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Abstract: The general regression neural network (GRNN) model was proposed to model and predict the length of day (LOD) change, 
which has very complicated time-varying characteristics. Meanwhile, considering that the axial atmospheric angular momentum 
(AAM) function is tightly correlated with the LOD changes, it was introduced into the GRNN prediction model to further improve 
the accuracy of prediction. Experiments with the observational data of LOD changes show that the prediction accuracy of the GRNN 
model is 6.1% higher than that of BP network, and after introducing AAM function, the improvement of prediction accuracy further 
increases to 14.7%. The results show that the GRNN with AAM function is an effective prediction method for LOD changes. 
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1 Introduction 
 

Earth rotation is affected by the interactions of solid 
Earth with the atmosphere, ocean, mantle and core [1−3]. 
Earth rotation includes polar motion and length of day 
(LOD) changes, which are called the earth rotation 
parameters (ERPs) in geodesy or astronomy [2]. 
Accurate ERPs are required in the transformation 
between the earth and the celestial reference frame, and 
also play important roles in modern space navigations, 
explorations and military applications. The ERPs can be 
derived with modern high-precision space-geodetic 
techniques, such as very long base interferometry 
(VLBI), satellite laser ranging (SLR) and global 
positioning system (GPS). However, the complexity and 
time consuming in data processing always lead to time 
delay, which does not satisfy the real-time requirement 
for ERP in the transformation between the earth and the 
celestial reference frame, modern space navigations and 
explorations. Therefore, the prediction of ERPs from 
itself or combining with the atmosphere and ocean data 
is of great scientific and practical importance [4−5]. 
LOD is main part of ERPs, and thus the prediction of 
LOD is very important.  

The predictions of LOD changes have been 
extensively investigated and a number of models have 
been developed. These models can be classified into two 
categories, linear and non-linear models. The linear 

models include the least-squares extrapolation (LS) [6], 
autocovariance model (AC) [7], and Kalman filter [8], 
etc. The non-linear models are mainly the artificial 
neural networks (ANN) [9]. LOD exhibits complicated 
time-varying characteristics, and the prediction given by 
the linear models is usually far from satisfactory, while 
the prediction by the non-linear ANN models seems to 
approach the LOD change. However, the BP artificial 
neural network put forward by SCHUH et al [9] has the 
problem of low efficiency, being sensitive to the initial 
values and non-unique solutions. 

In this work, we propose to use a highly efficient 
ANN model, i.e., the generalized regression neural 
network (GRNN), to predict the time-varying behaviors 
of the LOD change. The GRNN was proposed after the 
BP ANN model, and is a kind of radial basis function 
(RBF) ANN [10]. It has good performance of local 
approximation and does not fall into the local minimum. 
No iteration is required in its training, and only one 
parameter needs to be adjusted, i.e. the smoothing factor. 
Therefore, the GRNN needs less computation time. 
Compared with the BP network, it requires a much 
smaller training sample, and has only three layers with a 
simple structure, which is suitable for solving the 
problems of approximation, prediction and classification. 
This method can overcome the shortcomings of the BP 
network, i.e., easily falling into the local minimum and 
time-consuming [10−14]. 

To improve the prediction accuracy of LOD change, 
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the prediction method is investigated by introducing the 
atmospheric angular momentum (AAM) function that 
tightly correlates the LOD change to the GRNN model. 
As the solid Earth and its surrounding fluid layers form 
an approximately close dynamic system, changes of 
atmospheric or oceanic angular momentum will result in 
variations in the solid Earth’s rotation, based on the 
conservation law of angular momentum [1, 3]. The 
variation of the earth rotation parameter is tightly 
correlated with the change of the AAM, and the AAM 
can be derived with the dynamic model of the 
atmosphere. WANG et al [15] found that the prediction 
accuracy is significantly improved after introducing the 
AMM to the BP network. In this work, the GRNN model 
is adopted to include the data of the axial AAM function 
for the prediction of LOD change, which is expected to 
further improve the prediction accuracy. 
 
2 Prediction method 
 
2.1 Data pre-processing 

The data of the LOD change used in this work are 
taken from EOP 05C04 series of the IERS, with one data 
point per day spanning from 1980 to 2010. The data 
contain periodic changes with periods of 5 days to 18.6 
years caused by the 62 zonal Earth tides. We first 
removed the contributions of the tides from the LOD 
changes using periodic models [16], and the residual 
series thus obtained are called as LOD residues (LODR) 
for simplicity hereinafter. All the predictions carried out 
are based on the data of LODR. 
 
2.2 Introducing AAM to LOD prediction by GRNN 
2.2.1 Detrend of LODR 

The LODR, i.e., the LOD after removing the effects 
of tides, still includes some periodic changes, such as the 
annual and semi-annual terms [1]. These are trend terms 
that must be removed before further modeling. They can 
be approximate by LS method: 
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where A, B and C are the parameters of mid/long-term 
trend, D1 and D2 are the parameters of annual term, E1 
and E2 are the parameters of the semi-annual term in the 
LODR series, F1 and F2 are those for the 1/3-year term, 
and P1=1, V P2=1/2, and P3=1/3. 

These parameters can be determined with the 
least-square method and the LODR series. Then, the 

trend terms and the differences between the trend terms 
and LODR can be obtained. These differences are the 
LODR residual series. Subsequent modeling and 
prediction are based on the LODR residual series. The 
final prediction of LODR is the summation of the 
prediction of LODR residual series and the extrapolated 
trend terms. In Fig. 1, the original and extracted series of 
LOD are plotted as functions of time (from Jan. 1, 1980 
to Dec. 31, 2010). From top to bottom, the data series are 
LOD, tides terms, trend terms, and detrended LODR (i.e., 
LODR residual series), respectively. 
2.2.2 Detrend of AAM series χ3 

Of the components of the AAM function, the axial 
component χ3 is strongly correlated with the LOD 
change. Thus, it is introduced into the prediction. The 
series of χ3 is from the National Centers for 
Environmental Prediction (NCEP) and the National 
Center for Atmospheric Research (NCAR). The length of 
χ3 is the same as that of the LOD. The linear and periodic 
trend terms of χ3 are also approximated by LS fitting, and 
then its residual series is used for subsequent modeling. 
2.2.3 LODR prediction by GRNN 

The GRNN is a kind of modified RBF neural 
network model. It is a forward feedback neural network 
based on the non-linear regression theory. It consists of 
three layers, i.e. the input, the hidden and the output 
layer (see Fig. 2) [10−12]. The first layer of the network 
is the input layer, and P is the input vector with R 
dimensions. There are Q neurons in each layer. The input 
vector P is the residual series of the LODR. The number 
of neurons Q is determined by the input mode. The input 
adopted in this work is 
 
C(t−qi), …, C(t−3i), C(t−2i), C(t−1i), χ3(t)  

(i=1, 2, 3, …)                           (2) 
 
where t denotes the epoch of prediction, and i represents 
the time interval of input series. The input here is the q 
LODR residual series, so the number of neurons is Q=q. 

The second layer of the network is the radial-basis 
hidden layer, and the number of neurons is equal to that 
of the training sample members. The weight function of 
this layer is the Euclidean distance function (expressed 
by distance L1,1), which is the distance between the input 
of the network and the weight of the first layer. b1 is the 
threshold of the hidden layer. The transfer function of the 
hidden layer is the RBF, which generally employs the 
Gaussian function: 
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where σi is the smoothing factor which is the only 
parameter needed to be adjusted, and the radial basis 
function becomes smooth with the increase of σi. 

The third layer of the network is the output layer. 
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Fig. 1 LOD data (a), tidal terms (b), LODR trend data (model-fitted) (c) and detrended LODR residuals (d) 

 

 
 
Fig. 2 Structure of GRNN 
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The weight function “npord” is the normalized dot 
product function. The transfer function is a linear 
function. It uses the results obtained by the weight 
function to compute the final output of the network. The 
final output of the network is then the prediction of 
LODR residuals. By adding the LODR trend series 
extrapolated by Eq. (1), one can get the final prediction 
of LODR. 
2.2.4 Introducing χ3 to LODR prediction by GRNN 

Based on the prediction using the LODR residual 
series only, the AAM χ3 component is introduced and 
jointly used with the LODR residual series to predict the 
LODR with the GRNN model. In the modeling, the χ3 
residual series is used as a neuron of the input layer to 
join the prediction. The training of the network is the 
same as that of LODR, and the only difference is both 
the LODR and χ3 are used as input. So, in the input layer, 
the input vector P includes the LODR and the χ3 residual 
series as well. The input model adopted is thus 

 
C(t−qi), …, C(t−3i), C(t−2i), C(t−1i), χ3(t)  

(i=1, 2, 3, …)                            (4) 
 
where t denotes the epoch of prediction, and i represents 
the time interval of input series. The first q inputs here 
are the LODR residual series and the final input is the χ3 
residual series at epoch t, so the number of neurons in the 
input layer is Q=q+1 . 

Through the radial-basis hidden layer and the output 
layer, the final output is the prediction of LODR 
residuals. Similarly, by adding the LODR trend series 
extrapolated by Eq. (1), one can get the final prediction 
of LODR. Figure 3 shows the flow chart of introducing 
AAM to the LODR prediction by GRNN. 
 
2.3 Performance evaluation 

To evaluate the performance of the proposed model, 
the mean absolute error (MAE) is adopted as the 
criterion: 
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where pj is the output of the network (i.e., the predicted 

values) at epoch j; oj is the LODR observational series at 
epoch j; i represents the time interval of input series; N is 
total number of predictions. 
 
3 Experiment 
 

In this work, we use the data of LOD change and 
the AAM function χ3 with the time coverage between Jan. 
1, 1980 and Feb. 28, 2008 to conduct experiment. The 
data in the period from Jan. 1, 1980 to Sep. 30, 2005 are 
used for modeling, and those in the period from Oct. 1, 
2005 to Feb. 28, 2008 are used for model validation. 

For simplicity, we refer the prediction model by 
GRNN with the AAM χ3 as GRNN+AAM. To 
demonstrate the advantages of the GRNN model, the 
traditional BP network is also applied in this experiment. 
We employ the GRNN, GRNN+AAM, and the BP 
network to predict the LOD change of time span of 1, 
2, …, 390 days. The MAEs of the predictions by the 
three models are calculated and listed in Table 1. 

From Table 1, the prediction accuracy of the GRNN 
model is higher than that of BP model except the 
prediction length of 1, 22, 26, 270 and 360 days. In terms 
of the prediction efficiency, however, the calculating 
time of the GRNN method is only around one tenth of 
that of BP model. From Fig. 4, we can see that the curve 
of GRNN prediction error is much smooth and the 
prediction error increases gradually with the increasing 
of the prediction length. In contrast, the prediction error 
of BP model is not stable with obvious jumping, which is 
the direct reason that the accuracy of the GRNN model is 
lower than that of BP model in 1, 22, 26, 270 and 360 
days. 

By comparing the GRNN＋AAM with the BP 
model, the prediction accuracy of the former is higher 
than that of the latter except when the prediction length 
is 1 day, and the maximum accuracy improvement is 
25%. Both GRNN and GRNN＋AAM are stable, which 
illustrates that the prediction tendency of GRNN model 
as a whole is much more stable and GRNN model 
possesses perfect performance. The prediction time does 
not increase after introducing the AAM. The prediction 

 

 
Fig. 3 Flow chart of introducing AAM to LODR prediction by GRNN 
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Table 1 Comparison of prediction results by three different 

models 

Prediction 

length/d 

BP 

 

GRNN 

 

GRNN+AAM 

MAE/ 

ms 

MAE/ 

ms 

Improvement/ 

% 

MAE/ 

ms 

Improvement/

% 

1 0.028  0.045 —  0.048 — 

2 0.074  0.068 8.1  0.074 0 

3 0.095  0.088 7.4  0.096 1.1 

4 0.111  0.104 6.3  0.110 0.9 

5 0.131  0.119 9.2  0.122 6.9 

6 0.151  0.135 10.6  0.140 7.3 

7 0.162  0.137 15.4  0.134 17.3 

8 0.169  0.148 12.4  0.139 17.8 

9 0.176  0.153 13.1  0.148 15.9 

10 0.189  0.164 13.2  0.154 18.5 

12 0.193  0.187 3.1  0.184 4.7 

14 0.211  0.186 11.9  0.158 25.1 

16 0.213  0.193 9.4  0.168 21.1 

18 0.215  0.197 8.4  0.179 16.7 

20 0.217  0.195 10.1  0.171 21.2 

22 0.216  0.230 -6.5  0.203 6.0 

24 0.216  0.200 7.4  0.182 15.7 

26 0.215  0.219 -1.9  0.173 19.5 

28 0.218  0.215 1.4  0.183 16.1 

30 0.219  0.205 6.4  0.172 21.5 

60 0.273  0.247 9.5  0.229 16.1 

90 0.303  0.261 13.9  0.228 24.8 

120 0.312  0.297 4.8  0.256 18.0 

150 0.334  0.312 6.6  0.267 20.1 

180 0.358  0.331 7.5  0.305 14.8 

210 0.387  0.351 9.3  0.291 24.8 

240 0.391  0.374 4.4  0.321 17.9 

270 0.399  0.404 -1.3  0.346 13.3 

300 0.440  0.435 1.1  0.358 18.6 

330 0.453  0.444 2.0  0.388 14.4 

360 0.446  0.530 -18.8  0.427 4.3 

Mean —  — 6.1  — 14.7 

 

accuracy of the GRNN model is 6.1% higher than that of 
BP network, which illustrates that the performance of 
GRNN is better than that of BP model in LOD prediction. 
After introducing the AAM, the prediction accuracy is 
further improved, by 14.7%. The results show that the 
atmosphere is the main excitation source of the LOD 
change, whose contributions are considered to result in 
significant improvement and the prediction accuracy of 
the LOD change. 

 

 
Fig. 4 Comparison of prediction results by different models 

 
4 Conclusions 
 

1) The non-linear GRNN method can not only 
acquire highly accurate prediction result, but also 
improve greatly the prediction efficiency, since only the 
smoothing factor is needed to adjust and the size of the 
sample required by the network training is much smaller 
than that of the BP neural network. Taking the prediction 
of the LOD change with the time span of 5 days as an 
example, the prediction of the LOD change made by the 
BP neural network needs to take over 10 h, while that by 
the GRNN method only needs 1 h, greatly increasing the 
prediction efficiency.  

2) Considering that the axial AAM function is 
tightly correlated with the LOD change, we propose to 
combine the LODR and AAM to predict the LOD change 
due to the strong relationship between the LOD and 
AAM. The results show that after introducing the AAM, 
the prediction accuracy is further improved, by 14.7%. 
The atmosphere is the main excitation source of the LOD 
change, whose contributions are considered to result in 
significant improvement of the prediction accuracy of the 
LOD change. 
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