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Abstract: Constrained optimization problems are very important as they are encountered in many science and engineering 
applications. As a novel evolutionary computation technique, cuckoo search (CS) algorithm has attracted much attention and wide 
applications, owing to its easy implementation and quick convergence. A hybrid cuckoo pattern search algorithm (HCPS) with 
feasibility-based rule is proposed for solving constrained numerical and engineering design optimization problems. This algorithm 
can combine the stochastic exploration of the cuckoo search algorithm and the exploitation capability of the pattern search method. 
Simulation and comparisons based on several well-known benchmark test functions and structural design optimization problems 
demonstrate the effectiveness, efficiency and robustness of the proposed HCPS algorithm. 
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1 Introduction 
 

Constrained optimization problems are always 
inevitable in many engineering disciplines, such as 
tension and/or compression spring design optimization 
problem [1], and welded beam design problem [2], and 
so on. The general constrained optimization problem 
with equality, inequality, lower bound, and upper bound 
constraints is defined as 
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where ) , , ,( 21 nxxx x  is a dimensional vector of n 
decision variables, f(x) is an objective function, gj(x)≤0 
and hj(x)=0 are known as inequality and equality 
constraints, respectively. p is the number of inequality 
constraints and m−p is the number of equality constraints, 
li and ui are the lower bound and the upper bound of xi, 
respectively. 

Evolutionary algorithms have many advantages 
over conventional nonlinear programming techniques: 
easy implementation, reliable and robust performance, 

the gradients of the const function and constraint 
functions are not required, and the change of being 
trapped by a local minimum is lower. Due to those 
advantages, evolutionary algorithms have been 
successfully applied to solve constrained optimization 
problems in the past decade [3−6]. Recently, the cuckoo 
search (CS) algorithm, which is a population based 
stochastic global search method, has been proposed by 
YANG and DEB [7]. This algorithm is a novel 
evolutionary one, which is inspired by the obligate brood 
parasitism of some cuckoo species by laying their eggs in 
the nests of other host birds. CS algorithm has shown 
good performance both on benchmark unconstrained 
functions [8] and on real-world problems, including data 
fusion in wireless sensor networks [9], embedded system 
design optimization [10], manufacturing scheduling [11], 
and structural optimization [12]. 

Although the CS algorithm is good at exploring the 
search space and locating the region of global minimum, 
it is slow at exploiting the solutions [13]. Pattern search 
method [14] is good at improving the accuracy of that 
approximation. Recently, evolutionary algorithms 
combined with other evolutionary operators or local 
search schemes have achieved good performance     
on variety of optimization problems, which have wide 
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applications in a variety of fields. Thus, a novel hybrid 
cuckoo search algorithm based on a local pattern search 
method that relies on a feasibility-based rule for 
constraint-handling is proposed to solve constrained 
optimization problems in this work. The proposed 
method would inherit both the advantages of the 
stochastic exploration ability of the cuckoo search 
algorithm and the exploitation ability of the pattern 
search algorithm. Simulation results and comparisons are 
demonstrated. 
 
2 Proposed hybrid method 
 
2.1 Cuckoo search algorithm 

For simplicity in describing the cuckoo search 
algorithm, the following three idealized rules are used 
[7]: 

1) Each cuckoo lays one egg at a time, and dumps it 
in a randomly chosen nest; 

2) The best nests with high quality of eggs 
(solutions) will carry over to the next generations; 

3) The number of available host nests is fixed, and a 
host can discover an alien egg with a probability 

a [0,  1].P   In this case, the host bird can either throw the 
egg away or abandon the nest so as to build a completely 
new nest in a new location. 

For simplicity, this last assumption can be 
approximated by a fraction Pa of the n nests being 
replaced by new nests (with new random solutions at 
new locations). For a maximization problem, the quality 
or fitness of a solution can simply be proportional to the 
objective function. Other forms of fitness can be defined 
in a similar way to the fitness function in GA. Based on 
these three rules, the basic steps of the cuckoo search 
algorithm can be summarized as the pseudo code as 
below. 

When generating new solution )1( tx , e.g., cuckoo 
i , a Lévy flight is performed as 
 

 t
i

t
i xx )1( Lévy(λ)                       (2) 

 
where α>0 is the step size which should be related to the 
scales of the problem of interest. In most cases, we can 
see α=O(1). The product   means entry-wise 
multiplications. Lévy flight essentially provides a 
random walk, while their random steps are drawn from a 
Lévy distribution for large steps which has an infinite 
variance with an infinite mean as 
 
Lévy～ )31(,   tu                       (3) 
 

Here, the consecutive jumps/steps of a cuckoo 
essentially form a random walk process which obeys a 
power-law step-length distribution with a heavy tail. 
Pseudo code of the cuckoo search algorithm is presented 
below. 

Algorithm 1 Cuckoo search algorithm 
Objective function T

21 ) , , ,( ),( dxxxf xx  
Generation t=1; 
Initial a population of n host nests xi(i=1, 2, …, n); 
While (t<Maximum Generation) or (stop criterion)  

Get a cuckoo (say i) randomly by Lévy flights; 
Evaluate fitness for cuckoo F; 
Choose a nest among n (e.g., j) randomly; 
If (Fi>Fj) then 
Replace j by the new solution; 
End if 
Abandon a fraction (Pa) of worse nests and build 

new ones; 
Keep the best solutions (or nests with quality 

solutions) 
Rank the solutions and find the current best; 
Update the generation number t=t+1; 

End while 
 
2.2 Pattern search method 

Pattern search (PS) method [14] is adopted in this 
work due to its smaller memory requirement and 
effective local search capability. The basic PS algorithm 
is a simple direct search method that does not require 
derivative or second derivative information. PS is 
traditionally employed when the gradient of the function 
is not reliable when performing the search. The basic PS 
algorithm moves along the coordinate axes or other user 
defined positive spanning set to improve an existing 
solution in a greedy way. The step size is reduced, 
typically in half, when an improvement is not found in 
any direction. The pattern search component is illustrated 
in Fig. 1. 

 
2.3 Constraint-handling method 

Obviously, it is important to choose an appropriate 
constraint-handling technique for solving constrained 
optimization problems. The feasibility-based rule method 
is proposed in this work to handle constraints because it 
does not need to tune additional penalty parameters. 
According to feasibility-based rules, the constraint 
violation of each individual should be calculated to judge 
whether the individual is in feasible region. Equation (4) 
gives the mathematic formula for constraint violation 
calculation in our proposed algorithm. 
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Motivated by Ref. [15], a feasibility-based rule is 

employed to handle constraints, which is described as 
follows: 

1) Any feasible solution is preferred to any 
infeasible solution; 

2) Between two feasible solutions, the one having 
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Fig. 1 Procedure of pattern search component 

 
better objective function value is preferred; 

3) Between two infeasible solutions, the one having 
smaller constraint violation is preferred. 

Based on the above criteria, objective function and 
constraint violation information are considered, 
separately. Consequently, penalty factors are not used at 
all. 

 
2.4 Hybrid CPS algorithm based on feasibility rule 

While cuckoo search algorithms are good at quickly 
finding a reasonable solution, they may be slow to 
converge to the local optimal solution from a nearby 
solution and they may be stuck in a local optimum [13]. 
To overcome this problem, a local search improvement 
phase can be added to the CS algorithm. Pattern search is 
adopted in this work due to its smaller memory 

requirement and effective local search capability. After 
each iteration of the cuckoo search phase, the current 
best solution is improved independently with a local 
pattern search of neighboring solutions. The PS is 
adapted from the algorithm described in subsection 2.2. 
The pseudo code of the hybrid cuckoo pattern search 
(HCPS) algorithm with feasibility-based rule is presented 
below. 
 
Algorithm 2 Hybrid cuckoo pattern search (HCPS) 
algorithm 
Parameter setting; 
Generation t=1; 
Initial a population of n host nests xi(i=1, 2, …, n); 
While (t<Maximum Generation) or (stop criterion)  

Get a cuckoo (say i) randomly by Lévy flights; 
Evaluate fitness for cuckoo F; 
Choose a nest among n (say j) randomly; 
If (Fi>Fj) then 
Replace j by the new solution; 
End if 
Abandon a fraction (Pa) of worse nests and build 

new ones; 
Keep the best solutions (or nests with quality 

solutions), Rank the solutions and find the current best; 
Improve the chromosomes with pattern search 

algorithm; 
Select the offspring by feasibility-based rule; 
Update the generation number t=t+1; 

End while 
 
3 Simulations and comparisons 
 

In this section, numerical simulation are carried out 
to investigate the performances of the proposed HCPS 
algorithm, where several constrained benchmark 
functions [16] and three well-studied structural design 
optimization problems [1] are used for testing. The 
parameters used by HCPS algorithm are the following: 
the population size n=50 nests, α=1, Pa=0.25, The 
maximum generation number is 3000, The maximum 
number of generations kmax for pattern search is set on 20 
generations. All parameters of the HCPS algorithm are 
kept constant for all problems. 

 
3.1 Benchmark test functions 

Choose three well-known benchmark test functions 
to evaluate the performance of the proposed HCPS 
algorithm. The first test function is a maximization 
problem with twenty design variables and two inequality 
constraints. In this work, the maximization problems are 
transformed into minimization using −f(x), and this 
problem can be stated as 
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and n=20 and 0≤xi≤10 (i=1, 2, …, n). 
The second problem is a minimization problem with 

two variables and two inequality constraints, and this 
problem can be stated as  
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and 13≤x1≤100, and 0≤x2≤100. 

The third test function is a minimization problem 
with seven variables and four inequality constraints, and 
this problem can be stated as  

2 2 4
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2 6 2 4
4 5 6 7 6 7 6 7

2 4 2
1 1 2 3 4 5

2
2 1 2 3 4 5

2 2
3 1 2 6 7

F3: Min  ( ) ( 10) 5( 12)

      3( 11) 10 7 4 10 8

s.t.: ( ) 127 2 3 4 5 0

      ( ) 282 7 3 10 0

      ( ) 196 23 6 8 0

   

f x x x

x x x x x x x x

g x x x x x

g x x x x x

g x x x x

     

      

       

       

      

x

x

x

x
2 2 2

4 1 2 1 2 3 6 7   ( ) 4 2 5 11 0g x x x x x x x










        x

 

(7) 
and ).7,,1(1010  ixi  

Table 1 contains as summary of the execution 
results of the same three benchmark functions, which are 

compared with those of MOEA [3], CPSO [4], MABC 
[5], SR [16], HGPS [17], SAFF [18], and SMES [19]. 
For the sake of comparison, the table also gives the 
reference optimal values. As listed in Table 1, the 
proposed HCPS is able to find the global optima 
consistently on test functions over 30 runs except for F1. 
With respect to test function F1, yet the optimal solutions 
are not consistently found, the best results achieved are 
very close to the global optimal solutions. The 
distribution of the resulting solutions for test function F1 
is shown in Fig. 2. Note that the standard deviations over 
30 runs for all the functions are relatively small, which 
reflects that HCPS is capable of performing a robust and 
stable search. In addition, the convergence result for each 
problem is shown in Fig. 3 so that the efficiency of 
HCPS can be demonstrated more explicitly. As can be 
seen, HCPS achieves the convergence at a very early 
stage for three problems. 

From Table 1, compared with SR, HGPS, and SAFF, 
HCPS finds better “best”, “mean”, and “worst” results 
for three test functions. With respect to MABC and 
SMES, HCPS provides better “mean”, and “worst” 
results for function F1 and better results for functions F2 
and F3. The better “best” results obtained by MABC and 
SMES for function F1. Compared with MOEA, HCPS 
finds similar results for functions F2 and F3. CPSO is 
one of the most competitive algorithms known to date. 
With respect to CPSO, HCPS provides similar results for 
three functions. 

The above discussion validates that HCPS is an 
effective and efficient method for constrained 
optimization, and that it is capable of providing 
competitive results. 

 
3.2 Structural design optimization problems 

Structural design optimization problems are complex, 
 

Table 1 Experimental results of HCPS and other methods for three benchmark functions 

Function Optimal  MOEA[3] MABC[5] SR[16] HGPS[17] SAFF[18] SMES[19] CPSO[4] HCPS 

F1 −0.803619 

Best −0.803619 −0.803611 −0.803515 −0.611330 −0.80297 −0.803601 −0.803619 −0.803519

Mean −0.803220 −0.795430 −0.781975 −0.556323 −0.79010 −0.785238 −0.801653 −0.801041

Worst −0.792608 −0.770319 −0.726288 −0.526660 −0.76043 −0.751322 −0.784076 −0.792458

Std. 2.0×10−3 9.47×10−3 2.0×10−2 2.50×10−2 1.2×10−2 1.7×10−2 4.7×10−3 3.4×10−3

F2 −6961.814 

Best −6961.814 −6961.814 −6961.814 −6961.814 −6961.800 −6961.814 −6961.814 −6961.814

Mean −6961.814 −6961.814 −6875.940 −6961.814 −6961.800 −6961.284 −6961.814 −6961.814

Worst −6961.814 −6961.813 −6350.262 −6961.809 −6961.800 −6961.482 −6961.814 −6961.814

Std. 1.8×10−12 4.0×10−4 1.6×102 1.3×10−3 0.000 1.900 3.8×10−11 5.1×10−10

F3 680.630 

Best 680.630 680.631 680.630 680.6301 680.64 680.632 680.630 680.630

Mean 680.630 680.636 680.656 680.6301 680.72 680.643 680.630 680.630

Worst 680.630 680.641 680.763 680.6301 680.87 680.719 680.630 680.630

Std. 4.7×10−13 2.6×10−3 3.4×10−2 0.000 5.9×10−2 1.6×10−2 5.9×10−17 2.8×10−12
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Fig. 2 Distribution of resulting solutions for test function F1 

 

  
Fig. 3 Convergence results for three test functions: (a) F1; (b) 

F2; (c) F3 

sometimes even the optimal solutions of interest do not 
exist. In order to see how HCPS algorithm performs, 
three standard structural engineering test problems are 
solved. 
3.2.1 Three-bar truss structural design 

This case considers a three-bar planar truss structure 
shown in Fig. 4. The volume of a statically loaded 
three-bar truss is to be minimized subjected to stress (σ) 
constraints on each of the truss members. The objective 
is to evaluate the optimal cross sectional areas (x1, x2). 
 

 
Fig. 4 Three-bar planar truss structural design problem 

 
The mathematical formulation is given as follows:  
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where 0≥x1≥1 and 0≥x2≥1, l=100 cm, P=2 kN/cm2, and 
σ=2 kN/cm2. 

This design problem is a nonlinear fractional 
programming problem. The comparison of obtained 
statistical results for the HCPS with previous studies 
including water cycle algorithm (abbreviated by WCA) 
[1], cuckoo search (denoted as CS) [12] and swarm with 
intelligent information sharing (denoted as SIIS) [20] are 
given in Table 2. As shown in Table 2, it is evident that 
the searching quality of HCPS is higher than those of 
other methods. Table 3 presents the best solutions 
obtained by HCPS and those reported by CS, WCA, and 

 
Table 2 Comparison of statistical results obtained from various 

algorithms for three-bar truss structural design problem 

Method Best Mean Worst Std. 

SIIS[20] 264.3 N/A N/A N/A 

WCA[1] 263.895843 263.895903 263.896201 8.71×10−5

CS[12] 263.97156 264.0669 N/A 9.00×10−5

HCPS 263.895843 263.895912 263.896052 5.27×10−6
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Table 3 Comparison of best solution obtained from previous 

algorithms for three-bar truss structural design problem 

Parameter SCA[20] WCA[1] CS[12] HCPS 

x1 0.795 0.788651 0.78867 0.78867515

x2 0.395 0.408316 0.40902 0.40824826

g1(x) −0.00169 0 −0.00029 −7.55×10−14

g2(x) −0.26124 −1.464024 −0.26853 −1.46410165

g3(x) −0.74045 −0.535975 −0.73176 −0.53589835

f(x) 264.3 263.895843 263.9716 263.895843

 
SCA. From Table 3, it is clear that the best solution 
obtained by HCPS is better than those by SCA and CS. 
Compared with WCA, HCPS provides similar results. 
3.2.2 Tension/compression spring structural design 

The tension/compression spring structural design 
problem is described in Ref. [1] for which the objective 
is to minimize the weight (f(x)) of a tension/compression 
string (as shown in Fig. 5) subjected to constraints on 
minimum deflection, shear stress, surge frequency, limits 
on outside diameter and on design variables. There are 
three design variables: the wire diameter d(x1), the mean 
coil diameter d(x2), and the number of active coils p(x3). 

The tension/compression spring structural design 
problem is stated as follows: 
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where 0.25≤x1≤1.3, 0.05≤x2≤2.0, and 2≤x3≤1.5. 
 

 
Fig. 5 Tension/compression spring structural design problem 

 
The optimization engines previously applied to 

tension/compression spring structural design problem 
include WCA [1], DEDS [6], and CS [12]. The 
comparisons for the best solutions given by different 
algorithms are presented in Table 4. Their comparison 
statistical results are listed in Table 5. 

It can be observed from Table 4 that the objective 
values by four algorithms. From Table 5, with respect to 

Table 4 Comparison of best solution obtained from previous 

algorithms for spring structural design problem 

Parameter WCA[1] DEDS[6] CS[12] HCPS 

x1 0.051680 0.051689 0.051690 0.0516891

x2 0.356522 0.356717 0.356750 0.3567178

x3 11.300410 11.288965 11.287126 11.288955

g1(x) −1.65×10−13 1.45×10−9 −3.56×10−5 3.46×10−6

g2(x) −7.9×10−14 −1.19×10−9 2.18×10−5 −1.98×10−6

g3(x) −4.053399 −4.053785 −4.053787 −4.0537925

g4(x) −0.727864 −0.727728 −0.727707 −0.7277287

f(x) 0.012665 0.012665 0.012665 0.012665

 
Table 5 Comparison of statistical results obtained from various 

algorithms for spring structural design problem 

Method Best Mean Worst Std. 

WCA[1] 0.012665 0.012764 0.012952 8.06×10−5

DEDS[6] 0.012665 0.012669 0.012738 1.30×10−5

CS[12] 0.012665 0.012729 0.013056 1.21×10−4

HCPS 0.012665 0.012667 0.012701 1.60×10−6

 
WCA, DEDS, and CS, HCPS finds similar “best” results 
and better “mean”, “worst”, and “Std.” results for 
tension/compression spring structural design problem. 
3.2.3 Speed reducer structural design 

In this problem (see in Fig. 6), the weight of speed 
reducer is to be minimized subjected to constraints on 
bending stress of the gear teeth, surface stress, transverse 
deflections of the shafts, and stresses in the shafts. The 
variables x1 to x7 represent the face width (b), module of 
teeth (m), number of teeth in the pinion (z), length of the 
first shaft between bearings (l1), length of the second 
shaft between bearings (l2), and the diameter of first (d1) 
and second shafts (d2), respectively. 
 

 
Fig. 6 Speed reducer structural design problem 

 
The mathematical formulation can be summarized 

as follows:  
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where 2.6≤x1≤3.6, 0.7≤x2≤0.8, 17≤x3≤28, 7.3≤x4≤8.3, 
7.3≤x5≤8.3, 2.9≤x6≤3.9, and 5.0≤x7≤5.5. 

This problem has been solved previously using 
cuckoo search (denoted as CS) [12], swarm with an 

intelligence information sharing (abbreviated by SIIS) 
[20], simple evolutionary algorithm (denoted as SEA) 
[21], and socio-behavioral simulation model 
(Abbreviated by SBSM) [22]. Table 6 lists the statistical 
results that have been determined by the above 
mentioned approaches as well as the proposed HCPS in 
this work. Table 7 shows the comparisons of the best 
solutions obtained by the proposed HCPS and other 
compared methods.  

 
Table 6 Comparison of statistical results obtained from various 

algorithms for speed reducer structural design problem 

Method Best Mean Worst Std. 

CS[12] 3000.9810 3007.1997 3009.0000 4.9634

SIIS[20] 2732.9006 2758.8878 2758.3071 N/A 

SEA[21] 3025.005 3088.7778 3078.5918 N/A 

SBSM[22] 3008.08 3012.1200 3028.2800 N/A 

HCPS 2994.47107 2994.62318 2994.76112 6.86×10−2

 
From Tables 6 and 7, HCPS finds better “best”, 

“mean”, and “worst” results than CS, SEA, and SBSM. 
Even the worst solution found by HCPS is better than the 
best solutions by the CS, SEA, and SBSM. Although the 
best objective value derived by SIIS is better than those 
of HCPS, the reported value is not feasible. This is 
because the fifth and sixth constraints (g5(x), g6(x)) are 

 

Table 7 Comparison of best solution obtained from various studies for speed reducer structural design problem 

Parameter CS[12] SIIS[20] SEA[21] SBSM[22] HCPS 

b(x1) 3.5015 3.514185 3.506163 3.506122 3.5000 

m(x2) 0.7000 0.700005 0.700831 0.700006 0.7000 

z(x3) 17.0000 17.000000 17.000000 17.000000 17.00000000 

l1(x4) 7.6050 7.497343 7.460181 7.549126 7.3000 

l2(x5) 7.8181 7.8346 7.962143 7.85933 7.715320 

d1(x6) 3.3520 2.9018 3.3629 3.365576 3.350215 

d2(x7) 5.2875 5.0022 5.3090 5.289773 5.286654 

g1(x) −0.0743 −0.0777 −0.0777 −0.0755 −0.07391528 

g2(x) −0.1983 −0.2012 −0.2013 −0.1994 −0.19799853 

g3(x) −0.4349 −0.0360 −0.4741 −0.4562 −0.49917245 

g4(x) −0.9008 −0.8754 −0.8971 −0.8994 −0.90464387 

g5(x) −0.0011 0.5395 −0.0110 −0.0132 −2.990×10−7 

g6(x) −0.0004 0.1805 −0.0125 −0.0017 −2.639×10−7 

g7(x) −0.7025 −0.7025 −0.7022 −0.7025 −0.70250000 

g8(x) −0.0004 −0.0040 −0.0006 −0.0017 0 

g9(x) −0.5832 −0.5816 −0.5831 −0.5826 −0.58333333 

g10(x) −0.0890 −0.1660 −0.0691 −0.0796 −0.05132568 

g11(x) −0.0130 −0.0552 −0.0279 −0.0179 −0.778×10−8 

f(x) 3000.9810 2732.9006 3025.005 3008.08 2994.47107 
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significantly violated in the results of SIIS. 

Based on the aforementioned simulation and 
comparison results validate that the proposed HCPS has 
the substantial capability in handling various constrained 
structural design optimization problems and its solution 
quality is quite stable. So, it can be concluded that the 
proposed HCPS is a good alternative for constrained 
structural optimization. 
 
4 Conclusions 
 

1) A hybridization scheme for constrained structural 
optimization is presented which combines the feasibility- 
based rule for handling constraints with a cuckoo search 
algorithm as global optimizer and a pattern search 
method as local optimizer.  

2) The proposed algorithm has demonstrated better 
performance than the other approaches in literature on 
solving three constrained optimization benchmark 
functions and three constrained structural design 
optimization problems.  

3) In the future, we will apply HCPS to various 
problems found in the real world. Meanwhile, we are 
interested in extending our method so that it can deal 
with multi-objective optimization problems. 
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