticles. Suction/blowing effects are also 
considered in this work. They obtained the exact 
solutions for translational symmetry and numerical 
solutions for scaling symmetry. Mixed convection flow 
of nanofluid with magnetic field, suction/injection, 
viscous dissipation and chemical reaction effects were 
numerically investigated by KAMESWARAN et al [5]. 
TURKYILMAZOGLU [6] provided closed form 
solutions for hydromagnetic thermal slip flow of 
nanofluid over a linearly stretched surface. Entropy 
generation analysis in MHD flow of nanofluid was 
discussed by RASHIDI et al [7]. Here, the flow 
generation is due to the rotation of porous disk. They 
provided numerical solutions by employing Runge− 
Kutta fourth order procedure. Forced convection 
flow of nanofluid over a horizontal plate was examined 
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by HATAMI et al [8]. MAKINDE et al [9] discussed the 
buoyancy-driven stagnation point flow of nanofluid over 
a convectively heated stretching and shrinking surfaces. 
HATAMI and GANJI [10] investigated the effect of heat 
transfer in non-Newtonian nanofluid passing through a 
porous medium. 

Boundary layer flows with combined heat and mass 
transfer over a stretching or moving surfaces are quite 
essential in many industrial and metallurgical processes. 
Such situations occur in the design of chemical 
processing, damage of crops due to freezing, cooling of 
drying and papers in textile, food processing, cooling 
towers, refrigeration and air conditioning, compact heat 
exchangers, solar power collectors, cooling of an infinite 
metallic plate in a cooling bath etc. Various researchers 
analyzed such flow analysis for different fluid models 
under isothermal heat and mass conditions (see     
Refs. [11−15]). Recently, the concept of convective heat 
condition is quite popular amongst the researchers. For 
example, AZIZ [16] carried out an analysis to discuss the 
steady laminar flow over a flat plate with convective 
boundary condition. MAKINDE and AZIZ [17] extended 
the work of AZIZ [16] by considering the MHD flow 
through a porous medium with buoyancy force. 
HAMAD et al [18] analyzed the variable diffusivity fluid 
combined with heat and mass transfer in the presence of 
thermal boundary condition. They discussed the solution 
employied by LIE group method [18]. Three- 
dimensional boundary layer flow of Jeffery fluid with 
convective surface condition was discussed by 
SHEHZAD et al [19]. HAYAT et al [20] presented 
homotopic solutions of buoyancy driven flow of 
Maxwell fluid near a stagnation point in the presence of 
convective condition. Boundary layer flow of nanofluid 
with thermal convective boundary condition was 
investigated by MAKINDE and AZIZ [21]. ALSAEDI et 
al [22] extended the analysis of Ref. [21] by considering 
stagnation point flow with heat generation/absorption. 

The present investigation is focused on analyzing 
the effects of convective heat and mass conditions. All 
above mentioned investigations were presented with 
constant thermal and concentration conditions or by 
using the thermal convective boundary condition. The 
literature on concentration convective condition is not 
available yet. Further, we considered the 
magnetohydrodynamic (MHD) boundary layer flow of 
Casson nanofluid [23−25] over an exponentially 
stretching surface. Solutions for the velocity, temperature 
and concentration are computed with the help of 
homotopy analysis method (HAM) [26−30]. The 
discussion to plots is given. 
 
2 Problems development 
 

We examine magnetohydrodynamic (MHD) steady 

flow of Casson nanofluid over an exponentially 
stretching sheet. The fluid is taken to be incompressible. 
We assume that the surface of sheet is heated by a hot 
fluid with temperature Tf and concentration Cf that give 
heat and mass transfer coefficients h1 and h2. Magnetic 
field of strength B0 is applied normally to the flow. The 
magnetic Reynolds number is chosen to be small. The 
induced magnetic field is smaller in comparison with the 
applied magnetic field and thus neglected. The steady 
MHD boundary layer equations of Casson nanofluid are 
[21−23]: 
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The boundary conditions for the considered flow 

analysis are  
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where u and v are the velocity components in the x- and  
y-direction;   is the kinematic viscosity; β is the 
Casson parameter; ρf is the density of fluid;  is the 
Steffan−Boltzman constant; α is the thermal diffusivity;  
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   is the ratio of nanoparticle heat capacity and 

the base fluid heat capacity;  is the kinematic viscosity;  
cp is the specific heat capacity; DB is the Brownian 
diffusion coefficient; DT is the thermophoretic diffusion 
coefficient; k is the thermal conductivity; h1 and h2 are 
the heat and mass transfer coefficients, respectively; T 
and C are the ambient fluid temperature and 
concentration, respectively. 

Equations (2)−(5) can be reduced into the 
dimensionless form by introducing the following new 
variables: 
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The equations of linear momentum, energy and 
concentration in dimensionless form become 
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are the Biot numbers. Equation (1) is satisfied 
identically. 

The skin friction coefficient, the local Nusselt 
number and the local Sherwood number are  
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where w  is the shear stress along the stretching 
surface;  wq  is the surface heat flux; mq  is the 
surface mass flux. The local skin-friction coefficient, 
local Nusselt and local Sherwood numbers in 
dimensionless forms are given below:  
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where /)(w LxuRex   is the local Reynolds number. 
 
3 Homotopy analysis solutions 
 

By choosing a set of base functions: 
},0,0 ),exp({  nknk   we can express f, θ and  

in the following forms:  
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nmb ,  and k
nmc , are the coefficients. We 

select the initial guesses and auxiliary linear operators in 
the following definitions: 
 

 ,
1

)exp(
)(  ),exp(1)(

1

1
00 Bi

Bi
f





  

2

2
0 1

)exp(
)(

Bi

Bi





                                          (16) 

 
  )( ,)(  ,)( LLfffL            (17) 

 
The above initial guesses and auxiliary linear 

operators have the properties: 
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where Ci (i=1−7) are the arbitrary constants. 

The zeroth order problems are defined as follows: 
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In above expressions ,f    and   are the 
non-zero auxiliary parameters; ]1,0[q is an embedding 
parameter; ,fN  N  and N  are the nonlinear 
operators. Putting q=0 and q=1, one has 
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one has 
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The convergence of above series depends upon the 

values of ,f    and .  We consider that ,f  

  and   are selected properly such that        
Eqs. (27)−(29) converge at q=1 then we have 
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The general solutions can be written as 
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4 Convergence of homtopy solutions and 

discussion 
 

Obviously, the homotopy solutions contain the 
auxiliary parameters ,f    and  which are 
responsible for adjusting and controlling the convergence 
of the derived solutions. To find the suitable values of 
these auxiliary parameters, we plot the curves-  at 

26th-order of HAM approximations. Figure 1 indicates 
that the suitable values of ,f    and   are  

.3.00.1 ,30.00.1 ,10.098.0    f

The series converges in the whole region of η when 
6.0f  and 7.0    (see Table 1). 

 

 
Fig. 1 - curves for functions f(η), θ(η) and (η) at 20th-order 

of approximations when β=1.2, M=0.6, Pr=1.0, Le=0.7,  

Nt=0.4=Nb, Bi1=0.7=Bi2 and Ec=0.8 

 
Table 1 Convergence of homotopy solution for different order 

of approximations when β=1.0, M=0.5, Pr=0.7, Le=0.5, Nt=0.2,  

Nb=0.7, Bi1=1.0=Bi2, Ec=0.3, 6.0f and     

−0.7 

Order of approximation −f"(0) −θ'(0) −'(0) 

1 0.975000 0.36554 0.40208

10 0.974040 0.17855 0.28087

15 0.974039 0.17078 0.26913

30 0.974039 0.16758 0.25763

40 0.974039 0.16749 0.25576

50 0.974039 0.16749 0.25509

55 0.974039 0.16749 0.25509

60 0.974039 0.16749 0.25509

 
We analyze the variations of Casson parameter β,  

magnetic parameter M, Prandtl number Pr, Lewis 
number Le, Biot number Bi1, thermophoretic parameter  
Nt, Brownian motion parameter Nb and Eckert number  
Ec on the dimensionless temperature θ(η) (see Figs. 2−9). 
Figure 2 witnesses that the temperature and thermal 
boundary layer thickness decrease for the higher values 
of Casson parameter. Higher value of Casson parameter 
corresponds to a decrease in the yield stress that causes a 
reduction in the fluid temperature and thermal boundary 
layer thickness. Figure 3 illustrates the effects of 
magnetic parameter on the temperature. Here, an 
increase in magnetic parameter leads to an enhancement 
in the temperature. Physically, larger value of magnetic 



J. Cent. South Univ. (2015) 22: 1132−1140 

 

1136 

 

parameter shows stronger Lorentz force. Such stronger 
Lorentz force is an agent providing more heat to fluid 
due to the fact that higher temperature and 
thicker thermal boundary layer thickness occur. Figure 4  
 

 
Fig. 2 Temperature distribution function θ(η) vs η 

corresponding to different values of β when M=0.6=Le, Pr=0.8, 

Bi1=1.0=Bi2, Nt=0.4=Nb and Ec=0.5 

 

 
Fig. 3 Temperature distribution function θ(η) vs η 

corresponding to different values of M when β=1.2, Pr=0.8, 

Le=0.6, Bi1=1.0=Bi2, Nt=0.4=Nb and Ec=0.5 

 

 
Fig. 4 Temperature distribution function θ(η) vs η  

corresponding to different values of Pr when β=1.2, M=0.6=Le, 

Bi1=1.0=Bi2, Nt=0.4=Nb and Ec=0.5 

shows that the temperature and thermal boundary layer 
thickness decrease for higher Prandtl numbers. Prandtl 
number is the ratio of momentum diffusivity to 
thermal diffusivity. For higher Prandtl fluids the 

 

 
Fig. 5 Temperature distribution function θ(η) vs η 

corresponding to different values of Le when β=1.2, M=0.6, 

Pr=0.8, Bi1=1.0=Bi2, Nt=0.4=Nb and Ec=0.5 

 

 
Fig. 6 Temperature distribution function θ(η) vs η 

corresponding to different values of Bi1 when β=1.2, M=0.6=Le, 

Pr=0.8, Bi2=1.0, Nt=0.4=Nb and Ec=0.5 

 

 
Fig. 7 Temperature distribution function θ(η) vs η  

corresponding to different values of Nt when β=1.2, M=0.6=Le, 

Pr=0.8, Bi1=1.0=Bi2, Nb=0.4 and Ec=0.5 
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Fig. 8 Temperature distribution function θ(η) vs η 

corresponding to different values of Nb when β=1.2, M=0.6=Le, 

Pr=0.8, Bi1=1.0=Bi2, Nt=0.4 and Ec=0.5 

 

 
Fig. 9 Temperature distribution function θ(η) vs η 

corresponding to different values of Ec when β=1.2, M=0.6=Le, 

Pr=0.8, Bi1=1.0=Bi2 and Nt=0.4=Nb 

 

momentum diffusivity increases while there is decrease 
in the thermal diffusivity. Here, a decrease in thermal 
diffusivity dominant is over an increase in the 
momentum diffusivity. This change in thermal diffusivity 
shows lower temperature and thinner thermal boundary 
layer. The variations in temperature profile for various 
values of Lewis number are seen in Fig. 5. Temperature 
increases for smaller values of Lewis number while it 
increases for higher values of Le. It is known that higher 
Lewis number fluid has smaller Brownian diffusion 
coefficient and lower Lewis number fluid has higher 
Brownian diffusion coefficient. This produces a change 
in temperature and thermal boundary layer thickness. 
Figure 6 depicts the change in temperature profile for 
different values of Biot number Bi1. Temperature 
increases rapidly for Bi1=0.2, 0.7 but the change in 
temperature for Bi1=1.2 and so on is very small. Here, we 
conclude that the change in temperature for smaller 
values of Bi1 is higher while such change is smaller for 
larger values of Bi1. Figures 7 and 8 elucidate that both 

temperature and thermal boundary layer thickness 
increase through larger thermophoretic and Brownian 
motion parameters. Figure 9 analyzes that temperature is 
larger for higher values of Eckert number. 

Figures 10−16 are drawn to examine the change in 
nanoparticle concentration distribution (η) for different 
values of Casson parameter β, magnetic parameter M,  
Prandtl number Pr, Lewis number Le, Biot number Bi2, 
hermophoretic parameter Nt and Brownian motion 
parameter Nb. Figures 10 and 11 clearly show that 
Casson and magnetic parameters have similar effects on 
the nanoparticle concentration and temperature fields. 
Figures 12 and 13 indicate that the nanoparticle 
concentration and its related boundary layer thickness 
decreases when we increase the values of Prandtl and 
Lewis numbers. An increase in Biot number Bi2 gives 
rise to the nanoparticle concentration profile. 
Nanoparticle concentration profile increases rapidly for 
Bi2=0.2, 0.7 but this change in nanoparticle concentration 
is slow down when Bi2=1.2 and so on (see Fig. 14). In 
fact, Bi2 involves the Brownian diffusion coefficient. 
 

 
Fig. 10 Nanoparticle concentration distribution function (η) vs 

η corresponding to different values of β when M=0.6=Le, 

Pr=0.8, Bi1=1.0=Bi2, Nt=0.4=Nb and Ec=0.5 

 

 
Fig. 11 Nanoparticle concentration distribution function (η) vs 

η corresponding to different values of M when β=1.2, Le=0.6,   

Pr=0.8, Bi1=1.0=Bi2, Nt=0.4=Nb and Ec=0.5 
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Brownian diffusion coefficient increases when we 
increase the values of Bi2. This increase in Brownian 
diffusion coefficient leads to the higher nanoparticle 
concentration. Figures 15 and 16 show that the 
nanoparticle concentration is an increasing function of 
thermophoretic parameter while on the other hand we 
observed that the nanoparticle concentration decreases 
when Brownian motion parameter increases. Figure 16 
illustrates that the change in nanoparticle concentration 
corresponding to Nb=0.1, 0.5 is more dominant as we 
observed for Nb=0.8 and so on. Table 1 provides the 
convergence values of −f"(0), −θ'(0) and −'(0) when  
β=1.0, M=0.5=Le, Pr=0.7, Nt=0.2, Nb=0.7, Bi1=1.0=Bi2, 
Ec=0.3, 6.0f and .7.0     Here, we have 
seen that the solution of −f"(0) converge from 15th-order 
of deformations while the solutions of −θ'(0) and −'(0)  
converge form 40th- and 50th-order of approximations, 
respectively. Table 2 presents the numerical values of 
skin-friction coefficient (1+1/β)f"(0) for various values 
of β and M. The values of skin-friction coefficient are 
decreased by increasing β but it increases for higher 
 

 
Fig. 12 Nanoparticle concentration distribution function (η) vs 

η corresponding to different values of Pr when β=1.2, 

M=0.6=Le, Bi1=1.0=Bi2, Nt=0.4=Nb and Ec=0.5 

 

 
Fig. 13 Nanoparticle concentration distribution function (η) vs 

η corresponding to different values of Le when β=1.2, M=0.6, 

Pr=0.8, Bi1=1.0=Bi2, Nt=0.4=Nb and Ec=0.5 

 

 
Fig. 14 Nanoparticle concentration distribution function (η) vs 

η corresponding to different values of Bi2 when β=1.2, 

M=0.6=Le, Pr=0.8, Bi1=1.0, Nt=0.4=Nb and Ec=0.5 

 

 
Fig. 15 Nanoparticle concentration distribution function (η) vs 

η corresponding to different values of Nt when β=1.2, 

M=0.6=Le, Pr=0.8, Bi1=1.0=Bi2, Nb=0.4 and Ec=0.5 

 

 
Fig. 16 Nanoparticle concentration distribution function (η) vs 

η corresponding to different values of Nb when β=1.2, 

M=0.6=Le, Pr=0.8, Bi1=1.0=Bi2, Nt=0.4 and Ec=0.5 

 
values of magnetic parameter M. Table 3 shows an 
excellent agreement with the previous numerical and 
homotopic solutions in a limiting case. 
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Table 2 Numerical values of skin-friction coefficient 

(1+1/β)f"(0) for different values of β and M 

β M −(1+1/β)f"(0) 

0.7 0.5 2.146677 

1.2  1.865142 

1.6  1.755974 

2.0  1.687085 

1.2 0.0 1.735577 

 0.4 1.819679 

 0.7 1.980908 

 1.2 2.205917 

 
Table 3 Comparison of values of −θ'(0) for different values of 

Pr with previous existing results when Nt=Nb=0.0, β→  and 

Bi1=1000 

Pr 
−θ'(0) 

Present result Ref. [21] Ref. [22]

0.07 0.06637 0.0663 0.0663 

0.20 0.61913 0.1691 0.1691 

0.70 0.45395 0.4539 0.4539 

2.00 0.91132 0.9113 0.9113 

 
5 Conclusions 
 

1) Higher value of Casson parameter leads to a 
decrease in the temperature and nanoparticle 
concentration. 

2) Effects of Lewis number on nanoparticle 
concentration are more pronounced in comparison with 
the temperature. 

3) Increasing values of Biot numbers 1Bi  and 2Bi  
correspond to an increase in the fluid temperature and 
nanoparticle concentration. 

4) Temperature is enhanced for the higher values of 
thermophoresis and Brownian motion parameters. 

5) Effects of thermophoresis and Brownian motion 
parameters on nanoparticle concentration are quite 
opposite. 
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