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Abstract: Heat and mass transfer effects in three-dimensional flow of Maxwell fluid over a stretching surface were addressed. 
Analysis was performed in the presence of internal heat generation/absorption. Concentration and thermal buoyancy effects were 
accounted. Convective boundary conditions for heat and mass transfer analysis were explored. Series solutions of the resulting 
problem were developed. Effects of mixed convection, internal heat generation/absorption parameter and Biot numbers on the 
dimensionless velocity, temperature and concentration distributions were illustrated graphically. Numerical values of local Nusselt 
and Sherwood numbers were obtained and analyzed for all the physical parameters. It is found that both thermal and concentration 
boundary layer thicknesses are decreasing functions of stretching ratio. Variations of mixed convection parameter and concentration 
buoyancy parameter on the velocity profiles and associated boundary layer thicknesses are enhanced. Velocity profiles and 
temperature increase in the case of internal heat generation while they reduce for heat absorption. Heat transfer Biot number 
increases the thermal boundary layer thickness and temperature. Also concentration and its associated boundary layer are enhanced 
with an increase in mass transfer Biot number. The local Nusselt and Sherwood numbers have quite similar behaviors for increasing 
values of mixed convection parameter, concentration buoyancy parameter and Deborah number. 
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1 Introduction 
 

Combined heat and mass transfer effects are very 
significant in the fields of chemical processing 
equipment, formation and dispersion of fog, distribution 
of temperature and moisture of agricultural fields and 
groves of fruit trees, damage of crops due to freezing and 
pollution of environment. Their combined effects are 
also useful in the cooling process of plastic sheets, glass 
materials and in drying processes of paper. The laminar 
boundary layer flow of fluids over a stretching surface is 
an important subject from theoretical as well as practical 
points of view because of their wide range of 
applications of such flows in polymer technology and 
industrial manufacturing process. Some examples are in 
the extrusion of polymer in a melt-spinning process, 
metals and plastics. Initially, CRANE [1] investigated the 
boundary layer flow by a stretching sheet. He obtained 
closed form solution for flow induced by a sheet moving 
with linear velocity. Later, the Crane’s research problem 
was examined extensively through various aspects. 
However, mostly the fluids in the industrial and 
engineering processes are non-Newtonian in nature, 

which obey nonlinear constitutive equations. Rheological 
parameters in the constitutive equations add complexities 
in the resulting differential systems. Analytic solutions to 
such differential systems are rare, even the situation does 
not improve when one reports to approximate theories 
such as creeping flow or boundary layer theory, thus 
computational rheology is an active area of research 
amongst the investigators. The rheological fluids in 
general have been classified into three categories known 
as the differential, integral and rate types. The subclasses 
of differential type fluids namely the power law and 
second and third grade fluids are analyzed significantly 
in the existing attempts [2−6]. A subclass of rate type 
fluid known as the Maxwell model has been also studied 
[7−10]. 

Mixed convection flows, or combined free and 
forced convection flows, occur in many technological 
and industrial applications and in nature for example, in 
solar receivers exposed to wind currents, electronic 
devices cooled by fans, nuclear reactors cooled during 
emergency shutdown, heat exchanges placed in a low- 
velocity environment, flows in the ocean and in the 
atmosphere, and many more. MUKHOPADHYAY [11] 
analyzed the unsteady mixed convection flow and heat  
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transfer over a stretching sheet in the presence of slip 
effects. A comprehensive study of two-dimensional 
mixed convection stagnation flow of an incompressible 
micropolar fluid with heat transfer characteristics 
towards a heated shrinking sheet was analyzed by 
RASHIDI et al [12]. Also, MORADI et al [13] studied 
the thermal process of the mixed convection−radiation of 
an inclined flat plate embedded in a porous medium. 
Recently, TURKYILMAZOGLU [14] investigated the 
analytical solution of mixed convection heat transfer and 
fluid flow of MHD viscoelastic fluid over a permeable 
stretching surface. 

A study of utilizing heat source or sink in moving 
fluids has been a subject of interest of many researchers 
because of its possible application to geophysical 
sciences, astrophysical sciences, and in cosmical studies. 
Such flows arise either due to unsteady motion of the 
boundary or the boundary temperature. The study of 
fluctuating flow is important in the paper industry and 
many other technological fields. ELBASHBESHY and 
ALDAWODY [15] studied the unsteady boundary layer 
flow of an incompressible fluid over a stretching surface 
in the presence of heat source. Radiative flow of Jeffery 
fluid in a porous medium with power law heat flux and 
heat source is examined by HAYAT et al [16]. Recently, 
KANDASAMY et al [17] presented the combined effect 
of thermal diffusion and diffusion thermo on free 
convective heat and mass transfer over a porous 
stretching surface in the presence of thermophoresis 
particle deposition and heat source/sink. 

In recent years, investigations on the boundary layer 
flow with convective surface boundary condition have 
gained much interest since the work of AZIZ [18]. In this 
work, the thermal boundary layer flow over a flat plate 
with convective surface boundary condition is examined. 
Later on, MAKINDE and AZIZ [19] also discussed the 
boundary layer flow of nanofluid past a stretching sheet 
with a convective boundary condition. SHEHZAD et al 
[20] also presented the analytical solution of 
three-dimensional flow of Jeffery fluid with convective 
surface boundary conditions. 

The object of present attempt is to study the three- 
dimensional flow of Maxwell fluid in the presence of 
internal heat generation/absorption. Mixed convection 
effects along with heat and mass transfer are taken into 
account. We also considered convective type boundary 
conditions for both heat and mass transfer. To our 
knowledge, such attempt is not available in literatures. 
Homotopy analysis method [21−30] was employed to 
obtain the series solutions of the problem. Graphical 
results are presented and examined in detail. 
 
2 Governing problems 
 

Here, we consider the steady three-dimensional 

flow of an incompressible Maxwell fluid over a 
stretching surface at z=0. The flow takes place in the 
domain z>0. Heat and mass transfer characteristics are 
taken into account in the presence of internal heat 
generation/absorption and mixed convection. Convective 
heat and mass boundary conditions are considered. The 
ambient fluid temperature and concentration are taken as 
T∞ and C∞ while the surface temperature and 
concentration are maintained by convective heat and 
mass transfer at certain value Tf and Cf. The governing 
partial differential equations subject to boundary layer 
flow are 
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where the respective velocity components in the x-, y- 
and z-directions are denoted by u, v and w, λ is the 
relaxation time, ρ is the density of fluid, g is the 
gravitational acceleration, βT and βC are the thermal and 
concentration expansion coefficients, respectively, T is 
the fluid temperature, v(=μ/ρ) is the kinematic viscosity, 
μ is the dynamic viscosity of fluid, cp is the specific heat, 
k is the thermal conductivity, Q is the uniform volumetric 
heat generation/absorption, C is the concentration field 
and  D is the mass diffusivity. 

The subjected boundary conditions are given by  
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where h is the heat transfer coefficient, h* is the 
concentration transfer coefficient, C∞ is the ambient 
concentration, a and b are constants with unit s−1. 

We now define 
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The above variables satisfy Eq. (1) automatically 

while Eqs. (2)−(7) are converted to the following forms  
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where β1 is the dimensionless Deborah number, λ is the 
local buoyancy parameter, Grx is the local Grashof 
number, N is the concentration buoyancy parameter, Pr is 
the Prandtl number, β2 is the heat generation absorption 
parameter, Sc is Schmidt number, β is the ratio of rates 
parameters, γ1 and γ2 are the Biot numbers and prime 
shows the differentiation with respect to η. These are 
given by  
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In dimensionless form, the local Nusselt and local 
Sherwood numbers are given by 
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where Rex(=uex/v) is the local Reynolds number. 

 
3 Series solutions 
 

The initial approximations and auxiliary linear 
operators are required to develop homotopic solutions. 
We select the following initial guesses and linear 
operators for the present flow analysis: 
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with the following properties of the defined operators in 
Eq. (18) i.e. 
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where Ci (i=1−10) are the arbitrary constants. 

The corresponding problems at the zeroth order 
deformations are given in the following forms: 
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where p is an embedding parameter, the non-zero 
auxiliary parameters are ћf, ћg, ћθ and ћf and the 
nonlinear operators are Nf, Ng, Nθ and Nf. When p=0 and 
p=1, one has 
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Clearly, when p is increased from 0 to 1 then f(η, p), 
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                  (33) 

 
where the convergence of the above series strongly 
depends upon ћf, ћg, ћθ and ћf. Considering that ћf, ћg, ћθ 
and ћf are selected properly, Eqs. (30)−(33) converge at 
p=1, and then we have 
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The general solutions can be expressed below: 
 

   ee)()( 321 CCCff mm              (38) 
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   ee)()( 654 CCCgg mm              (39) 
 

  ee)()( 87
* CCmm                  (40) 

 
   ee)()( 109 CCmm                  (41) 

 
where ,*

mf ,*
mg *

m  and 
*
m  indicate the special solutions. 

 
4 Convergence analysis and discussion 
 

Clearly, the homotopic series solutions (34)−(37) 
depend on the auxiliary parameters ћf, ћg, ћθ and ћf. 
These parameters have important role in the convergence 
of series solutions. For this purpose, the ћ-curves are 
drawn at 15th order of approximations to determine the 
suitable ranges of these auxiliary parameters. Figure 1 
shows that the acceptable values of ћf, ћg, ћθ and ћf are  
−1.4≤ћf≤−0.20, −1.6≤ћg≤−0.40 and −1.50≤ћθ, ћf≤−0.30. 
Table 1 ensures the convergence of homotopic series 
solutions in the whole region of η when 
ћf=ћg=ћθ=ћf=−0.5. 

 

 
Fig. 1 ћ-curves for functions f(η), g(η), θ(η) and φ(η) 

 
Table 1 Convergence of series solutions for different order of 

approximations when β=β1=β2=0.2, γ2=λ=N=0.3, γ1=0.5, Sc=1.0, 

Pr=1.2 and ћf= ћg= ћθ= ћf=−0.5  

Order of approximation −f″(0) −g″(0) −θ′(0) −f′(0)

1 1.018 0.1497 0.3133 0.2228

5 1.029 0.06217 0.2782 0.2095

10 1.028 0.03940 0.2703 0.2067

15 1.029 0.03866 0.2702 0.2066

20 1.029 0.03982 0.2705 0.2066

25 1.029 0.03993 0.2705 0.2066

30 1.029 0.03993 0.2705 0.2066

 

Figures 2−11 show the effects of Deborah number  
β1, stretching ratio parameter β, mixed convection 
parameter λ, concentration buoyancy parameter N and 
internal heat generation/absorption parameter β2 on the 
velocity profiles f′(η) and g′(η). Figures 2 and 3 are 

drawn to see the behavior of Deborah number β1 on the 
velocity profiles f′(η) and g′(η). It is found that both the 
velocity profiles f′(η) and g′(η) decrease with an 
enhancement in β1. It is also examined from these figures 
that associated boundary layer thicknesses are decreasing 
functions of β1. This is due to the fact that β1 depends on 
relaxation time. Larger relaxation time offers more 
resistance to the flow due to which the velocities are 
decreased. Effects of stretching ratio parameter β on the 
velocity profiles f′(η) and g′(η) are depicted in Figs. 4 
and 5. Opposite behavior for the velocity profiles f′(η) 
and g′(η) are examined with an increase in stretching 
ratio parameter β. Figures 6 and 7 are displayed to see 
the impact of mixed convection parameter λ on the 
velocity profiles f′(η) and g′(η). It is seen that both the 
velocity profiles f′(η) and g′(η) increase with an 
enhancement in  λ. Also, momentum boundary layer 
thicknesses are increased with an increase in λ. In fact, 
an increase in λ enhances the buoyancy forces which are 
more dominant to viscous forces. Variations of 
concentration buoyancy parameter N on the velocity 
profiles f′(η) and g′(η) are displayed in Figs. 8 and 9. 
Similar behavior of N is noted on the velocity profiles 
f′(η) and g′(η). Figures 10 and 11 elucidate the influence 
of internal heat generation/ absorption parameter on the 
velocity profiles f′(η) and  g′(η). For the case of heat 
 

 
Fig. 2 Influence of β1 on f′(η) 

 

 
Fig. 3 Influence of β1 on g′(η) 
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Fig. 4 Influence of β on f′(η) 

 

 
Fig. 5 Influence of β on g′(η) 

 

 
Fig. 6 Influence of λ on f′(η) 

 

 
Fig. 7 Influence of λ on g′(η) 

 

 
Fig. 8 Influence of N on f′(η) 

 

 
Fig. 9 Influence of N on g′(η) 

 

 
Fig. 10 Influence of β2 on f′(η) 

 

 
Fig. 11 Influence of β2 on g′(η) 
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generation β2>0, both the velocity profiles f′(η) and g′(η) 
increase. Also the associated momentum boundary layer 
thicknesses increase with the heat generation β2>0, while 
in the case of heat absorption β2<0, the opposite behavior 
is seen. 

Figures 12−15 are plotted to see the variations of 
internal heat generation/absorption parameter β2, 
stretching ratio parameter β, heat transfer Biot number  
γ1 and Prandtl number Pr on the temperature θ(η). It is 
found from Fig. 12 that the thermal boundary layer 
thickness and temperature θ(η) are increasing functions 
of internal heat generation parameter β2>0 and 
decreasing functions of internal heat absorption β2<0. 
Effect of stretching ratio parameter β on temperature  

)(  is analyzed in Fig. 13. It is noticed that both 
thermal boundary layer thickness and temperature θ(η) 
decrease when larger values of β are used. With an 
increase in heat transfer Biot number γ1, both the thermal 
boundary layer thickness and temperature θ(η) are 
enhanced (see Fig. 14). The reason is that γ1 depends on 
heat transfer coefficient h which leads to an increase in 
temperature θ(η). Effect of Prandtl number Pr shows a 
reduction in the temperature and thermal boundary layer 
thickness (see Fig. 15). This is due to the fact that Prandtl 
number Pr is the ratio of momentum to thermal 
diffusivity. When Pr increases, thermal diffusivity 
reduces, as a result, temperature and thermal boundary 
layer thickness are decreased. 
 

 
Fig. 12 Influence of β1 on θ(η) 

 

 
Fig. 13 Influence of β on θ(η) 

 

 
Fig. 14 Influence of γ1 on θ(η) 

 

 
Fig. 15 Influence of Pr on θ(η) 

 

Figures 16−18 are displayed to analyze the behavior 
of concentration f(η) for different values of stretching 
ratio parameter β, mass transfer Biot number γ2 and 
Schmidt number Sc. Figure 16 is drawn to analyze the 
effect of stretching ratio parameter β on the concentration 
profile f(η). It is found that the fluid concentration f(η) 
and boundary layer thickness decrease with an increase 
in stretching ratio parameter β. Effect of mass transfer 
Biot number γ2 on the concentration profile f(η) is 
elucidated in Fig. 17. It is observed that as γ2 increases, 
the associated boundary layer thickness and 
concentration profile f(η) grow. As mass transfer Biot 
 

 
Fig. 16 Influence of β on f(η) 
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Fig. 17 Influence of γ2 on f(η) 

 

 
Fig. 18 Influence of Sc on f(η) 

 
number γ2 depends on mass transfer coefficient h*, with 
an enhancement in γ2, the mass transfer coefficient 
increases, which leads to an increase in concentration 
profile f(η). Behavior of Schmidt number Sc on the fluid 
concentration f(η) is presented in Fig. 18. As Sc is the 
relation of momentum to mass diffusivities, with an 
increase in Sc, the mass diffusivity decreases, due to 
which the concentration f(η) decreases (see Fig. 18). 

Impacts of mixed convection parameter λ, 
concentration buoyancy parameter N, Deborah number  
β1, internal heat generation/absorption parameter β2, heat 
transfer Biot number γ1 and Prandtl number Pr on the 
local Nusselt number (−θ′(0)) are displayed in Figs. 19− 
21. It is found that local Nusselt number (−θ′(0)) 
enhances with an increase in λ and N (see Fig. 19). Local 
Nusselt number (−θ′(0)) reduces with internal heat 
generation parameter β2>0 while it increases with 
internal heat absorption parameter  β2<0 (see Fig. 20). It 
is also noticed from Fig. 20 that local Nusselt number 
(−θ′(0)) decreases with an increase in β1. Figure 21 
depicts that the local Nusselt number (−θ′(0)) is an 
increasing function of heat transfer Biot number γ1 and 
Prandtl number Pr. 

Figures 22−24 are sketched to see the variations of 
mixed convection parameter λ, concentration buoyancy 
parameter N, Deborah number β1, internal heat 
generation/absorption parameter β2, mass transfer Biot  

 

 
Fig. 19 Influences of λ and N on −θ′(0) 

 

 
Fig. 20 Influences of β1 and β2 on −θ′(0) 

 

 
Fig. 21 Influences of γ1 and Pr on −θ′(0) 

 

 
Fig. 22 Influences of λ and N on −f′(0) 



J. Cent. South Univ. (2015) 22: 717−726 

 

725

 

 

 
Fig. 23 influences of β1 and β2 on−f′(0) 

 

 
Fig. 24 Influences of γ₂ and Sc on −φ′(0) 

 
number γ2 and Schmidt number Sc on the Sherwood 
number (−f′(0)). Figure 22 shows that the Sherwood 
number (−f′(0)) increases with an increase in λ and N. 
Figure 23 indicates that the Sherwood number (−f′(0)) 
increases by increasing internal heat generation β2>0 
while reverse effect is examined with an increase in 
Deborah number β1. Sherwood number (−f′(0)) is an 
increasing function of both mass transfer Biot number  
γ2 and Schmidt number Sc (see Fig. 24). 
 
5 Conclusions 
 

1) Three-dimensional mixed convection flow of 
Maxwell fluid over a stretching sheet with internal heat 
generation/absorption is analyzed. Convective boundary 
conditions for both heat and mass are considered.  

2) Both thermal and concentration boundary layer 
thicknesses are decreasing functions of stretching ratio 
parameter β. Variations of mixed convection parameter  
λ and concentration buoyancy parameter N on the 
velocity profiles and associated boundary layer 
thicknesses are enhanced. Velocity profiles and 
temperature increase in the case of internal heat 
generation β2>0 while they reduce for heat absorption 
β2<0. Heat transfer Biot number γ1 increases the thermal 

boundary layer thickness and temperature. Also, 
concentration and its associated boundary layer are 
enhanced with an increase in mass transfer Biot number 
γ2.  

3) The local Nusselt and Sherwood numbers have 
quite similar behaviors for increasing values of mixed 
convection parameter λ, concentration buoyancy 
parameter N and Deborah number β1. Larger values of 
Prandtl number Pr, heat absorption parameter β2<0 and 
heat transfer Biot number γ1 give rise to the local Nusselt 
number (−θ′(0)). Sherwood number (−f′(0)) enhances 
with an increase in heat generation β2>0, Schmidt 
number Sc and mass transfer Biot number γ2. 
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