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Abstract: Methodology for the reliability analysis of hydraulic gravity dam is the key technology in current hydropower construction. 
Reliability analysis for the dynamical dam safety should be divided into two phases: failure mode identification and the calculation of 
the failure probability. Both of them are studied based on the mathematical statistics and structure reliability theory considering two 
kinds of uncertainty characters (earthquake variability and material randomness). Firstly, failure mode identification method is 
established based on the dynamical limit state system and verified through example of Koyna Dam so that the statistical law of 
progressive failure process in dam body are revealed; Secondly, for the calculation of the failure probability, mathematical model and 
formula are established according to the characteristics of gravity dam, which include three levels, that is element failure, path failure 
and system failure. A case study is presented to show the practical application of theoretical method and results of these methods. 
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1 Introduction 
 

The uncertainty of dynamic system of a concrete 
gravity dam mainly comes from two aspects. One is the 
earthquake variability; the other is the randomness of 
material. Variability of seismic load and anisotropism of 
concrete may lead to new failure modes for the concrete 
gravity dam under seismic loads. Consequently, 
methodology for estimating probability of the dynamical 
system’s failure for concrete gravity dam should be 
studied for its random, progressive and complicated 
characters. Generally speaking, reliability analysis for 
the dynamical dam safety should be divided into two 
phases: failure mode identification and the calculation of 
the failure probability. 

For the failure mode identification, there are many 
approaches, like network searching method, load 
increment method, branch-and-bound algorithm and so 
on. But the truth is that they don’t work when meeting 
the mass concrete structures because it doesn’t mean 
disabled when the damage only occurs on one section or 
some components. As a result, it brings difficulties to 
seek the dynamic failure modes for the mass concrete 
structures, like the concrete gravity dam. 

Early studies usually made artificially assumed 
failure modes, based on the function of structural system 

of gravity dam. According to the stress analysis by 3-D 
nonlinear FEM, ZHU et al [1] assumed anti-sliding 
failure mode of gravity dam. FAN et al [2] assumed 
many modes of dam failure, foundation failure, sliding 
failure and gate lifting failure. With the improvement of 
research, XU et al [3] assumed failure mode oriented by 
the composite limit state function and found out 
corresponding failure paths. HONG et al [4] introduced 
all phases’ mechanical properties of concrete, established 
microscopic probability model of concrete, put forward 
the analysis method of structure failure mode, based on 
the numerical simulation of microscopic in homogeneity 
model, and got the failure modes of gravity dam dynamic 
system. 

For the calculation of the failure probability, it is 
always the hot issue in the field of water conservancy 
and hydropower science. Successful attempts on the 
calculation of gravity dam dynamic reliability in time 
domain have been carried out by WU and ZHUO [5]. 
Based on the assumed mode of gravity dam function 
failure, FAN et al [2] calculated two opposite extreme 
situations of perfect correlation and perfect un- 
correlation. JIA and ZHANG [6] studied the safety and 
reliability of RCC gravity dam with the method of 
stochastic finite element under the situation of exiting of 
horizontal weak bedding. WU et al [7] used Lagrange 
multiplier rule, turned solving design checking point 
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nonlinear constrained optimization problems with the 
restraint of response surface into solving linear equations 
response surfaces. XU et al [8] established a gravity dam 
failure path reliability calculation method on the process 
of non-stationary ground motion. Besides, based on 
Bayes formula and Cauchy-Schwarz inequality, XU et al 
[3] calculated the reliability of whole dam system with 
the method of derivating the upper limit of failure 
probability when the dam fails in certain failure mode. 

But there are still many problems need to be solved 
for reliability analysis of gravity dam under the effects of 
earthquake. On one hand, the search method of failure 
path needs to be improved. Based on the finite element 
method, from the view of probability, searching the order 
of failure and failure route is a searching process for all 
elements. By using this kind of method, it would be a 
huge calculation. It’s not suitable for engineering 
applications. On the other hand, the failure mode is 
relatively simple at present, and it is focused on 
reliability for local tensile. So, it needs further research 
with multiple failure modes. 
 
2 Proposed methodology 
 

Reliability techniques have been applied frequently 
to other kinds of problems in the geotechnical field, such 
as slope stability, which has received considerable 
attentions [9−13]. 

Generally, dam safety of the dynamical system 
based on reliability analysis methodology demands two 
parts, failure mode identification and the quantification 
of the failure probability of the system, so that the 

methodology described herein is divided in two phases 
and reflected in Fig. 1. It is considered that its 
application to any other type of dam and for any other 
failure modes can be carried out rather straightforwardly 
due to its generic formulation. 
 
2.1 Phases 1: Methodology for failure mode 

identification 
Failure mode identification of the dynamical dam 

system is the foundation of the reliability analysis. The 
starting point, Step 1, should always be the existence of a 
stochastic model fully defined and completed for the 
concrete dam; Step 2 is the random search for the 
potential failure modes by controlled numerical 
simulation, which considers the variability of the 
variables (loads and parameters), based on the limit state 
dynamical system of the dam rather than the probability 
evaluation system, which costs much and is hard to 
reflect the mechanical meaning; Step 3 is the failure 
mode generalization and identification based on the 
statistical characteristics from the random numerical 
simulations, which would be proved through Koyna Dam 
example in Section 3. 
2.1.1 Step 1: Defining stochastic model 

The stochastic model fully defined and completed 
for the concrete dam should include the definition of the 
loading scenarios and analysis of variables (loads and 
parameters) that appear in the problem. The variables are 
classified whether as determined variables, whose values 
are known with very little uncertainty, or as random 
variables, whose values are not known with precision 
and their knowledge is, therefore, reliant on uncertainty. 

 

 
Fig. 1 Flow chart for estimation of probability of failure of concrete dams 
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For the variables considered as random, it is necessary to 
find out which are their probability distribution  
functions. In order to assess the probability distributions 
of the variables, results of research, tests and all the 
information available from the assessment of the dam 
should be taken into account [14]. 
2.1.2 Step 2: Controlled random search 

Numerical search process involves three stochastic 
factors: 1) Material parameters. Material properties of 
the elements would be assigned through random 
sampling to reflect certain material parameter and its 
probability distribution; 2) Earthquake variability. A 
large number of repeated computations are done in 
different earthquake levels, which would be regarded as 
discrete random variables; 3) Concrete damage failure 
criterion. Nonlinear damage process will be studied 
based on the uncertainty of the fracture model and the 
constitutive model of the concrete for numerical 
simulation. Above all, stochastic finite element analysis 
is done. 

Input of seismic loads: As discrete random variable, 
the seismic loads are input from the bottom of the 
bedrock ground, which is regarded as massless 
foundation model. 
2.1.3 Step 3: Generalized for statistical characteristics 

Based on the dynamical limit state system, failure 
modes of the dam shouldn’t be the same because of 
material heterogeneity and earthquake variability, so that 
such work should be done to get the final failure modes, 
which will be provided with statistical insight, that 
means, studying the random process model of the 
progressive failure state under different dynamic 
conditions and analyzing the randomness and statistical 
rule of the progressive failure state for the dam body 
block. 

 
2.2 Phases 2: Methodology for reliability analysis 

The main problem for reliability analysis of the 
dynamical dam system, which mainly concludes five 
parts as follows, is the correlation between failure 
modes. 
2.2.1 Step 4: Determination of limit state function 

In Step 4, the limit state functions of the element are 
determined based on composite failure criterion 
according to different failure states (such as tension, 
compress, and shear) of concrete material. The 
composite failure criterions are as follows: 

1) Maximum stress criterion 
 

t 1
l
iG R                                                                     (1) 

 
where Rt is tensile strength of the dam concrete; σ1 is the 
first principal stress; 0l

iG   means failure forms of 

elements. 
2) Four parameters stress−strain relation and ruin 

rule 
 

c 2 2 1 1( / )p
iG R AJ R B J C DI                         (2) 

 
where Rc is the concrete compression strength; I1 is the 
first stress invariant; J2 is the second stress invariant; 

0p
iG   means failure forms of elements; A, B, C and D 

are defined as 2.0108, 0.9714, 9.1412 and 0.2312, 
respectively [15]. 

The traditional technique to solve Eqs. (1) and (2) is 
the Monte Carlo method (MCM) [16]. But running the 
great number of simulations required by this MCM 
technique can make its practical application unfeasible, 
and make the calculation complicated in numerical 
simulation and time-consuming. So, the concept of limit 
state surface is proposed to avoid the problem [17]. The 
response surface method (RSM) and its improved 
versions [18−22] would be employed to make the 
explicit expression of the limit state functions Eqs. (1) 
and (2), for which usually can not be expressed explicitly. 
This work would be done with the Latin hypercube 
sampling technology and the stochastic finite element 
calculation. So, Eqs. (1) and (2) can be expressed as  
Eqs. (3) and (4). 

 

2

1 1

( )
n n

l l l l
i j i ij j ij j

j j

G X a b x c x
 

                                      (3) 

 

2

1 1

( )
n n

p p p p
i j i ij j ij j

j j

G X a b x c x
 

                                   (4) 

 
where Xj stands for the basic random variables; n is the 
total number of the random variables; ,p

ia  ,l
ia  ,p

ijb  ,l
ijb  

p
ijc  and 

l
ijc  are the undetermined coefficients. Up to now, 

the limit state functions with explicit expression of the 
element are determined, which are proved to be the 
foundation of the failure probability calculation below. 
2.2.2 Step 5: Reliability analysis of one element 

Reliability analysis of the element under different 
failure criteria is the key problem of this part. The real 
substance of the joint failure probability of a certain 
element is a series system reliability problem, especially. 
Because the element of the structure will fail no matter 
which one of the failure criteria below the threshold 
value. 

Specifically, for a set of sample value (x1, x1, …, xn) 
of the basic random variable Xj, the response sample 
value ( ),  ( )p l

i j i jG x G x  based on the response surface  
Eqs. (3) and (4) can be specified with the input variable. 
A state function whose value is only 0 or 1 is constructed 
as 



J. Cent. South Univ. (2014) 21: 775−789 

 

778

 

1,  ( ) 0 ( ) 0 
[ ( ), ( )]

0, ( ) 0 ( ) 0 

p l
i j i jp l

i j i j p l
i j i j

G x G x
I G x G x

G x G x

   
 




     (5) 

 
And so, the joint failure probability of a certain element 
can be calculated as 
 

f
1

1
[ ( ), ( )]

i

N
p l

i j i j
j

p I G x G x
N 

                                 (6) 

 
where 

i
pf  means the failure probability; n is the total 

number of simulations; the corresponding reliability 
index of the element is 
 

1
f( )

ii p                                                                 (7) 
 
where βi is the reliability index; 

i
pf  is the failure 

probability; Φ−1(·) is the inverse function of normal 
distribution. 
2.2.3 Step 6: Reliability analysis of one failure path 

Reliability analysis of the failure path is essentially 
a problem of parallel structural systems consisting of the 
failure elements in the path. The correlation of adjacent 
element in the failure path would be studied in this part. 
According to the correlation, the probability of the 
representative elements in the failure path at the same 
time can be calculated using linearized Johnson method 
[23]. 

The basic principle of reliability index computation 
by linearized Johnson method is to use a single limit 
state surface rather than multiple limit state surfaces. The 
number of limit state surfaces would be gradually 
reduced by equivalent of the two limit state surfaces in 
turn until the last limit state surface, and the 
corresponding reliability index is the system reliability 
index. 

Firstly, equivalent linearization function is formed 
as follows in the standard normal space. 
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where 
2

1

1,
i
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  and the correlation of the limit state 

function can be calculated as 
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So, the ij  in Eq. (8) can be written as 
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Secondly, failure boundary function between two 
joint elements i and j can be constructed as  

1
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According to the reliability preserving reductions 

principle, failure boundary function Eq. (11) will be 
expressed as  

1

0
n

E Ek k E
k

f u 


                                                (12) 

 
where Ek  and βE should satisfy the following equations 
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Finally, the reliability of the failure path will be got. 

Compute the equivalent failure boundary of the first 
element and its adjacent one, then calculate the 
equivalent linear failure boundary of the next element. 
So, the failure boundary of whole system and the 
corresponding reliability index will be got gradually. 
2.2.4 Step 7: Reliability analysis of system 

The system of the roller compacted concrete (RCC) 
gravity dam is essentially a multimode relevant system 
as well as a series system. Based on the correlation 
coefficient between equivalent linear failure boundary, 
which comes from Eq. (9) in last step, the reliability of 
the system is presented through narrow interval 
estimation theory [24] 
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where Pf means the failure probability of the system; 
P(EiEj) refers to the failure probability of two paths at the 
same time; βi and βj are the reliability indices of the path 
i and path j, respectively; ρij is the correlation coefficient 
between the two paths. 
2.2.5 Step 8: Reliability analysis of dynamical system 

Considering the randomness of earthquake, the 
dynamic reliability would be solved based on the full 
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probability formula and the numerical fitting integral 
method. 

Horizontal seismic coefficient is an important 
random variable which can be written as 

 
KH=A/g                                    (17) 
 
where g is the acceleration of gravity; the system 
reliability of gravity dam is essentially a conditional 
probability P(f/A) under particular horizontal seismic 
coefficient A so that the numerical fitting integral method 
[25], see Eq. (18), based on the full probability formula 
is employed to solve the problem. 
 

AAfAfPP
a
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0 f                                                 (18) 
 

)1( f
1 P                                                            (19) 

 
where the symbol ‘‘|’’ represents the conditional 
probability; f(A) is probability distribution function of the 
horizontal seismic coefficient A; Φ(·) is the standard 
normal distribution function. 
 
3 Example verification for failure modes 

searching 
 
3.1 Searching process 

In general, there are two ways to identify main 
failure mode of large engineering structure. One is from 
the limit state system, that means, the main failure modes 
are determined based on the progressive failure process 
in a certain limit state, which is easy to be understood 
and accepted by designers. The other is from the 
probability evaluation system, that means, the failure 
probability is the judgment standard, and the main failure 
modes are the ones which have the maximum failure 
probability by calculating the failure probability of all 
elements. But, the process of confirming failure mode 
from the probability evaluation system needs large 
amount of calculation and is not easy to reflect 
mechanical meaning. Therefore, the limit state system is 
taken for confirming the main failure modes of the 
gravity dam system here. 

Through the limit state system, both the initial 
position and gradual process of the failure modes of the 
gravity dam is confirmed based on the nonlinear 
dynamic damage analysis. Considering the uncertainty of 
the ground motion, material property, calculation model 
and analysis methods, the randomness of seismic waves, 
dam body materials, as well as the numerical simulation 
method and the concrete fracture model are all studied 
through the numerical experiments, the research for the 
randomness and statistical rule of the dam concrete 
progressive failure process in different stress states is 
carried out, as a result, the influence of all sorts of 
randomness on structural failure paths and failure modes 

is revealed, and the potential failure mode is statistically 
confirmed. 

And specifically, selecting a group of seismic waves, 
which have different spectrum characteristics, using 
different peak accelerations, ranging from 0.1g to 0.6g, 
and different structure models with different material 
parameters (random variables), also, the plasticity 
damage model [26−27] for concrete, smeared crack 
model [28], separation crack model based on XFEM [29] 
for simulation of the dam concrete crack expansion are 
employed, respectively. At the end, statistical results will 
be carried out for different failure modes (initial position 
and gradual process), and will be summarized as typical 
failure mode. 
 
3.2 Verification 

As one of few gravity dam which is damaged during 
the strong earthquake, Koyna Dam has relatively 
complete records and always be treated as the classical 
research object for dynamic damage research of concrete 
dams. So, the applicability of different concrete fracture 
models and constitutive relations, which are employed to 
reveal the failure modes, is verified based on such 
example. Calculation parameters are from Ref. [30]. The 
elastic modulus of dam concrete is 31.0 GPa, Poisson 
ratio is 0.2, density is 2643 kg/m3, tensile strength is  
2.90 MPa, fracture energy is 250 N·m, dynamic water 
pressure is considered according to the Westergaard 
formula; The seismic wave in 1967, Koyna acceleration 
records, is shown in Fig. 2. The calculation of Rayleigh 
damping factors uses the first two nature frequencies got 
by the linear elastic analysis. 

Based on different constitutive models, the dynamic 
failure patterns of the Koyna Dam are revealed under the 
action of Koyna seismic wave through overload 
numerical test method, as shown in Fig. 3. At the same 
time, contrast diagram between the simulation results 
and the shaking table test [31] results are given, in which 
TDamage means tensile damage factor. 

From the above analysis, we can see that the 
potential failure modes are basically the same which are 
revealed from random numerical simulations and from 
the model tests and the calculated results are in good 
agreement with those of the actual damaged in 
earthquakes. This shows the different concrete fracture 
models and constitutive relations can simulate the 
damage process, and the mechanical process and 
significance can also be reflected so that the 
methodology for failure mode identification in phase 1 
has the universal applicability. 
 
4 Case study 
 

In order to further expound the above method 
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Fig. 2 Koyna acceleration records: (a) Downstream flow; (b) Vertical flow 

 

 
Fig. 3 Contrast diagram between simulation results and shaking table test results [31]: (a) Damaged plasticity performance;       

(b) Smeared cracks; (c) Discrete cracks by XFEM; (d) Shaking table test result 

 

system in Fig. 1, we adopt a certain typical engineering 
project to carry out the whole calculation and analysis of 
the dynamic system reliability based on ABAQUS 
surface. 
 
4.1 Description of typical dam 

One RCC gravity dam, of which the height is 149 m, 

is studied. The design earthquake intensity is VIII degree. 
The horizontal peak acceleration is 0.284g with the 
exceedance probability of 2% per 100 a. Figure 4 gives 
the dam section and the finite elements. In the seismic 
analysis, dam foundation will be regarded as massless 
foundation, of which the dynamic elastic modulus is  
16.5 GPa, Poisson ratio is 0.25. Westergaard formula 
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Fig. 4 Dam section and finite elements (Unit: m): (a) Dam section; (b) Finite element modal (2D) 

 

will be adopted to calculate the hydrodynamic pressure. 
The load combination is water pressure (both the 
upstream and the downstream), dam body mass, 
upstream silt pressure, uplift pressure at the foundation 
surface and the seismic loads. The material parameters of 
the dam are regarded as the random variables while other 
variables which variation coefficient is less than 0.05 
will be regarded as deterministic ones. Especially, the 
earthquake will be regarded as discrete random variable. 
The selection of the parameters is according to the 
geological exploration data, the original design research 
report and “The water conservancy and hydropower 
engineering structure reliability design code” (GB50199
—1994), as listed in Table 1. A dynamic magnification 
factor of 1.3 is considered for the tensile strength and the 
dynamic modulus of elasticity based on the static ones. 
 
Table 1 Statistical characteristics of random variables 

Type Variable 
Distribution 

pattern 
Mean 
value 

Coefficient 
of variation

Dam 

Elasticity 
modulus of 
C25/GPa 

Normal 43.8 0.10 

Elasticity 
modulus of 
C20/GPa 

Normal 37.8 0.10 

Elasticity 
modulus of 
C15/GPa 

Normal 29.0 0.10 

Foundation 

Elasticity 
modulus/GPa 

Normal 18.0 0.10 

Cohesion/MPa Normal 1.50 0.20 

Friction factor Lognormal 1.20 0.15 

Layers of 
dam 

Friction factor Lognormal 0.91 0.15 

Cohesion/MPa Normal 1.13 0.20 

Foundation 
base 

Friction factor Lognormal 1.05 0.15 

Cohesion/MPa Normal 1.05 0.20 

4.2 Analysis of model and variables 
1) Basic material variables 
The basic material variables are listed in Table 1. 
2) Earthquake load 
Due to the strong uncertainty and randomness of the 

ground motion, it needs to select the seismic waves 
reasonably to ensure the numerical results. At present, in 
the seismic design for dam, we mainly adopt the actual 
and artificial earthquake ground-motion histories. Here, 
the Koyna wave, Chi-Chi wave, Loam-Prieta wave, 
Northridge wave and the artificial one corresponding to 
the code response spectrum are selected to consider the 
influence of seismic amplitude and frequency 
characteristics. 

The normalized actual earthquake records and 
artificial ones are shown in Figs. 5(a)−(e). By adjusting 
the characteristic of the frequency spectrum of seismic 
waves, the seismic response spectrum parameters are 
similar to that of the design code. The adjusted 
characteristic of the frequency spectrum of the seismic 
response spectrum curves is shown in Fig. 5(f). The 
effect of two-dimension is considered in the load cases 
combination with both the horizontal and vertical waves, 
and the vertical acceleration amplitude is 2/3 of the 
horizontal one. 
 
4.3 Searching process of failure modes 

First of all, according to the concrete physical and 
mechanical parameters of probability statistics model 
(see Table 1), assign the material characteristic to the 
element through random sampling, in order to reflect its 
spatial distribution. We considered five groups of 
material parameter samples, with five groups of different 
seismic waves in Fig. 5, and six different acceleration 
amplitudes (Peak ground acceleration, AGA=0.284g, 
0.399g, 0.426g, 0.483g, 0.586g and 0.710g), respectively. 
We adopt different concrete damage models to research 
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Fig. 5 Normalized seismic waves and response spectrum curves: (a) Koyna wave; (b) Northbridge wave; (c) Loam-Prieta wave;    

(d) Chi-Chi wave; (e) Artificial wave; (f) Response spectrum curves 

 

the structure of dynamic failure mechanism, as shown in 
Figs. 6−8, a total of 150 calculations are made. What 
need to explain is, for APG=0.284g, no damaged situation 
of the structure appears so that no damaged pattern is 
given. 

In Fig. 6, through the concrete plastic damage 
model simulation, the typical dam body structure 
dynamic failure damage distribution patterns are got. 

Figure 7 shows the results through the smeared crack 
model simulation, and Fig. 8 shows the results through 
the Separation crack model simulation. 
 
4.4 Generalization and verification for failure mode 

The statistical analysis for 150 groups of different 
failure modes under different earthquake loads are given 
in Table 2. 
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Fig. 6 Dynamic damage modes for four PGAs under plastic damage constitutive modal: (a) Dynamical failure modes under Koyna 

waves; (b) Dynamical failure modes under Chi-Chi waves; (c) Dynamical failure modes under Loam-Prieta waves; (d) Dynamical 

failure modes under Northridge waves; (e) Dynamical failure modes under artificial waves 

 

For heterogeneous material dam under the action of 
earthquake in the different level, the dam failure pattern 
is not the same. Through statistics, it can be thought that 
the potential failure modes mainly contain the following 
five kinds (shown in Fig. 9) in the strong earthquakes: 1) 
Cracks expanding from the dam heel along the 

foundation surface to the dam toe; 2) Expanding from the 
upstream folding slope to the dam internal, probably it 
can develop into a penetrating crack in the dam; 3) 
Expanding from the downstream of different concrete 
zoning to the dam internal; 4) Expanding from the 
upstream of different concrete zonings to the dam internal, 
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Fig. 7 Dynamic damage modes for four PGAs under smeared crack model: (a) Dynamical failure modes under Koyna waves;     

(b) Dynamical failure modes under Chi-Chi waves; (c) Dynamical failure modes under Loam-Prieta waves; (d) Dynamical failure 

modes under Northridge waves; (e) Dynamical failure modes under artificial waves 
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Fig. 8 Dynamic damage modes for five PGAs under separation crack model based on XFEM: (a) Dynamical failure modes under 

Koyna waves; (b) Dynamical failure modes under chi-chi waves; (c) Dynamical failure modes under Loam-Prieta waves;         

(d) Dynamical failure modes under Northridge waves; (e) Dynamical failure modes under artificial waves 

 

probably it can develop into penetrating cracks through 
upstream to downstream; 5) Expanding from 
downstream folding slope along about 45° inclined plane 

to the dam internal, possibility developing into a 
penetrating crack till the upstream face. According to the 
potential failure mode and progressive failure process of 
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the gravity dam, it can be generalized out the power 
system failure paths with the starting point and the 
development path, as shown in Fig. 10. 
 
Table 2 Different failure mode statistics under different seismic 

loads 

Typical 
failure mode 

Load 

0.284g 0.426g 0.483g 0.586g 0.710g

Mode 5 13/150 139/150 142/150 142/150 136/150

Mode 4 0/150 3/150 13/150 28/150 64/150

Mode 3 0/150 13/150 7/150 17/150 73/150

Mode 2 0/150 3/150 37/150 115/150 137/150

Mode 1 7/150 23/150 117/150 123/150 146/150

 

  
Fig. 9 Potential failure modes under earthquake loading (Unit: 

m) 

 

  
Fig. 10 Generalization for failure paths (Unit: m) 

 
4.5 Reliability analysis of one element 

For example, at APG=0.2g, random variables in 
Table 1 are sampled and combined through the method 
and technology in Refs. [32−33], and then the limit state 
function value of the element 1 in Fig. 11 is got through 
the deterministic finite element method, also, the 
response surface equation is got based on the coupling 
Monte-Carlo and response surface method (MC-RSM). 
That is, through the linear regression method, the 
coefficients in each response surface functions (Eqs. (3)  

 

  
Fig.11 Failure process and probability of typical mode 
 
and (4)) are determined, so that the explicit expression 
can be written as  

6 5
1 158.0315 10 4.242 10 ( )G f E       

5 5
2 20 3 25

6
4 base 5 3

5 2 5 2
6 base 7 20

4 5
8 15 20

3.505 10 ( ) 1.074 10 ( )

9.976 ( ) 6.885 10 ( )

2.205 10 ( ) 1.072 10 ( )

5.489 10 ( , ) 1.082 10

f E f E

f E f R

f E f E

f E E

     

    

     

    

  

5
9 15 base 10 base 20( , ) 1.927 10 ( , )f E E f E E          (20) 

 
where subfunctions in Eq. (20) are expressed in Table 3. 
 
Table 3 Subfunctions in response surface equation of first 

element of failure mode 5 under APG=0.2g 

Subfunction Equation 

f1(E15) 1.482×10−10×E15−4.298 

f2(E20) 1.137×10−10×E20−4.298 

f3(E35) 9.814×10−11×E25−4.298 

f4(Ebase) 2.388×10−10×Ebase−4.298 

f5(R5) 1.457×10−7×R3−2.996 

)( 2
base6 Ef  [f4(Ebase)]

2 

)( 2
207 Ef  [f2(E20)]

2 

f8(E15, E20) f1(E15)×f2(E20) 

f9(E15, Ebase) f1(E15)×f4(Ebase) 

f10(Ebase, E20) f2(E20)×f4(Ebase) 

 
Furthermore, 100000 times stochastic simulations 

are done on the response surface so that the failure 
probability is got, that is 99.399%, and the corresponding 
reliability index is −2.512. According to the method 
above, all of the failure probabilities and its 
corresponding reliability indexes in the failure mode 5 
listed in Fig. 11 are obtained, and at the same time, the 
correlation coefficients of the different elements are 
listed in Table 4. 
 
4.6 Reliability analysis of one path 

Under APG=0.2g, the correlation coefficients 
between elements in the failure mode 5 in Table 4 are 
considered, then the linearized Johnson method 
expressed in Eqs. (8)−(13) is employed to calculate   
the failure probability of the path. In this process, we 
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Table 4 Correlation coefficients between elements in failure mode 5 under APG=0.2g 

Element No. 1 2 3 4 5 6 7 

1 1.00 0.989 0.993 0.982 0.985 0.974 0.977 

2 0.989 1.00 0.921 0.918 0.973 0.996 0.997 

3 0.993 0.921 1.00 0.996 0.988 0.982 0.994 

4 0.982 0.918 0.996 1.00 0.995 0.996 0.999 

5 0.985 0.973 0.988 0.995 1.00 0.998 0.998 

6 0.974 0.996 0.982 0.996 0.998 1.00 0.997 

7 0.977 0.997 0.994 0.999 0.998 0.997 1.00 

 
calculate all of the failure probability of the modes 
(modes 1−5). The reliability indexes respectively are 
8.620, 8.280, 5.326, 5.312 and 4.604, also, the 
corresponding failure probabilities are 6.418×10−17, 
6.260×10−16, 5.458×10−8, 5.884×10−8 and 2.114×10−6. In 
the same way, reliability indexes of the potential 
instability models under other horizontal ground motions 
are listed in Table 5. 
 
Table 5 Reliability indexes of failure modes under different 

horizontal seismic coefficients 

Horizontal 
seismic 

coefficient A  
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

0 (*) 9.105 11.138 12.254 13.679 14.664

0.1 8.885 10.813 10.134 11.228 11.364

0.2 8.620 8.280 5.326 5.312 4.604

0.3 8.531 6.134 4.323 3.492 2.386

0.4 8.168 5.120 3.524 2.613 −0.543

0.5 8.026 3.812 1.672 2.377 −2.142

*—Horizontal seismic coefficient 0 is static condition. 

 
4.7 Reliability analysis of system 

Gravity dam reliability belongs to a system 
reliability problem, first of all, sliding correlation 
between different failure modes are analyzed, then the 
Ditlevsen narrow limit formula estimating system failure 
probability of the up and down limit. 

For example, Correlation coefficients between that 
5 potentialpaths are analyzed when the horizontal 
seismic coefficient 0.2 (APG=0.2g) and the results are 
listed in Table 6, the system failure probability is about 
0.000211%−0.000212% (corresponding reliability index 
is about 4.604) by using the Ditlevsen approximate 
formula. Similarly, the condition probability of the 
system and its corresponding reliability index of the dam 
are calculated respectively in different horizontal seismic 
coefficients with the results given in Table 7. 
Furthermore, logarithmic form of the condition 
probabilities was described because it presents 
numerically small. 

Table 6 Correlation coefficients between paths under APG= 0.2g 

Mode 1 2 3 4 5 

1 1.000 −0.117 −0.121 −0.124 −0.143

2 −0.117 1.000 0.942 0.791 0.816 

3 −0.121 0.942 1.000 0.882 0.903 

4 −0.124 0.791 0.882 1.000 0.931 

5 −0.143 0.816 0.903 0.931 1.000 

 

Table 7 System reliability calculations under earthquakes 

Horizontal 
seismic 

coefficient A

Upper control 
limit(*) of 

probability, P(f/A) 
lg[P(f/A)] 

Reliability 
index, β

0.00 2.4665×10−18 −17.6079 9.105 

0.10 1.0842×10−17 −16.9649 8.885 

0.15 5.5761×10−10 −9.2536 6.137 

0.20 2.1138×10−6 −5.6749 4.604 

0.25 1.7849×10−5 −4.7484 4.135 

0.30 8.5164×10−3 −2.0697 2.386 

0.35 0.0819 −1.0867 1.392 

0.40 0.7064 −0.1509 −0.543 

0.45 0.9102 −0.0409 −1.342 

0.50 0.9839 −0.0071 −2.142 

*—Upper limit value will be used because failure probability 

limit is very narrow. 

 
The upper limit value of the failure probability in 

Table 7 with the horizontal seismic coefficients will be 
used to fit a curve (as shown in Fig. 12), to get the fitting 
relationship between the stability system failure 
probability of the whole dam and the horizontal seismic 
coefficients, with is expressed as 

 

2 3 4
1 2 3 4

17 17
f

f

( ) 8.37 10 2.46 10 , 0 0.1

( ) 10 , 0.1 0.5C B A B A B A B A

P A A A

P A A

 

   

      


  
     (21) 

 
where C=−49.5954, B1=503.4886, B2=−2150.1072, B3= 
4269.2127, B4=−3175.2234. The goodness of fit between 
A=0−0.5 is 0.9937, which is very close to 1.0. 
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Fig. 12 Fitted curve between failure probability and horizontal 

seismic coefficient 

 
4.8 Reliability analysis of dynamical system 

According to Ref. [34], the PDF of the horizontal 
earthquake acceleration coefficient obeys the following 
distribution: 

 
0 ,e)(   ABbAf bA

                                                 (22) 
 
where both B and b are coefficients, and here B=0.0499, 
b=19.948 according to Ref. [25]. 

Finally, the dam failure probability of the dynamical 
system is Pf=3.87155×10−5 according to Eqs. (21)−(22) 
as well as Eqs. (18)−(19) by definite integral calculation 
from A=0 to A=0.5, and the corresponding reliability 
index is 3.952. 

When the horizontal seismic coefficient is 0, the 
failure probability of the dam is Pf=2.4665×10−18; and 
the corresponding reliability index is about 9.105. In 
contrast, under the dynamic condition, the failure 
probability has a dramatic increase to Pf=3.8715×10−5. 
So, the dynamic effects on the stability of the dam 
structure seem significant, and specifically, the failure 
modes 3, 4 and 5 near the dam crest are the keys to the 
dam safety based on risk analysis methodologies. 
 
5 Conclusions 
 

1) The structure system reliability analysis based on 
the paths (or modes) according to the engineering 
experience is not accurate so that a new method to search 
the failure modes on the limit state system based on 
numerical tests is studied and the failure probability 
calculation method of the system including three levels is 
deduced. 

2) Considering the randomness of spectrum 
characteristics and peak acceleration of seismic waves as 
well as material parameters of the dam, potential sliding 
paths of the dam subjected to earthquake can be 
identified by generalized statistics. 

3) Based on SFEM, the limit state function of 

dynamic sliding is built according to rigid limit state 
criteria and response surface method (RSM) under 
certain seismic loading, and the reliability index is got as 
well. Then, considering the coherence between different 
failure  paths, the reliability index of the system can be 
estimated by Ditlevsen narrow-bound method. Finally, 
the stochastic of seismic load is taken into account, the 
numerical integration method based on complete 
probability formula is used to get the dynamic system 
reliability. 

4) For the next work, the random seismic waves 
should be better considered and generated, and the 
damage process and failure modes of concrete gravity 
dams affected by uncertain material properties and 
ground motion input should be studied by numerical 
simulation with the influences of concrete heterogeneity 
taken into account in the further study. 
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