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Abstract: The assumption widely used in the user equilibrium model for stochastic network was that the probability distributions of 
the travel time were known explicitly by travelers. However, this distribution may be unavailable in reality. By relaxing the 
restrictive assumption, a robust user equilibrium model based on cumulative prospect theory under distribution-free travel time was 
presented. In the absence of the cumulative distribution function of the travel time, the exact cumulative prospect value (CPV) for 
each route cannot be obtained. However, the upper and lower bounds on the CPV can be calculated by probability inequalities. 
Travelers were assumed to choose the routes with the best worst-case CPVs. The proposed model was formulated as a variational 
inequality problem and solved via a heuristic solution algorithm. A numerical example was also provided to illustrate the application 
of the proposed model and the efficiency of the solution algorithm. 
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1 Introduction 
 

As widely known, the uncertainties of network 
travel time exist in both supply side (link capacity 
variation) and demand side (travel demand fluctuation). 
The link capacity degradations can be caused by events, 
such as bad weather, vehicle breakdown, traffic 
management and control. Such capacity variations 
typically lead to non-recurrent congestion. On the other 
hand, the travel demand between a specified 
origin-destination (O-D) pair varies between time of the 
day, days of the week, and seasons of the year. Such 
variations in demand always cause recurrent congestion. 
Due to the existence of uncertainties in transportation 
systems, both link and route travel time are uncertain [1]. 

Recently, travel time uncertainty has emerged as an 
important topic due to its significant impacts on 
travelers’ route choice decision. Several attempts have 
been made by researchers to include travel time 
variability into user equilibrium (UE) models. With 
different behavioral assumptions on travelers’ risk-taking 
behaviors, the proposed models included, among others, 
the travel time budget (TTB) or percentile travel time 
(PTT) model [2−3], the mean excess travel time (METT) 

model [4−6], the combined mean travel time (CMTT) 
model [7], the expected utility theory (EUT)-based 
model [8−9] and the cumulative prospect theory (CPT)- 
based model [10−12]. 

A common assumption that pervaded the above 
literature was that the distributions of the travel time on 
alternative routes could be known explicitly by travelers. 
However, travel time distributions might be unavailable 
(inaccurate) in reality as travelers might have no 
(insufficient) data to calibrate them. Therefore, such 
distributions were rarely known exactly to travelers 
within their decision making process. In most instances, 
only the mean and variance of the travel time are 
obtained by travelers. How do travelers select the 
optimal routes when they do not know travel time 
distributions? 

To begin with, it was possibly believed by some 
people that the appropriate method to describe travelers’ 
decision making is to use the simple heuristic rule, e.g., 
mean-variance or mean-standard deviation tradeoff. The 
standard mean-variance model was the firstly used by 
NOLAND et al [13] in transportation studies. However, 
it is well known that the mean-variance and mean- 
standard deviation models suffer from severe biases 
since in particular they generate irrational behaviors if 
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the random variable (here the travel time) is not normally 
distributed [14]. Furthermore, it was argued by de 
PALMA and PICARD [9] that, for the binary distribution, 
the mean-variance and mean-standard deviation models 
could all lead to counter-intuitive results. 

Next, the EUT has been applied to model travelers’ 
route choice without the travel time distribution 
information. To capture risk-averse behavior, travelers’ 
utility was assumed by MIRCHANDANI and 
SOROUSH [15] and YIN et al [16] to be a quadratic 
function of travel time. However, the quadratic utility 
implied increasing absolute risk aversion, which was 
inconsistent with the known economic and traffic 
phenomena [9]. 

Finally, the robust decision criteria have been 
adopted by some researchers. In the field of finance, 
some attempts have been made to study decision making 
(i.e., portfolio selection) without distribution information 
about variables (i.e., asset returns). A method for 
deriving robust solutions to portfolio selection problems 
was provided by POPESCU [17], based on 
mean-covariance information about the distributions 
underlying the uncertain vector of returns. Tight bounds 
for some risk measures were applied by CHEN et al [18] 
to study robust portfolio selection models with the lack 
of distribution information. Inspired by the worst-case 
value-at-risk and conditional value-at-risk measures by 
CHEN et al [18], the robust PTT/METT without the 
probability distributions of the travel time was defined 
by SUN and GAO [19] and the robust percentile/mean- 
excess stochastic traffic equilibrium model was then 
proposed. However, the proposed models implied that 
travelers are perfectly rational in minimizing their own 
travel times. Although this behavior assumption, is 
theoretically useful it on the other hand was extreme and 
unrealistic. Up to now, travelers’ route choice behavior in 
the absence of the travel time distributions has rarely 
been studied. 

The assumption that the probability distributions of 
the travel time are known explicitly by travelers is also 
relaxed in this work. Specifically, network travel times 
are assumed to be distribution-free. Travelers’ route 
choice behavior under distribution-free travel time are 
modeled based on CPT. Advanced by psychologists and 
behavioral economists, CPT provides a well-supported 
descriptive paradigm for decision making based on 
limited rationality. A variety of phenomena and 
experimental data in the transportation context, which 
cannot be explained by EUT previously, has been well 
explained by CPT. In the CPT framework, without the 
specific distribution information of the travel times, the 
accurate CPV of each route cannot be calculated by 
travelers. Instead, the upper and lower bounds on the 
CPV can be understood by them. Specifically, the lower 

bound on the CPV can be interpreted as the worst-case 
CPV of each route. In the frame work of robust 
optimization, it is assumed that decision-makers aim to 
maximize return in the worst-case scenario [20−22]. 
When this concept is applied to route choice, it implies 
finding the best route to minimize the worst-case travel 
time (see Ref. [20]) or maximize the worst-case travel 
utility (see Section 3). Under the assumption that 
travelers always prepare for the worst, a robust 
optimization formulation to maximize the minimum 
expected travel time over all possible link failure 
scenarios was proposed by BELL and CASSIR [21]. 
Based on the same assumption, it was believed by 
ORDONEZ and STIER-MOSES [22] that travelers 
would select the “robust shortest route”, which 
minimized the worst-case travel time. 

Then, a robust user equilibrium (UE) model based 
on CPT under distribution-free travel time is presented. 
In the proposed model, it is assumed that travelers 
always choose routes with the best worst-case CPV. A 
robust UE is reached when no user can increase his or 
her worst-case CPV by unilaterally switching routes. The 
demand uncertainty in the traffic network which causes 
travel time variability is introduced in this work. In view 
of day-to-day travel demand fluctuation, the travel 
demand between each O-D pair is assumed to be a 
random variable. In practice it is much easier to 
determine the first γ moments (where γ is a user-specified 
positive integer) than the probability distribution of the 
travel demand between each O-D pair. Hence, in this 
work, it is not necessary to pay attention to the specific 
probability distributions on the random O-D demand and 
travel time. 
 
2 Distribution-free travel time 
 
2.1 Assumptions 

To facilitate the presentation of the essential ideas 
without loss of generality, the following basic 
assumptions are made. 

A1: The travel demand between each O-D pair is a 
random variable with the given first to fourth origin 
moments: E(Qr), E[(Qr)

2], E[(Qr)
3] and E[(Qr)

4], where 
E[·] is the expectation operator. The macroscopic 
characteristics of probability distribution for the random 
variable can be described by these origin moments, 
which can be easily obtained by traffic surveys and 
mathematical statistics. 

A2: The actual O-D travel demand on any day is 
independently distributed across inter-zonal movements, 
i.e.,      1 2 1 2

E E E ,r r r rQ Q Q Q  1 2 1 2,  ,  .r r r r  R  
A3: The path flow is the product of path choice 

proportion and the O-D travel demand, i.e., = .k k
r r rF p Q  

The path choice proportion k
rp is a deterministic variable 
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which can be obtained from the model’s output, i.e.,  

= ,k k
r r rp f q 1.

r

k
r

k K

p


 This is similar to the 

assumption made in other previous studies (i.e.      
Ref. [23]). 

A4: The link travel times are independent from each 
other. To consider the covariance, the link travel time 
would open a new research topic that is worthy exploring 
in future. 

A5: The stochastic travel time on each route is still 
assumed to follow a continuous probability distribution 
in this work. However, the exact probability distribution 
is very difficult or not required to be known. 
 
2.2 Derivation of traffic flow 

As O-D travel demand Qr is assumed to be a 
random variable, the route flow, ,k

rF and the link flow, 
Va, are also random variables, which consequently 
induce the random link and route travel time. 

The flow conservation relationships can be 
expressed by  

,
r

k
r r

k K

Q F r R


                           (1) 

 
0,  ,k

r rF r R k K                            (2) 
 

,  
r

ka k
a r r

r R k K

V F a A
 

                        (3) 

 
By taking the expectation, it follows from Eqs. (1)− 

(3) that 
 

,  
r

k
r r

k K

q f r R


                            (4) 

 
0,  ,k

r rf r R k K                            (5) 
 

,  
r

ka k
a r r

r R k K

v f a A
 

                        (6) 

 
According to Eq. (3) and Assumption A3, the γth 

moment (where γ is a user-specified positive integer) of 
the link flow is 

 

 E E
r

ka k
a r r

r R k K

V F


 

 

      
      

   

E ,  
r

ka k
r r r

r R k K

p Q a A




 

      
    
       (7) 

 
Using the Taylor-series expansion, Eq. (7) can be 

calculated. For γ=2 or 4, it follows that [19] 
 

     
22 2

E E
r

ka k
a r r r

k K

V p Q


         

 
,

2 E ,
r r

ka k a k k
r r r r r r

k K k K r r R
k k

p p Q Q 


 
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   


 
    

a A                           (8) 
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 

 

 

 

 E ,  r r r rQ Q Q Q a A                (9) 

 
2.3 Derivation of link and route travel time 

The commonly used BPR function for the link 
travel time is adopted as 

 

0 1 ,  
n

a
a a

a

V
T t m a A

c

  
     
   

                 (10) 

 
where m and n are parameters in the BPR function. 

The first and second moments of the link travel time 
can be expressed as 

 

   
 

0E 1 ,  
n

a
a a n

a

E V
T t m a A

c

 
    
  

             (11) 
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2

22 0E E 1
n

a
a a

a

V
T t m

c

                 

 

 
 

 

 

 

2
20 2

2

E E
1 2 ,

n n
a a

a n n
a a

V V
t m m

c c

    
       
 
 

 

a A                           (12) 
 
Then, the variance of the link travel time can be 

represented as  
 

      22
Var E E ,  a a aT T T a A                 (13) 
 

The route travel time variable can be expressed by 
simply summing the corresponding link travel time 
variables. Thus, the mean and variance of the route travel 
time can be written as 

 

   E E ,  ,k ka
r a r r

a A

T T r R k K


              (14) 
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   Var = ,  ,k ka
r a r r

a A

T Var T r R k K


          (15) 

 
The second moment of the route travel time is 
 

     22
E E ,  ,k k k

r r r rT T Var T r R k K           
 (16) 

 
The central limit theorem was applied in some 

papers to deducing that the path travel time followed 
normal distribution regardless of the link travel time 
distributions. However, it should be noted that the central 
limit theorem is not applicable herein due to the limited 
number of links constituting a route. Further analysis can 
be carried out to estimate the route travel time 
distribution using the fitting distribution method [24−25]. 
However, it is very difficult and time-consuming to 
obtain the higher moments (e.g., skewness and kurtosis) 
of the route travel time. Therefore, it is reasonable to 
declare that the route travel time distribution cannot be 
known by travelers. 
 
3 Cumulative prospect theory-based robust 

user equilibrium model 
 
In short, CPT maintains the framework of the EUT 

but incorporates the following features that have been 
observed in numerous behavioral experiments [26]: 

1) People distinguish gains from losses before 
making choices. The payoffs are framed as gains or 
losses compared with some reference points (RPs). 

2) The loss looms larger than the gain, i.e., people 
generally care more about potential losses than potential 
gains. At the same time, they are risk averse over gains 
and risk seeking over losses. 

3) People tend to overweight extreme, but unlikely 
events. At the same time, they underweight “average” 
events. 

Therefore, CPT can be viewed as an extension to 
the EUT with the following three modifications: 

1) Replacing the final wealth with payoffs relative 
to the RP. 

2) Replacing the utility function with a value 
function to capture individual’s risk attitude. 

3) Replacing cumulative probabilities with weighted 
cumulative probabilities. 

In this section, the basic value function used in the 
CPT model and the worst-case CPV of each route are 
provided. Then, a robust traffic equilibrium model based 
on CPT is presented. It should be noted that the 
probability weighting function is not applicable herein 
due to the nonexistence of the travel time distribution. 
This is similar to the considerations made in other 
previous economic studies [18] and transport studies 
[27−28]. 

3.1 Worst-case cumulative prospect value 
In the CPT, the payoff level is considered to be a 

gain or loss from the RP. Compared with a RP, the 
outcome of a trip may be considered by travelers as a 
gain, if the travel time is less than the RP; as a loss if 
otherwise. The S-shaped value function gr(u) is  
 

 
 

 

,    ,  
=

,   > ,  

r r
r

r r

u u r R
g u

u u r R





 

  

    

   

         (17) 

 
where u represents the route travel time, parameters α 
and β measure the degrees of diminishing sensitivity of 
value function. Typically, 0<α, β<1 and thus the value 
function exhibits risk aversion over gains and risk 
seeking over losses. The parameter η≥1 is called “loss- 
aversion” coefficient, indicating that the individuals are 
more sensitive to losses than gains. 

Consequently, the relative payoff for choosing a 
route k can be defined as 

k
r rT  and the CPV of route k 

can be calculated through Eq. (18). 
 

 =Ek k
r r rU g T 

   

       = d d ,
k
rr

k
rr

tk k
r r r rt

g u u g u u



    

, rr R k K                           (18) 
 
where 

k
rt  and 

k
rt  are the lower and upper bounds on the 

travel time of route k between O-D pair r, respectively. 
In this work, the former is assumed to be the free-flow 
route travel time and the latter is the route travel time 
when all mean O-D demand is assigned to it. 

To determine the CPV of each route, the CDF of the 
route travel time is required. However, in real 
applications, the distribution information is generally 
unknown. Thus, the exact CPV for each route cannot be 
obtained by travelers under distribution-free travel time. 
Instead, the upper and lower bounds on the CPV for each 
route are known to travelers. 

Definition 1: The worst-case CPV of route k 
between O-D pair r is defined as the lower bound on the 
CPV. 

According to the well known inequality of 
Tchebycheff [18], the upper and lower bounds on the 
CDF of the route travel time are given as 
 

2

Var( )
0 ( ) , 0 E( )

Var( ) E( )

k
k kr
r r

k k
r r

T
u u T

T T u
   
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(19) 
 
and 
 

2

Var( )
1 ( ) 1,  E( )

Var( ) E( )

k
k kr
r r

k k
r r

T
u u T

T T u
   

   

 (20) 

 
The worst-case CPV of route k between OD pair r 
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can be defined as follows (see Appendix A). 
If E( ),k k

r rrt T    
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3.2 Robust user equilibrium model under cumulative 

prospect theory 
Definition 2: A user traveling between O-D pair r 

always selects the path with the best worst-case CPV. 
The robust user equilibrium state is reached by allocating 
the O-D demands to the network such that no traveler 
can improve his/her worst-case CPV by unilaterally 
changing routes. The worst-case CPVs of all utilized 
routes are equal, and are the same or greater than the 
ones of any unutilized routes, namely, the following 
conditions hold 
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The problem of finding robust UE route flows   
Eq. (23) may be formulated as a variational inequality 
problem VI( ,  )f   as follows: find a vector *f  , 
such that 
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Ω represents the feasible route set defined by Eqs. (4)− 
(6). 

The following propositions give the equivalence of 
the VI formulation and the proposed UE model as well 
as the existence of the equilibrium solutions. 

Proposition 1: The solution of the VI problem   
Eq. (24) is equivalent to the equilibrium solution of the 
robust UE model based on CPT. 

Proof: Note that f* is a solution of the VI problem if 
and only if it is a solution of the following linear 
program 

 
* Tmax ( )U

f
f f


                              (25) 

By considering the primal-dual optimality 
conditions of Eq. (25), it follows that 

 

  * * 0,  ,kk k
r r r rrf U f k K r R             (26) 

 

 * 0,  ,k k
r r rrU f k K r R                  (27) 

 
It is easy to see that the robust UE conditions    

Eq. (23) are satisfied. This completes the proof. 
Proposition 2: Assume the worst-case CPV 

function ( )U f is continuous, then the robust UE problem 
has at least one solution. 

Proof: According to Proposition 1, the equivalent 
VI formulation is only needed to consider. Note that the 
feasible set Ω is nonempty and convex. Furthermore, 
consider the link travel time function, value function and 
worst-case CPV function, it is reasonable to give the 
continuous assumption of the mapping ( )U f . Thus, the 
VI problem (Eq. (24)) has at least one solution. This 
completes the proof. However, note that the solution to 
the VI problem is not unique in general. The reason is 
that the mapping in the VI formulation may be not 
strictly monotone due to the complicated function for the 
worst-case CPV. 
 
4 Solution algorithm based on method of 

successive average 
 

The method of successive average (MSA) can be 
adopted to solve the equilibrium assignment defined in 
Eq. (24) [11−12]. From the VI condition in Eq. (24), an 
equivalent optimization problem can be defined as  
min{ ( )}G
f

f


                                (28) 
 

w h e r e  T T( ) max ( ) ( )
g

G g


 f U f U f f


i s  t h e  g a p 

function of the VI. For a given f, the descending 
direction to minimize the gap function is the solution of  

the inner problem  T Tmax ( ) ( )
g

g





U f U f f . The inner 

problem reduces to Tmax ( )
g

g


U f  since T( )U f f is a 

constant term. The solution of this inner problem is to 
assign all mean O-D demands to a route connecting that 
O-D pair with the highest worst-case CPV evaluated at f. 
The MSA algorithm is briefly described as follows. 

Step 1: Initialization. Set l=1 and specify an initial 

route flow pattern   ( )

, r

k ll
r

r R k K
f

 
f . 

Step 2: CPV calculation. Calculate the worst-case 

CPV for each route,    ( )

,
( )

r

k lkl
rr

r R k K
U f

 
U f . 

Step 3: Search direction finding. For each O-D pair, 
find the route with the maximum worst-case CPV. Define 
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an route flow pattern   ( )

, r

k ll
r

r R k K
g

 
g with 

 Ek
r rg Q  if    lk l

rrU   and 0 otherwise. 

Step 4: Check convergence. Evaluate ( )( )l G f  
( ) T ( ) ( )( ) ( ),l l l U f g f terminate the algorithm if 
( ) ( ) ( )( ) ( ) / || ||l l lM G  f f f  or maxl l where ε is the 

convergence criterion and lmax is the pre-set maximum 
number of iteration. 

Step 5: Route flow updating. Update the route flow 
pattern as 

( +1) ( ) ( ) ( ) ( )( ),l l l l ls  f f g f where step size 

  1ls l . Set 1l l  , go to step 2. 
 
5 Numerical example 
 

To illustrate the proposed robust UE model under 
CPT and the solution algorithm, the well-known 
Nguyen-Dupuis network is adopted in the numerical 
experiment. The network is shown in Fig. 1, which 
contains 13 nodes, 19 directed links, 4 O-D pairs, and 25 
routes. The first to fourth moments of the O-D travel 
demand are given in Table 1. The fixed link free-flow 
travel time and capacity can be found in Ref. [12]. The 
coefficients of the BPR function in Eq. (10) are m=0.15 
and n=2. The parameters for value function in  Eq. (17) 
are set as α=β=0.88, and η=2.25 (see Ref. [11]). The base 
RP in the CPT-based model is set at 60. Note that it is 
assumed that the RP is the same for all O-D pairs. In 
reality different O-D pairs may have different travel time 
and hence should have different RPs. The proposed 
model formulation and the solution algorithm can 
accommodate this in general cases. The convergence 
 

 
Fig. 1 Nguyen-Dupuis network 

 

Table 1 First to fourth moments of O-D travel demand 
O-D  
pair 

First  
moment 

Second 
moment 

Third 
moment 

Fourth 
moment 

(1, 2) 8.00×102 8.32×102 7.17×105 6.37×108

(4, 2) 5.00×102 5.45×102 3.18×105 1.96×108

(1, 3) 6.00×102 6.24×102 4.03×105 2.69×108

(4, 3) 6.00×102 6.54×102 4.57×105 3.38×108

criterion and the maximum iteration number are set as 
ε=0.25 and lmax=500. 

The assignment results for the robust UE model 
under CPT are given in Table 2. From these results, the 
convergence of the algorithm is considered satisfactory 
since the worst-case CPVs of all used routes between 
each O-D pair are almost equivalent. The worst-case 
CPVs of unused routes are lower than the ones of used 
routes. The mean and standard deviation (SD) of each 
route travel time are also displayed in Table 2. The 
trade-off between the mean and SD of the travel time can 
also be observed from the results. 

The convergence of the solution algorithm is shown 
in Fig. 2. To further demonstrate the convergence of the 
proposed solution procedure, without loss of generality, 
route 1 connecting O-D pair (1, 2) is examined. The 
evolution of the route flow and the route worst-case CPV 
during the iteration process are depicted in Figs. 3 and 4. 
From these figures, it can be seen that the algorithm 
quickly converges to the required solution precision. The 
robust UE solution is achieved as M is almost equal to 
zero after 368 iterations. At the same time, the worst-case 
CPVs of used routes for a given O-D pair are getting 
closer to each other during the iteration process. 
Furthermore, it can be observed that the fluctuation of M 
is more frequent and larger at the early iterations, and 
getting smaller along with the iteration process. It is 
demonstrated that the proposed algorithm has the ability 
to reach a stable equilibrium solution. 

The upper and lower bounds on the CDF of travel 
time on route 1 between O-D pair (1,2) are depicted in 
Fig. 5. The ones for other routes can also be obtained. No 
matter the exact probability distribution of the travel time, 
the curve of the CDF lies in the area defined by the upper 
and lower bounds in the figure. 

At equilibrium, the sensitivity of the exact CPVs (or 
worst-case CPVs) of all O-D pairs to the value of RP 
with (or without) the probability distribution of the travel 
time is given in Fig. 6. For comparison, it is assumed that 
the route travel time follows normal distribution, giving 
the mean and variance of the route travel time. Then, the 
exact CPV can be calculated by travelers. It can be seen 
from Fig. 6 that as the value of RP grows from 60 to 100, 
both the exact and the worst-case equilibrium CPVs all 
increase. The reason is that travelers are very likely to 
experience “gain” trips with a long reference time. The 
larger the value of RP, the higher the exact CPV (or 
worst-case CPV) on the used route. Moreover, with the 
increase in the value of RP, the difference between the 
exact and worst-case CPV will narrow sharply. 
Obviously, with a larger value of RP, travelers become 
more conservative. 
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Table 2 CPT-based robust user equilibrium route flow patterns 

OD pair Route Link sequence Worst-case CPV Mean route flow 
Travel time 

Mean Standard deviation

(1, 2) 

1 2−18−11 −37.85 403.27 76.62 5.34 
2 1−5−7−9−11 −37.14 45.78 79.04 3.96 

3 1−5−7−10−15 −37.87 32.69 79.41 3.59 
4 1−5−8−14−15 −40.88 0 79.39 4.61 

5 1−6−12−14−15 −37.75 318.26 79.84 3.26 
6 2−17−7−9−11 −39.29 0 77.84 4.98 

7 2−17−7−10−15 −39.35 0 78.81 4.48 
8 2−17−8−14−15 −39.15 0 78.19 4.90 

(4, 2) 

9 4−12−14−15 −49.23 85.83 81.65 8.10 
10 3−5−7−9−11 −49.96 332.43 84.39 6.25 

11 3−5−7−10−15 −49.97 17.71 84.75 6.03 
12 3−5−8−14−15 −49.97 19.07 84.74 6.04 

13 3−6−12−14−15 −49.14 44.96 85.19 5.84 

(1, 3) 

14 1−6−13−19 −50.63 0 88.82 7.57 
15 1−5−7−10−16 −47.73 106.27 86.16 4.04 
16 1−5−8−14−16 −49.74 0 86.14 5.06 

17 1−6−12−14−16 −47.70 269.75 86.59 3.75 
18 2−17−7−10−16 −47.82 160.22 84.96 4.85 

19 2−17−8−14−16 −47.83 63.76 84.95 4.96 

(4, 3) 

20 4−13−19 −59.08 362.94 84.62 10.60 
21 4−12−14−16 −59.22 19.62 88.40 8.31 
22 3−6−13−19 −61.27 0 88.16 9.90 

23 3−5−7−10−16 −59.16 142.23 91.51 6.31 
24 3−5−8−14−16 −59.16 35.97 91.49 7.32 

25 3−6−12−14−16 −59.34 39.24 91.94 6.12 

 

 
Fig. 2 Convergence of proposed solution algorithm 
 

 
Fig. 3 Evolution of mean flow on route 1 connecting O-D pair 
(1, 2) 

 
Fig. 4 Evolution of worst-case CPV on route 1 connecting O-D 
pair (1, 2) 
 

 
Fig. 5 Upper and lower bounds on CDF of travel time on  
route 1 
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Fig. 6 Sensitivity of exact and worst-case CPV to value of RP: (a) O-D pair (1, 2); (b) O-D pair (4, 2); (c) O-D pair (1, 3); (d) O-D 

pair (4, 3) 

 
 
6 Conclusions 
 

1) The rather restrictive assumption that travel time 
distributions are known exactly by travelers is relaxed. 
Only the mean and variance of the travel time are 
obtained by travelers. The upper and lower bounds on 
the CDF of the route travel time are given. 

2) The exact CPV for each route is not obtained by 
travelers with the lack of the travel time distributions. 
However, the upper and lower bounds on the CPV can be 
calculated, respectively. The worst-case CPV is adopted 
as a route choice criterion. A robust UE model based on 
CPT under distribution-free travel time is presented. The 
proposed model is formulated as a VI problem. 
Qualitative properties, such as equivalence and existence 
of the solution, are also rigorously proved. A route-based 
traffic assignment algorithm is adopted to solve the 
proposed model. 

3) A numerical example is also provided to illustrate 
the essential ideas of the proposed model and the 
applicability of the solution algorithm. It is found that the 
proposed model is capable of describing travelers’ route 
choice behaviors under distribution-free travel time, 
which is more efficient than the mean-variance, mean- 
standard deviation, and EUT-based models. 

4) For future research, the endogenous RP should be 
considered in the CPT-based UE model under 
distribution-free travel time. In addition, it is interesting 
but challenging to present the application of the proposed 
model in congestion pricing and traffic network design. 

 
Appendix A: Upper and lower bounds on 

cumulative prospect value 
In the first case, it is assumed that 

 Ek k
r rrt T  . 

Using the method of integration by parts, the first 
term in Eq. (18) can be obtained as  

           d
rr r

k kk
r rr

k k k
r r r r r rt tt

g u d u g u u u g u
 

        

   k kk
r rr rt t


      

   1
dr

k
r

k
r rt

u u u
         (29) 

 

For Eq. (29), the inequality  Ek k
r rrt u T    is 

true. According to Eq. (19), one obtains 

 0 kk
r rt   and  0 ,k

r u   in which    

2

Var( )
,

Var( ) ( )

k
r

kk k
r r r

T

T E T t   
2

Var( )
.

Var( ) ( )

k
r

k k
r r

T

T E T u
 

   
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With   0k
r rt


    and   1

0r u
    , it follows 

that  

       0k k kk
r r rr r rt t t

 
                 (30) 

 

     1 1
0 d dr r

k k
r r

k
r r rt t

u u u u u
              

(31)  
Then,  

     dr

k
r

k k
r r rr t

t g u u
 

       

  1
dr

k
r

rt
u u

                       (32) 
 

The second term in Eq. (18) can be formulated as 
follows 

 

       d
k
r

r

t k kk k
r rr r r rg u u t t




        

    E 1
d

k
r

r

T k
r ru u u




     

    
1

E
d

k
r

k
r

t k
r rT

u u u
    (33) 

 
For the first term in Eq. (33), the inequality 

 E
k k
r r rt T    is true. According to Eq. (20), one 

obtains  1 1,
kk
rr t    where [Var( )] /k

rT   

2{Var( ) [E( ) ] }.
kk k
rr rT T t  In view of   0

k
r rt


    , 

the following inequalities hold 
 

     k k kk
r r rr r rt t t

 
           

   1
k
r rt


                         (34) 

 
For the second term in Eq. (33), if  E k

r ru T   , 
then  0 k

r u   Given   1
0,ru

    it 
follows that 

 

    E 1
0 d

k
r

r

T k
r ru u u




      

  E 1
d

k
r

r

T

ru u



                   (35) 

 
For the last term in Eq. (33), if 

 E ,
kk
rr rT u t    then  1 1.k

r u    Since 
  1

0,ru
     one obtains the expression as 

 

   
1

E
1 d

k
r

k
r

t

rT
u u

       

    
1

E
d

k
r

k
r

t k
r rT

u u u
     

    E
k k
r r r rt T

 
  

 
   

 
          (36) 

 
It follows from Eqs. (34)−(36) that 

     d
k
r

r

t kk
rr r rg u u t




       

   
1

E
1 d

k
r

k
r

t

rT
u u

                  (37) 
 
and  

       d 1
k
r

r

t kk
rr r rg u u t




         

    E 1
d

k
r

r

T k
rr ru u t




     

   


  

  E k
r rT


  

                       (38) 
 

Based on Eqs. (32) (37) and (38), the upper and 
lower bounds on the CPV can be obtained as follows:  

     1
= d 1r

k
r

k k
r rr rt

U u u t
            

    E 1
d

k
r

r

T k
rr ru u t




     

   


  

  E k
r rT


  

                       (39) 
 

   =
kk k
rr rr rU t t


         

   
1

1 d
k
r

k
r

t

rE T
u u

                  (40) 
 

In the other case, it is assumed that 
k
r rt    

 .k
rE T  Using the same method above, the upper and 

lower bounds on the CPV can be calculated as follows:  

    E 1
d E

k
r

k
r

Tk k
r r r rt

U u u T
            

     1
k k
r rr rt t

 
                  (41) 

 

   kk k
rr rr rU t t


          

   1
1 d

k
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r

t

ru u



      

    
1

E
1 dr

k
r

rT
u u

                  (42) 

 
Abbreviations 
TTB Travel time budget 

PTT Percentile travel time 

METT Mean excess travel time 

CMTT Combined mean travel time 

EUT Expected utility theory 

CPT Cumulative prospect theory 

CPV Cumulative prospect value 

MSA Method of successive average 

CDF Cumulative distribution function 

RP Reference point
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UE User equilibrium 

VI Variational inequality

O-D Origin-destination 

SD Standard deviation 

 
Notations 

Considering a strongly connected transportation 
network G=(N, A), where N and A denote the sets of 
nodes and links, respectively. The notations used 
throughout the paper are listed as follows unless 
otherwise specified. 
R Set of O-D pairs 

Kr Set of routes between O-D pair r R  

Qr  Travel demand for O-D pair r R  

qr Mean travel demand for O-D pair r R
k

rF  Traffic flow on route rk K  
k

rf  Mean traffic flow on route rk K  

Va Traffic flow on link a A  

va Mean traffic flow on link a A  

Ta Travel time on link a A  
k

rT  Travel time on route rk K  
k
rt  Upper bound of the travel time on route rk K
k
rt  Lower bound of the travel time on route rk K
ka
r  Indicator variable that is equal to 1 if path rk K

contains link a A , and 0 otherwise 
k
rp  Path choice proportion on route rk K  

0
at  Free-flow travel time on link a A  

ca Link a’s capacity 
k
rU  CPV of route rk K  
k
rU  Lower bound on the CPV of route rk K

 k
r 

 
Cumulative distribution function (CDF) of the
travel time on route rk K  

λr Reference point (RP) for a trip between O-D pair r
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