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Abstract: A method of three-dimensional loaded slope stability for anisotropic and nonhomogeneous slopes was presented based on 
the upper-bound theorem of the limit analysis approach. The approach can be considered as a modification and extension of the 
solutions. The influences of friction angle, anisotropy factor, nonhomogeneous factor, slope angle, ratio of width to depth, and load 
on the slope crest were investigated. The results show that solutions are suitable to deal with the purely cohesive soils and 
frictional/cohesive soils, isotropic and anisotropic, homogeneous and nonhomogeneous, loaded and unloaded cases. 
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1 Introduction 
 

Estimating the slope stability remains an important 
area of study for geotechnical engineering both in theory 
and practice. Numerous types of analysis have been 
proposed for assessing the stability of slopes. In general, 
these methods can be classified into the following types: 
the limit equilibrium method [1], the finite element 
method [2−4] and the limit analysis method [5−9]. 

Limit analysis, based on plasticity limit theorems, 
has an advantage of the lower and upper bound theorems 
to bracket the true solution. This method has been 
employed to deal with the 2D and 3D slope stability 
problems. Based on the upper bound limit analysis 
theorem, ZHAO et al [10] used the equation for 
expressing critical limit-equilibrium state to define the 
safety factor of a given slope and its corresponding 
critical failure mechanism by means of the kinematical 
approach of limit analysis theory. GANJIAN et al [11] 
introduced a new rotational collapse mechanism and 
quasi-static coefficient concept to investigate the 
influences of soil dilatancy angle on 3D seismic stability 
of locally-loaded slopes in non-associated flow rule 
materials. 

MICHALOWSKI and DRESCHER [12] introduced 
a rigorous 3D analysis in the strict framework of a limit 
analysis of plasticity. In their analysis, the geometry of 
the slip surface was curvilinear cone and both cohesive 
and frictional soils were included, which is very powerful, 

but limited to homogeneous and unloaded slopes. This 
work is essentially an extension of the work by 
MICHALOWSKI and DRESCHER [12], in which the 
proposed upper bound limit analysis formulation is the 
same. In this work, different anisotropy and 
nonhomogeneous factors are included in order to analyze 
the stability of loaded slopes. 

 
2 Limit analysis theorems 
 

Limit analysis is a powerful mathematical tool that 
provides rigorous lower and upper bounds to the exact 
stability factor in slope stability problems. The soil is 
assumed to deform plastically according to the normality 
rule associated with the Coulomb yield condition. The 
kinematic approach based on the plasticity upper bound 
theory has been widely adopted to investigate the 
problems of slope stability [13−14], ultimate bearing 
capacity [15], and slurry trench stability [16−17]. The 
kinematic theorem of limit analysis states that the rate of 
internal work is not less than the work rate of body force. 
This can be expressed by the following equation as [18] 

 

 
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where 

*
ij  is strain rate; 

*
ij  is stress; S and V are loaded 

boundary and volume, respectively. The first term is the 
rate of work done by stress 

*
ij  over the virtual strain 

rate 
*
ij , dissipated within V. The second term is the rate 

of work done by surface forces Ti. The last term on the 
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right-hand side is the work rate of body force Xi. The 
details of the application of this method to slope stability 
problems can be found in Ref. [18]. 
 
3 Formulation 

 
A 3D rotational mechanism for frictional/cohesive 

soil with logarithm helicoids surface is shown in Fig. 1, 
in which the failure surface is assumed to pass through 
the top and the toe of the slope. The same shape of this 
mechanism is considered by MICHALOWSKI and 
DRESCHER [12] for evaluating the stability factor of 
homogeneous and unloaded slope. Soil over the failure 
surface rotates about the center of rotation O, while the 
materials below the failure surface are static. Failure 
surface AC is a velocity discontinuous surface. A more 
comprehensive description and discussion of this 
mechanism can be found in Ref. [12]. 
 

 
Fig. 1 Schematic diagram of 3D mechanism 

 
The rate of work of the external forces (weight) is 
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where γ is the unit weight of the soil, and ω is the 
angular velocity. The two integrals relate to the work rate 
in the upper portion of the slope in the range (θ0, θB), and 
in the remaining part of the slope (θB, θh). 

The rate of energy dissipated along the discontinuity 
surface is 
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The load (p) velocity during rotation about axis O is 
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The rate of external work due to the load on the 

slope crest is 
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In this work, it is assumed that only the cohesive 

strength is nonhomogeneous and anisotropic. A very 
common case of nonhomogeneity of cohesion is that of a 
linear variation of Ch with respect to depth z as shown 
diagrammatically in Fig. 2 [19−20]. The cohesion Ch is 
the horizontal cohesive strength. The ratio of relative 

 

 
Fig. 2 Nonhomogeneity with depth 
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cohesions at the level of the top (n0C) and toe (C) is 
defined by n0. 

According to the geometric relationship in Fig. 2, 
the cohesive strength Ch1 at the vertical symmetry plane 
of the mechanism can be expressed as 
 

h1 0 0[ (1 )]
h

C C n n
H

                                               (11) 

 
where the parameters h and H are obtained from the 
geometrical and trigonometric relations in Fig. 1 as 
 

0( ) tan
0 0 0 0sin sin [sin e sin ]h r r r               (12) 

 
h 0( ) tan

0 h 0[sin e sin ]H r                                 (13) 
 

The cohesive strength hC   at the slope face can be 
expressed as 
 

1 1
h 0

h H h
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where h1 is derived from geometrical relations in Fig. 1 
as 
 

1 0 0sin sinxh r r                                               (15) 
 
where rx is the distance from the rotation center to the 
slope face as 
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The cohesion Ch along any cross-sectional plane of 

the mechanism in Fig. 1 can be expressed as 
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It is assumed that the variation of cohesion with 

direction approximates to the curve, as shown in Fig. 3 
[19−20]. The cohesion Ci at the place where the major 
principal stress direction inclines at an angle i to the 
vertical direction is given as 
 

 
Fig. 3 Anisotropy with direction 
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where k is the ratio of the principal cohesions ch/cv. 

Equating the total rates of external works Eqs. (2) 
and (10) to the total rates of internal energy dissipation 
Eq. (3), it is obtained 
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The function 0 h 0 0( , , / )f r r    has a minimum and 

thus indicates a least upper bound when θ0, θh and 0 0/r r  
satisfy the conditions: 
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The corresponding values for θ0, θh and 0 0/r r  

satisfying Eq. (21) result in s 0 h 0 0min[ ( , , / )].N f r r    

Thus, the critical height (Hc) can be expressed as 
 

c s
C

H N

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The estimates of stability factor H C  are obtained 

using a minimization procedure for given friction angle 
(φ), slope angle (β), ratio of width to depth (B/H), 
anisotropy factor (k), nonhomogeneous factor (n0) and 
load on the slope crest ( p H ). Independent variables 
in the minimization procedure are angles θ0 and θh, and 
ratio 0 0/r r . These parameters are varied by a small 
increment in computational loops, and the process is 
repeated until the minimum of H C  is reached, with 
the increments of 0.001° used for angles θ0 and θh, and 
0.001 for ratio 0 0/r r . 
 
4 Comparison with 2D results 
 

CHEN [20] introduced a rigorous 2D analysis in the 
strict framework of a limit analysis of plasticity. In the 
analysis, the geometry of the slip surface was logspiral, 
unloaded and nonhomogeneous slopes were included. In 
this section, 2D solutions for various parameters are 
compared accroding to CHEN’s work, including  , 0n , 
k and β. For the 3D slopes, it is usually considered that 
with an increase in width (B), the safety factor 
approaches the one from 2D analysis. In order to 
facilitate the comparison of 2D and 3D calculations, 
B/H=2 is taken in 3D cases. The results of these 
computations are graphically represented in Figs. 4−7. 

Figure 4 illustrates the effect of friction angle (φ) on 
the stability factor. As expected, the stability factor 
increases as φ increases. It can be found that increasing φ 
from 20° to 30° can increase the stability factor by more 
than 27%. Figure 5 presents the influence of the slope  
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Fig. 4 Comparison of results with different φ for n0=0.7, k=0.7 

and β=70° 

 

 
Fig. 5 Comparison of results with different β for φ=20°, n0=0.7 

and k=0.7 

 

  
Fig. 6 Comparison of results with different n0 for φ=20°, k=0.7 

and β=70° 

 
angle (β) on the stability factor. The results indicate that 
increasing β from 60° to 80° can decrease the stability 
factor by 34%. Figure 6 shows the relation between the 
stability factor and the nonhomogeneous factor (n0) for 
different soil properties, and the line marked with filled 

 

 
Fig. 7 Comparison of results with different k for φ=20°, n0=0.7 

and β=70° 

 
dot indicated the 2D results [20]. It is observed that 
increasing n0 from 0.6 to 0.8 can increase the stability 
factor by 10%. Figure 7 displays that the stability factor 
varies when the anisotropy factor (k) is changed. It can 
be seen that increasing k from 0.6 to 0.8 can decrease the 
stability factor by more than 24%. 

Referring to Figs. 4−7, the stability factor for the 
3D results (B/H=2 and p/γH=0) are around 1.51 times 
larger than the stability factor of the 2D results (p/γH=0). 
The difference in 3D and 2D stability factor of slopes 
can be measured by the vertical distance between the 
respective lines in these figures. The stability factor from 
a 3D analysis will approach the stability factor from a 2D 
analysis gradually when the ratio of width to depth 
increases. 

 
5 Comparison with other 3D results 

 
In this section, the results in this work are compared 

to Michalowski’s 3D solutions for purely cohesive and 
frictional/cohesive slopes. Figures 8 and 9 show 
comparison of stability factors for the isotropic (k=1) and 
anisotropic (k≠1), homogeneous (n0=1) and non- 
homogeneous (n0≠1), loaded (p/γH≠0) and unloaded 
(p/γH=0) cases. 

Figures 8 and 9 also illustrate the effect of ratio of 
width to depth (B/H) on the stability factor in 3D cases. 
From these figures, the ratio of width to depth, B/H, is 
found to have large effect on the stability factor when 
B/H<3. It can be found that increasing B/H from 1 to 3 
can decrease the stability factor by more than 18%. This 
means that the 3D boundary effect is very large when 
B/H<3. From the observation of Figs. 8 and 9, the range 
of this difference changes less than 2%, when the ratio of 
B/H increases from 5 to 10. This implies that the 3D 
boundary end effect on slope stability is small and almost 
insignificant when B/H≥5. 
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Fig. 8 Comparison of results with different B/H for φ=0° and 

β=70° 

 

 
Fig. 9 Comparison of results with different B/H for φ=0° and 

β=70° 

 
6 Effects of load on slope crest 
 

Figure 10 illustrates a variation of the stability 
factor with p/γH for n0=0.7, k=0.7 and φ=20°. As 
expected, the stability factor decreases as p/γH increases. 
It can be seen from Fig. 10 that increasing p/γH from 0 to 
 

 
Fig. 10 Effect of load in critical height of slope for n0=0.7, 

k=0.7 and φ=20° 

0.5 can decrease the stability factor by more than 47%. 
 
7 Conclusions 
 

1) Based on the upper-bound theorem of limit 
analysis, the 3D loaded slope stability analysis for 
anisotropic and nonhomogeneous slopes is presented. 
The stability analysis for uniform soil slopes is modified 
and extended to anisotropic, nonhomogeneous and 
loaded slopes. 

2) Examples are provided to illustrate variations of 
the stability factor with friction angle, anisotropy factor, 
nonhomogeneous factor, slope angle, ratio of width to 
depth, and load on the slope crest. The stability factor 
increases with increasing friction angle, non- 
homogeneous factor, and with decreasing slope angle, 
anisotropy factor, ratio of width to depth, and load on the 
slope crest. 

3) The solutions are suitable to deal with the 
following cases, purely cohesive soils and frictional/ 
cohesive soils, isotropic and anisotropic, homogeneous  
and nonhomogeneous, loaded and unloaded. 
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