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Abstract: The path following problem for an underactuated unmanned surface vehicle (USV) in the Serret−Frenet frame is 
addressed. The control system takes account of the uncertain influence induced by model perturbation, external disturbance, etc. By 
introducing the Serret−Frenet frame and global coordinate transformation, the control problem of underactuated system (a nonlinear 
system with single-input and ternate-output) is transformed into the control problem of actuated system (a single-input and 
single-output nonlinear system), which simplifies the controller design. A backstepping adaptive sliding mode controller (BADSMC) 
is proposed based on backstepping design technique, adaptive method and theory of dynamic slide model control (DSMC). Then, it is 
proven that the state of closed loop system is globally stabilized to the desired configuration with the proposed controller. Simulation 
results are presented to illustrate the effectiveness of the proposed controller. 
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1 Introduction 
 

Over the past decade, the control problem of 
underactuated systems has attracted a great deal of 
attention [1−3]. In this work, we address the path 
following of underactuated USV with uncertainties. The 
challenging problem is how to control the ternate 
freedom motions by only two independent inputs [4]. 
Recently, path following problem has attracted less 
attention than trajectory tracking. The USV path 
following has been addressed with two different methods: 
one is to treat it as a tracking control [5−7], and the other 
is to simplify the following control into a regulation 
problem by adopting proper path following error 
dynamics equation [8−10]. For the latter method, the 
Serret−Frenet frame is frequently adopted to obtain the 
error dynamics equation. ENCARNACAO et al [11] 
considered a fourth order ship model subjected to 
constant direction ocean-current disturbance in the 
Serret−Frenet frame, and developed a control strategy to 
follow both the straight-line and the circle. In Ref. [12], a 
path following controller was proposed based on a 
transformation of the ship kinematics to the 
Serret−Frenet frame on the path, where an acceleration 
and linearization of ship dynamics was used. DO and 
PAN [13] presented an output feedback path following 

strategy, where ultimate convergence was proven for an 
underactuated ship with environmental disturbances. 
However, the proposed method in Ref. [13] requires a 
state transformation, which becomes singular at some 
configuration. In Ref. [14], a simplified vessel model 
was used to develop a path following control system, and 
a controller was presented based on backstepping 
technique and Lyapunov’s direct method. However, the 
sway motion is neglected, and the simplified vessel 
model ignores the influence of nonlinear yaw motion. 

Considering the uncertainties of the vehicle model, 
in Ref. [15], the combined controller of trajectory- 
tracking and path-following was proposed based on the 
Lyapunov’s direct method, which has obtained good 
control effect. The problem of combined trajectory- 
tracking and path-following for underactuated USV with 
parametric modeling uncertainty was addressed in Ref. 
[16]. In Ref. [17], a global path following controller was 
proposed for underactuated ship with non-zero off- 
diagonal terms. In Ref. [18], the authors assumed that the 
surge velocity is constant, and proposed a nonsingular 
Serret−Frenet based path-following controller by 
Lyapunov’s direct method and backstepping technique. 
However, in the above-mentioned papers the mass and 
damping matrices of the USVs are presumed to be 
diagonal. Furthermore, these papers have ignored the 
impact of the nonlinear damping terms, namely high-  
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speed applications are excluded [19]. It is noted that in 
Ref. [19], the nonlinear damping matrix is included and 
DO and PAN proposed a robust path-following method 
based on backstepping technique and presented 
experiment results on an USV to illustrate the proposed 
method. Moreover, DO and PAN [20], the authors 
considered the influences caused by the non-diagonal 
term, nonlinear damping and time-varying environmental 
disturbance, and designed a global robust adaptive path- 
following controller by using dynamic structure of the 
ship together with backstepping technique. 

In this work, we consider the path following 
problem for underactuated USV and the limitations of 
the above paper, and propose a robust control strategy. 
We develop the path following mathematic model of 
underactuated USV under the Serret−Frenet frame. 
Considering the path following problem, a backstepping 
adaptive dynamical sliding mode controller (BADSMC) 
is proposed based on backstepping method and theory of 
dynamical sliding mode control (DSMC). Based on 
Lyapunov stability analysis, we demonstrate that the 
original system is globally stabilized in the function of 
proposed controller. Numerical simulations using the real 
parameters of a USV are presented to illustrate the 
effectiveness of our proposed controller, and the 
advantage of the controller is that control system is 
strongly robust and adaptive to the parametric modeling 
uncertainty and environment disturbances. 
 
2 Problem formulation 
 

In this work, the nonlinear damping terms are 
considered to cover both low-speed and high-speed 
applications of USV. The frame definitions and motion 
model of a USV are shown in Fig. 1. 

The mathematical model of an underactuated USV 
moving on a horizontal plane is described as [21] 
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where ,   and x y   denote the position and orientation 
of USV in the earth-fixed frame ({E}-frame); and  u r, ,  
denote respectively the surge, sway and yaw velocities in 
the body-fixed frame ({B}-frame) (see Fig. 1); m11, m22, 
m33 are the vehicle inertial including additional masses; 

 

 
Fig. 1 Underactuated USV model in plane motion: (a) 

Horizontal plane motion model of USV and frame definitions; 

(b) A typical USV [19] 

 
, , , , ,u r u u r rX Y N X Y N  denote the hydrodynamic 

damping; Fu and Tr; only control inputs are the surge 
force and yaw moment in {B}-frame; du, dυ, dr denote 
respectively the surge, sway and yaw external 
disturbances caused by model perturbation, measuring 
noise, environmental disturbance, which satisfy the 
bounded condition of , ,u u r rd d d d d d    , and 
slow condition of 0, 0, 0u rd d d     . 

In the path following problem, we do not consider 
the speed and time restrictions. Therefore, we assume the 
surge velocity u is a positive constant (or an independent 
controller is used to maintain the surge velocity of 
vehicle). This assumption is applied by many scholars 
[12, 22]. Hence, the path-following mathematical model 
of underactuated USV has been simplified into 
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where ya1, ya2, ya3 denote the system outputs. 
It is clear that Eq. (2) is a nonlinear control system 

with single-input and ternate-output. The control objective 
of this work is to propose the yaw moment Tr to drive the 
USV to follow a desired path C (see Fig. 1), where M is 
the origin of Serret−Frenet frame ({SF}-frame), and M is 
the orthogonal projection of the USV barycenter G on 
path C. The parameters xn, xt denote respectively the 
normal and tangent unit vectors to the path at M. We 
define that ψSF is the angle between xt and X-axis, the 
parameter s is the distance along the path C between a 
arbitrary fixed point in the path and M, and s are 
bounded and differentiable variable. The parameter ze 
denotes the distance between G and M, and 
ψe=ψ−ψSF denotes cross-track error, the velocity ut=  

2 2u   is total velocity of USV. The β is the angle 
between u and ut, i.e., sideslip angle. 

Figure 1 shows the diagrammatic sketch of path 
following under {SF}-frame. The errors dynamic 
equation based on {SF}-frame is developed as follows 
[12]:  
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where the curvature of the path at point M is denoted by 
c(s). Note that Eq. (3) is singular when c(s)ze=1. Hence, 
we consider the following assumptions [13]: 

Assumption 1: We assume that the condition 
1−c(s)ze>λ

*>0 is always satisfied. 
Assumption 2: The USV parameters satisfy the 

condition m22>m11, and 2 2
22 11| | 0tm u m u  . 
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where y1 and y2 denote the system outputs; *

e =ψe+β is 

corrected cross-track error [13]. It is obviously that the 
original Eq. (2) is simplified into Eq. (4) with single- 
input and twin-output by introducing the Serret−Frenet 
frame. 

Therefore, the control objective can be formally 
expressed as follows: we consider the path following Eq. 
(4), and design a feedback control law Tr to ensure the 
system states *

e e( , )z   globally stable about the origin. 
 
3 Control design 
 

By the introduction of intermediate controller, 
backstepping technique makes the controller design 
procedural and systematical. It is a very effective method 
of analysis and design for nonlinear system. Hence, 
backstepping technique is widely applied to nonlinear 
systems such as the robots, spacecrafts, aircrafts, electric 
engines, missile, ships [18−25]. In recent years, some 
researchers have already apply backstepping technique to 
the control problem of underactuated marine launch 
systems [26−28]. 

Before processing the control design, we first ignore 
the sway external disturbance, i.e. dυ=0. Therefore, the 
Eq. (4) is rewritten as  
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. 

In the following section, we design the controller 
for subsystem e e( , , )z r  , and prove the sway motion 
  is input-to-state stable (ISS). 

The sliding mode control (SMC) method has been 
widely used in nonlinear control systems, but it 
inevitably contains the “chattering” problem. However, 
the “chattering” can only be weaken to a certain extent 
for the SMC. As an effective way to eliminate chattering, 
DSMC is applied to nonlinear systems such as the arms, 
robots, nuclear power systems [23−26]. 

Recently, many scholars have already applied 
backstepping technique to the control problem of 
underactuated systems [4, 27−28]. Backstepping technique 
makes the controller design systematical and procedural. 
It is a very effective method for sliding mode control for 
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non-matching uncertainties and non-minimum phase 
systems [29]. In this work, we propose a BADSMC 
method by combining backstepping technique with 
adaptive technology and theory of DSMC. 
 
3.1 State transformation and system analysis 

To facilitate the control analysis and design, we 
consider the following global coordinate transformation: 
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where k is a positive constant. 

Substituting Eq. (6) into subsystem ( , , )e ez r   of 
Eq. (5) yields a new system: 
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From Eq. (6), we obtain 
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We construct an equivalently nonlinear system for 

Eq. (7): 
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where 1 e 2,  ,w r    and ζ denote system outputs. 
Note that the relative order of Eq. (9) is 2, and when the 
controller Tr renders the we (i.e., ξ1) globally stable, the 
zero dynamics of Eq. (9) becomes 
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theorem [30], we can prove that ze is globally 
asymptotically stable. Hence, Eq. (7) is a minimum 

phase and self-stabilization system. From Eq. (8), when 
we is globally converge to zero, we have 
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where the global stability of ze implies that the ψe is also 
globally asymptotically stable. 

Based on the above analysis results, we obtain a 
conclusion. For Eq. (7), if we choose a feedback control 
law Tr to render we globally asymptotically stable, then 
guarantee that the original system state e e( , )z    is 
globally asymptotically stable. Hence, system (Eq. (7)) is 
a minimum phase and self-stabilization system. 

Note that the underactuated Eq. (7) has been 
simplified into a full-actuated system as follows: 
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Obviously, the control problem of subsystem 

e e( , , )z r   in underactuated Eq. (5) is transformed into 
the control of Eq. (12). 
 
3.2 Backstepping adaptive dynamic sliding mode 

controller design 
The controller design consists of two steps as 

follows. 
Step 1: Stabilizing subsystem we. 
Considering the following subsystem of Eq. (12) 
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where k1 is a positive constant. 

Remark 1: Note that Eq. (16) is singular when  
1−c(s)ze=0 or 2 2

22 t 11 .m u m u  However, Assumptions 1 
and 2 imply that the conditions 1−c(s)ze>λ

*>0 and 
2 2

22 t 11| | 0m u m u   are simultaneously satisfied. 
Substituting control law Eq. (16) into Eq. (15) yields 
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However, rd is not the actual control input; then we 
define the following error variable as 
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Step 2: Stabilizing subsystem z2. 
Defining Lyapunov function as 
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Substituting the second equation of Eq. (20) into Eq. 
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ˆ ˆ( )( ) / +r r rk w c z z S z d d d m      
 

1 3 d 33 33 3[ ( / / ) ]+r rS c a r T m d m a        

d 33 1 e 1 e
ˆ[ / ]rS r d m a w a w                                   (28) 

 
We choose the following sliding mode arriving law 

 
sgn( )s sS w S k S  

                                                  (29) 
 
where ks, ws are positive constants; sgn(·) is a symbolic 
function. From Eq. (29), we choose the dynamical 
sliding mode control law γ as 
 

1 3 d 33 33 3 d
ˆ[ ( / / ) ]r rc a r T m d m a r            

33 1 e 1 e 2
ˆ[ / sgn( )]r s sd m a w a w z w S k S            (30) 

 
Substituting Eq. (30) into Eq. (28) yields 

 
2 2 2

3 1 e 1 2= | |s sV k w c z w S k S      

2 1 33
ˆ ˆ( )( ) /r r rz c S d d d m  

                                (31) 
 

We design the adaptive law ˆ
rd  as 

 

2 1
ˆ
rd z c S 

                                                              (32) 
 

Substituting Eq. (32) into Eq. (31) yields 
 

2 2 2
3 1 e 1 2= | |s sV k w c z w S k S                                   (33) 

 
Therefore, if we select the suitably positive 

parameters k, k1, c1, ks, ws, the condition 3 0V   will be 
satisfied, namely, the control law (Eq. (30)) and adaptive 
law (Eq. (32)) make the state variables (we, z2) of Eq. (20) 
globally asymptotically converge to zero. Hence, the 
subsystem e e( , , )z r   of Eq. (5) is also globally 
asymptotically stable. 
 
3.3 Backstepping controller design 

In this section, we consider the subsystem 

e e( , , )z r   of Eq. (5), and design a path following 
controller based on backstepping technique. We first 
assume the uncertain impacts as 0,  0.rd d    

Defining Lyapunov function as 
 

2
4 1 2 / 2V V z                                                              (34) 

 
differentiating V4 along the solution of Eq. (20), and 
substituting the second equation of Eq. (20) into it yield 
 

4 1 2 2V V z z     
2

1 e 1 e 2 2 3 d 33( / )rk w a w z z a r T m                    (35) 
 

To guarantee 4 0,V   we design the feedback 
control law as 
 

33 3 2 2 1 e( )r dT m a r k z a w                                     (36) 
 
where k2 is a positive constant.  

Substituting control law Eq. (36) into Eq. (35) 
yields 
 

2 2
4 1 e 2 2 0V k w k z                                                    (37) 



J. Cent. South Univ. (2015) 22: 214−223 

 

219

 

It is obvious that Eq. (20) is globally asymptotically 
stable with control law (Eq. (36)), and the subsystem 

e e( , , )z r   of Eq. (5) is also globally asymptotically 
stable. The stability analysis of closed-loop system is 
presented as follows. 
 
3.4 Stability analysis 

The stability analysis of Eq. (4) consists of two 
steps. 

Step 1: Subsystem e e( , , ).z r   
We can prove the stability of subsystem ( , , )e ez r   

by applying the design process of 3.2 section and 3.3 
section. 

Step 2: Subsystem .  
When e e0,  0z    , from the second equation of 

Eq. (4), we have 
 

2 2
2 222

2 2 2
22 11

( )
( )

( )

m u
r c s u

m u m u






          
 

2 2
22 22 22( )

YY du

m m mu

   


 
      

                   (38) 

 
Substituting Eq. (38) into the third equation of   

Eq. (4) yields 
 

2 2
22
2 2 2

22 2222 11

( )

( )

YYm u

m mm u m u


  



  
              
  

2 2 3/ 2
11

2 2 2
11 22

( ) ( )

( )

m c s u u

m u m u




 
 

   
 

2 2
22
2 2 2

2222 11

( )

( )

dm u

mm u m u




 
 

   
                               (39) 

 
Defining Lyapunov function as 

 
2

5 22 / 2V m                                                               (40) 
 
Differentiating V5 along the solution of Eq. (4), and 
substituting Eq. (39) into it yield 
 

2 2
222

5 | |2 2 2
22 11

( )
( | |)

( )

m u
V Y Y

m u m u
 


 



 
      

   
  

2 2 3/ 2
11 22

2 2 2
11 22

( ) ( )
 

( )

m m c s u u

m u m u






 
  

   
 

2 2
222

2 2 2
22 11

( )
 

( )

m u
d

m u m u



   



 
    

   
    (41) 

 

where 
2 2

22
| |2 2 2

22 11

( )
( | |),

( )

m u
Y Y

m u m u
 


  



 
    

   
 

3 2
11 22 22

2 2 2 2
11 22 22 11

( )
max .t t

t t

m m c s uu m u
d

m u m u m u m u


    
             

From 

the Assumption 2, we can see that the expression 

2 2
22
2 2 2

22 11

( )
0

( )

m u

m u m u




 
 

   
, i.e., the parameter β>0.  

Eq. (41) is rewritten as  
2

5 /2 ,   | | 2 /V                                             (42) 
 

According to the Lemma 4.19 in Ref. [30], we can 
prove that the sway motion   is input-to-state stable, 
and )(t  satisfies  

0
1

( )
2

0| ( ) | ( ) e 2 /
t t

t t


   
 

                                   (43) 
 
where μ is a positive constant, the magnitude of constant 
μ is determined by uncertainty dυ and curvature c(s). 
Consider a special case: dυ=0, c(s)=0, then the constant 
μ=0. Therefore, the sway motion   is input-to-state 
stable. 

Theorem 1: If we choose suitably positive 
parameters k, k1, c1, ks, ws, the control law (30) and 
adaptive law (32) can drive the subsystem *

e e( , , )z r  in 
system (Eq. (4)) globally asymptotically stable about the 
origin, and the sway motion   is input-to-state stable. 

Theorem 2: For Eq. (4), we assume the 
uncertainties dυ=0, dr=0. If we choose suitably positive 
parameters k, k1, k2, the control law (Eq. (36)) can drives 
the subsystem *

e e( , , )z r  in Eq. (4) globally 
asymptotically stable about the origin, and the sway 
motion   is input- to-state stable. 

Proof: We can prove the Theorems 1 and 2 based 
on the control design and stability analysis above. 
 
4 Numerical simulations 
 

In this section, we present some simulation tests on 
an USV [19] to verify the effectiveness of our proposed 
method. The nominal model parameters are given by 

0 0 0 2
11 22 3325.8 kg,  33.8 kg, 2.76 kg m ,m m m    0

uX   
0 0 2 012 kg/s, 17 kg/s, 0.5 kg m /s, 2.5 kg/m,r u uY N X    

0 0 24.5 kg/m, 0.1 kg m .r rY N     

In the simulation, we pick the initial system states 
as: (0) 13 m,  (0) 0,  (0) 120 ,x y     (0) 1 m/s,u 

(0) 0,  (0) 0r   , namely, the center of expected path 
at the origin with radius R=10 m. Then, we can get the 
path following errors as *(0) 3 m,  (0) 30 .e ez      
We consider propeller input saturation conditions: 

2 N m 2 N m.rT     The backstepping adaptive 
dynamical sliding mode controller is defined as 
BADSMC, and backstepping controller (BC) is defined 
as BC. We select the design parameters of BADSMC 
method as k=0.55, k1=0.04, c1=0.02, ks=0.001, ws=0.01, 
and BC method as k=0.55, k1=0.04, k2=20. 
 
4.1 Simulation results of nominal model 

We set the uncertain impacts as du=dυ=dr=0 in the 
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simulation. The simulation results are shown in     
Figs. 2−4. 

Figures 2 and 3 show that both controllers can force 
the USV following the desired path fast, i.e., to achieve 
the mission of path following with good manipulative 
performance. Figures 2 and 3 show that the position and 
state response curves of two controllers almost 
completely overlap. It is clear that both controllers have 
very similar convergence rate and dynamic performance 
under nominal model. 
 

 
Fig. 2 Motion path of USV in nominal model 

Figure 4 plots the response curves of control 
moment. For the case of BADSMC, we can see that the 
output of control moment is smooth without “chattering” 
phenomenon since the control information is indirectly 
generated by DSMC method of BADSMC. This can 
reduce the wear and energy consumption of propeller in 
actual operation, which is beneficial to the propeller. 
However, the BC directly obtains moment information so 
that the moment changes frequently. 
 
4.2 Path following under uncertain influence 

This section discusses the problem of path 
following with uncertainties to illustrate the performance 
and robustness of proposed method. We assume that the 
actual model has a parameter perturbation not more than 
20%, without the loss of generality, consider an extreme 
situation in the simulation, and choose the following 
model parameters of actual USV: 0

11 11 220.9 ,  m m m   
0 0
22 33 330.8 , 0.8 ,m m m  0 01.1 , 1.2 , u u rX X Y Y N     
01.2 ,rN  0 0 0

| | | | | | | | | | |0.9 , Y 1.1Y ,  1.1 .u u u u r r r rX X N N     

From the nominal model simulation, we obtain that 
the maximums of sway and yaw accelerations are 

2
max max0.015 m / s , r    2 (°)/s2. Therefore, we consider 

the following external disturbances with the same levels 
 

 
Fig. 3 Response curves of system state variables: (a) Distance between G and M; (b) Corrected cross-track error; (c) Sway velocity; 

(d) Yaw velocity 



J. Cent. South Univ. (2015) 22: 214−223 

 

221

 

 

 
 

of max max,  .r  0
220.01 [sin(10π ) rand( 1,1)],d m t     dr= 

0
331.0 [sin(10π ) rand( 1,1)].m t    

The simulation test is implemented under the 
uncertain influence, and the simulation results are given 
in Figs. 5−7. 

Figures 5 and 6 show that the BADSMC guarantees 
the path-following errors e e( , )z   to quickly converge to 
zero, and the system output curves do not overshoot 
 

 
Fig. 5 Motion path of USV under uncertain influence 

steady-state error. Although there are uncertainties, the 
BADSMC still completes the task of path following with 
uncertain impacts, namely, it has good ability to inhibit 
uncertain impacts. 

However, by the BC method, the path following 
errors cannot converge to zero. The distance error ze has 
some steady-state error, and the cross-track error ψe is 
oscillatory, thereby the USV cannot achieve the task of 
path following. Figure 6 shows that the velocity response 
curves are severely oscillatory, namely, the control 
effectiveness of BC is very poor due to uncertain 
influence. Figure 7 plots the response curves of control 
moment. The moment output fluctuation of BADSMC is 
smaller; while the moment output of BC has severe 
oscillation even moment saturation. 

The above simulation results show that the 
BADSMC is insensitive to the model perturbation and 
external disturbance, and with good adaptive capacity 
and robust performance; while BC is more sensitive to 
the influence of uncertainty. It is obvious that the straight 
path following is a simple form of curvy path following; 
therefore, the proposed controller could be applied to 
solving the curvy and linear path following problem. 

Fig. 4 Response curve of control 
moment: (a) Moment of BADSMC 
method; (b) Moment derivative of 
BADSMC method; (c) Moment of BC 
method 
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Fig. 6 Response curves of system state variables under uncertain influence: (a) Distance between G and M; (b) Corrected cross-track 

error; (c) Sway velocity; (d) Yaw velocity 

 

 

Fig. 7 Response curve of control 
moment under uncertain influence: 
(a) Moment of BADSMC method; 
(b) Moment derivative of BADSMC 
method; (c) Moment of BC method 



J. Cent. South Univ. (2015) 22: 214−223 

 

223

 

 
 
5 Conclusions 

 
1) The BADSMC method is proposed based on 

backstepping technique and theory of DSMC, and a BC 
method is designed via backstepping technique. 

2) Theoretical analysis shows that both controllers 
can guarantee the subsystem *( , , )e ez r  of original 
system globally asymptotically stable, and sway motion 
  is input-to-state stable. 

3) Simulation comparison tests reveal that 
compared with the backstepping controller, BADSMC 
method is insensitive to uncertainties, and has a better 
dynamic performance, adaptability and strong robustness. 
Moreover, the control output of BADSMC does not 
appear “chattering” phenomenon, namely, this method 
effectively weakens the “chattering” problem of sliding 
mode control. The theoretical analysis and simulation 
results validate the effectiveness of proposed method. 
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