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Abstract: The state of roof collapse in tunnels is actually three-dimensional, so constructing a three-dimensional failure collapse 
mechanism is crucial so as to reflect the realistic collapsing scopes more reasonably. According to Hoek-Brown failure criterion and 
the upper bound theorem of limit analysis, the solution for describing the shape of roof collapse in circular or rectangular tunnels 
subjected to seepage forces is derived by virtue of variational calculation. The seepage forces calculated from the gradient of excess 
pore pressure distribution are taken as external loading in the limit analysis, and it is of great convenience to compute the pore 
pressure with pore pressure coefficient. Consequently, the effect of seepage forces is taken as a work rate of external force and 
incorporated into the upper bound limit analysis. The numerical results of collapse dimensions with different rock parameters show 
great validity and agreement by comparing with the results of that with two-dimensional failure mechanism. 
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1 Introduction 
 

Limit analysis method is widely used in 
geotechnical engineering using linear failure criterion 
[1−3]. However, a substantial amount of experimental 
evidence suggested that failure criteria of geotechnical 
materials were not linear in the stress space, particularly 
in the range of small normal stress [4−5]. When applying 
limit analysis method to estimate the influences of a 
nonlinear failure criterion, the main problem, which 
many researchers encountered, was how to calculate the 
rate of work done by external forces and the rate of 
energy dissipation along velocity discontinuities. YANG 
et al [6−9] proposed generalized tangential technique, 
instead of the actual nonlinear failure criterion, to 
formulate the work and energy dissipation. The 
advantage of new method could avoid the difficulty of 
the calculation of external work rate and energy 
dissipation rate along velocity discontinuities. 
Employing the nonlinear failure criterion, the potential 
roof collapse in tunnel is a practical but complicated 
problem in geotechnical engineering, especially for those 
with actual failure mechanism. As the actual failure form 
was three-dimensional and the plane collapse mechanism 
can just reflect two dimensions in failure surface which 
is just the imperfection of this method, more and more 
scholars are committed to exploring three-dimensional 

analytical method which can satisfy the practical 
condition well. LAM and FREDLUND [10] extended the 
slope model with two dimensions to three-dimensional 
pattern in the method of limit equilibrium, and the 
three-dimensional FEM was applied to investigate the 
cylinder stress function of the model. The method can 
not only simplify the process of data input but also 
accelerate the speed of calculating the slope safety 
coefficient, and the results obtained in this way were 
more accurate by comparing with that in traditional 
two-dimensional model. Based on the presented 
two-dimensional failure mechanism, CHEN et al [11] 
suggested a three-dimensional limit analysis method to 
calculate the upper bound solution of the safety 
coefficient for slope. The results remain the advantages 
of upper bound method when the three-dimensional 
failure mechanism was employed in the limit analysis. 
According to the plane analytical method proposed by 
DONALD and CHEN [12], the slope minimal safety 
coefficient was derived by constructing a three- 
dimensional failure mechanism to calculate the rate of 
external work and the energy dissipation rate. 

Owing to the advantages of three-dimensional 
method over plane analytic way, some scholars set about 
to employ three-dimensional method to research the 
stability problem of tunnels. In early study, 
ANAGNOSTOU and KOVÁRI [13] constructed a three- 
dimensional failure mechanism in the excavation face of  
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earth-pressure-balanced shield tunnel and the stability of 
excavation face under drainage condition with the 
method of limit equilibrium was investigated. Meanwhile, 
the typical three-dimensional conical-shaped failure 
mechanism in the excavation face of shallow tunnel was 
proposed by LECA and DORMIEUX [14], which can 
describe the collapse pattern commendably and precise 
upper bound solution of supporting pressure in the 
excavation face of shallow tunnels can be work out. Then 
SOUBRA et al [15] optimized the conical-shaped failure 
mechanism of LECA and DORMIEUX [14]. That was to 
say, the optimized failure mechanism was composed of a 
series of cones instead of a single cone, which can obtain 
more optimized upper bound solution of supporting 
pressure. CHAMBON and CORTÉ [16] applied the 
centrifugal model test to verify the result of supporting 
pressure derived through three-dimensional collapse 
mechanism in the excavation face of shallow tunnels. 
The result shows that it was in accord with the 
experimental value and it was more accurate than that 
with plane failure mechanism [17−20]. MOLLON et al 
[21] obtained more exact solutions comparing with 
original upper bound results with the help of spatial 
discretization technology by point-to-point method to 
create a three-dimensional failure mechanism. 

At present, FRALDI and GUARRACINO [22−23] 
obtained the analytic solutions for charactering the shape 
of roof collapse with a plane curved failure mechanism 
based on upper bound theorem and variational 
calculation. YANG et al [24−26] derived the exact 
solution of roof collapse by virtue of constructing a new 
collapse mechanism for shallow tunnels that the velocity 
discontinuity curve was extended from the roof of tunnel 
to ground surface. The three-dimensional stability 
analysis was primarily used to the tunnel excavation face 
in shallow tunnel, and nearly no literature was found to 
study the stability of roof collapse together with three- 
dimensional failure mechanism. Recently, YANG and 
HUANG [19] suggested the three-dimensional 
mechanism to investigate the roof collapse in rectangular 
tunnel and the analytic solution was derived based on 
Hoek-Brown failure criterion. 

Gradually, water as well as other fluid has a 
significant influence on the stability of underground 
structure, thus the effect of water is not ignorable when 
analyzing the state of tunnels, and some measures or 
other disposal method should be taken in time so as to 
guarantee the tunnels or other ground structures are 
under a safe state. In previous study, LEE and NAM [27] 
employed the numerical way to study the seepage forces 
exerting on the structures of tunnel, and then the limit 
analysis method was adopted to study the stability effect 

of seepage forces. Employing the nonlinear Hoek-Brown 
failure criterion [28], YANG [29−30] have obtained the 
numerical solutions using equivalent Mohr-Coulomb 
strength parameters. SAADA et al [31] applied limit 
analysis method to research the slope stability, from 
which the seepage forces can be calculated from the 
gradient of excess pore pressure distribution and taken as 
external loading incorporated to the upper bound limit 
analysis. In their study, the pore pressure was worked out 
with pore pressure coefficient method and FE analysis 
way separately, and it was noticed that the former was 
very convenient while the latter was more accurate. 
 
2 Three-dimensional rotational failure mode 
 

Certainly, constructing admissible collapse 
mechanism is the crucial factor in the upper bound 
theorem of limit analysis. Combining with the actual 
mechanical characteristics of rock mass over the roof of 
shallow-buried tunnels, firstly, an arched detaching curve 
is supposed to describe the two-dimensional shape of 
roof collapse in XOZ coordinate plane, f(x), which 
extends from rectangular or circular tunnel roof to the 
ground surface and the two-dimensional collapse surface 
is generated. Then, for the purpose of obtaining the 
three-dimensional collapse velocity field, the simplest 
way is making the curve f(x) rotate 360 °with respect to 
Z-axis based on rotational mechanism. Gradually, the 
profiles of tunnels can be designed as arbitrary forms, 
g(x), as shown in Fig. 1. 

However, the circular and rectangular shape were 
adopted in this work so as to simplify the calculation 
process. Indeed, the circular profile is often chosen in the 
design of the running tunnel, and the rectangular 
cross-section is selected to subway station. When the 
cross-section of tunnel is circular, it remains great 
difficulty to derive the precise volume and lateral area of 
the rotational body, so trying to make some 
simplification is in desperate need. A sphere structure is 
adopted to simulate the actual circular arch for circle 
tunnel in the paper. Due to the presence of velocity 
discontinuity surface, it will induce the plastic flow.  
Thus, according to Hoek-Brown failure criterion and 
associated flow rule, the energy dissipation rate along the 
detaching surface can be computed consequently. Then, 
by equating the energy dissipation rate to the rate of 
external work, the virtual work equation which satisfies 
the velocity boundary condition can be obtained. 
Meanwhile, in order to get the exact or approximate 
shape of the collapsing block under a limit state, the 
variational calculation should be used to minimize the 
objective function. 
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Fig. 1 Collapsing block on condition of seepage forces 
 

 
3 Upper analysis with Hoek-Brown criterion 

under seepage 
 
3.1 Hoek-Brown failure criterion 

Hoek-Brown failure criterion is widely used for 
describing nonlinear characteristics of rock mass and it 
has two forms of expression which are represented by 
virtue of major and minor principal stresses and normal 
and shear stresses, respectively [28]. As the energy 
dissipation is created by normal and shear stresses, thus 
it is so convenient to use the latter form, it is 

 
1

c n t cA [( ) ]B                             (1) 
 

where σn and τ are the normal and shear stress, 
respectively, A and B are physical parameters of the rock; 
σc and σt represent the uniaxial compressive strength and 
the tensile strength of the rock mass, respectively. 
 
3.2 Upper bound theorem 

According to upper bound theorem, the actual 
collapsing load is no more than the load obtained by 
equating the rate of the energy dissipation to the external 
rate of work in any kinematically admissible velocity 
field when the velocity boundary condition is satisfied 
[32]. When the effect of seepage forces is taken into 
consideration in the realm of the upper bound theorem of 
limit analysis, the work of seepage forces is equal to the 
sum of seepage forces regarded as external loading 
working on skeleton expansion with referring to the 

previous work. Therefore, the effect of seepage forces 
incorporated to the upper bound theorem can be written 
as 

 

 d d d
sij ij i i i iT Xv s v

 
                               

grad dd
si i iuv Suv


   n               (2) 

 
where σij and ij represent the stress tensor and strain 
rate in the kinematically admissible velocity field 
separately, respectively; Ti is a surface load on boundary 
s; X is the body force, Ω is the volume of the collapsing 
block; vi is the velocity along the velocity discontinuity 
surface; u is the pore pressure; ni is the unit normal 
vector at the directed surface S; −grad u is excess pore 
pressure. When using the expression above to analyze 
the stability of geotechnical engineering, the material 
should be perfectly plastic and follows an associated 
flow rule. 

 
4 Limit analysis and variational method 
 
4.1 Energy dissipation and external rate of work in 

circular tunnel 
When the roof of tunnels tends to slide under the 

limit state on the detaching surface, the energy 
dissipation of a random point on the velocity 
discontinuity surface created by shear and normal 
stresses can be obtained as Eq. (9) in Ref. [22]. The total 
energy dissipation rate caused by the internal forces on 
the detaching surface through integrating Di over the 
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interval [L1, L2] is 
 

ds iD t SD    

2 1/(1 ) 1 1/(1 )

 1
2π [ ( ) (1 ) ( ) ] d

L B B
t cL

AB B f x xv x                           

(3) 
 

where )(xf  is the first derivative of f(x), t is the 
thickness of the detaching surface, and dS is the 
infinitesimal lateral area on the detaching surface, which 
can be calculated as 

 
2d 2π 1 ( ) dS x f x x                          (4) 

 
Considering that the collapsing block is derived 

with three-dimensional rotational mechanism, the work 
rate of failure block caused by weight can be expressed 
as 

 
2 2

1

  2 2

  0
π ( ) d π ( ) d

L L

L
x f x v x x g x v xP                        (5) 

 
where   is the buoyant weight which can be computed 
by w  , L1 and L2 are the widths of the collapse 
block shown in Fig. 1. The work rate of supporting 
pressure in shallow circular tunnel is 

 
2 arcsin 2 2

2 0
2π sin cos d cos π π cos π

L

R
qP qR v L qv                                     

(6) 
where q is the supporting pressure exerted on the lining 
of tunnel, R is the radius of the circular tunnel. As the 
effect of surcharge on the roof collapse is not neglected, 
the power of ground surcharge is 

 
2

s 1 sπP L v                                 (7) 

where σs is the surcharge load acting on the ground 
surface. With referring to the work of SAADA et al [31], 
the distribution of excess pore pressure is defined as 

 

w wu p p p h                             (8) 
 

where p is the pore water pressure at the considered point 
which can be calculated as p=rpγh, rp represents pore 
pressure coefficient, and pw=γwh, is the hydrostatic 
distribution for pore pressure, γw referring to the water 
unit weight, h is the vertical distance between the point 
in collapsing block and the ground. 

Then, −grad u can be calculated by 
 

w pgrad d / du u h r                         (9) 

Consequently, the work rate produced by seepage 
forces in the body of roof collapse is 

 
grad duP u v       

2  2
w p  1

( )π ( ) d
L

L
r x f x v x     

 2  2
w p  0

( )π ( ) d
L

r x g x v x                 (10) 

and the work of water pressure, including seepage forces 

and hydrostatic pressure, along the velocity discontinuity 
surface is 

duS s i iP u v S   n   

2 2 

p 1 1
cos π ( )2π d 2π d

L L

L L
f xu xv x xr v x     (11) 

 
where the water pressure along the detaching surface is 
calculated by virtue of u′=(rpγ−γw)f(x)+γwf(x)= rpγf(x). 
Consequently, an objective function which is comprised 
of the internal energy rate of dissipation and the external 
rate of work can be set up as  
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 2 2

1

  2
p  0

2π d 1 π ( ) d
L L

L
v x r x g x v x        

2 2
2 1π π sL qv L v                          (12) 

 
where ψ[f(x), f′(x), x] is a function expressed as 

 
 ( ), ( ),f x f x x    

1/(1 ) 1 1/(1 )
t c ( ) (1 ) ( )B BAB B f x x     

      

p 2
p

1
( ) ( )

2

r
x f x r f x x


                (13) 

 
According to upper bound theorem, for the purpose 

of making the integral ψ over the interval [L1, L2] achieve 
an extreme value, it is a classical problem of the calculus 
of variations, i.e., to find a function, y=f(x), which makes 
Eq. (13) reach a stationary value under the condition of 
customary regularity. Then, the expression of ψ is a 
function which can be turned into an Euler’s equation, 
which can be expressed as 

 

 δ ( ), ( ), 0 0
( ) ( )

f x f x x
f x x f x
   

 
 

     
  

            

(14) 
According to Eq. (13), the Euler equation of this 

problem is obtained 
 

1/(1 ) 1 (2 1) /(1 )
c ( ) (1 ) ( ) ( )B B BAB B f x f x x    

      

1 /(1 )
p( ) (1 2 ) 0B BB f x r x  

              (15) 
 
By introducing a coefficient m, that is 

1 1/(1 )
c(1 ) ( ) Bm B AB                       (16) 

Equation (15) can be rewritten as follows in a succinct 
form. 

 
(2 1) /(1 ) 1 /(1 )( ) ( ) (1 ) ( )B B B Bmf x f x x B B m f x         

p(1 2 ) 0r x                            (17) 
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Obviously, Eq. (17) is a nonlinear second-order 
differential equation which can be coped with degree 
reduction, i.e. ,)( wxf   then, ,/dd)( xwxf   therefore,  
Eq. (17) is worked out as 

 
1 2

p 1
(1 2 )d 1

d

B

B
rw B w

w
x B x m

 


                 (18) 

 
The expression above is a Bernoulli equation, thus 

supposing t=wB/(1−B), so as to make some algebraic 
operations, it can be converted into a linear first-order 
differential equation, that is 

 

p(1 2 )d
d 1

rt t B
x x m B


 


                     (19) 

 
According to corresponding integral formula, the 

expression of t can be calculated as 
 

p(1 2 )

2 1

r B c
t x

m B x


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
                     (20) 

 
where c is a constant to be determined. Meanwhile, 
considering t=wB/(1−B)= f  (x)B/(1−B), the representation of 
f  (x) is 

 
(1 ) /
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( )

2 1

B Br B c
f x x

m B x
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 
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
          (21) 

 
Based on mechanical analysis, there exists an 

implicit condition that the shear component of stress 
disappears on the coordinate points of (x=L1, z=0), it 
results 
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Thus, the explicit form of f  (x) can be obtained as 
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Indeed, the expression of f  (x) is a complicated 

hyperbolic function and can be rewritten as 
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B
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Considering the analytical solution of f(x) by 

integrating f  (x) over the interval [L1, L2] is difficult to 
derive,    it    makes    sense    by     making     a     little     simplification. 

Due to L1≤x≤L2, obviously, it can lead to 


2

12

L

LL
 

.21 

x

Lx
 Consequently, choosing the medium value is 

a simplified way to make further calculation, that is 

.
2

3

2

211

L
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x

Lx 



  The influence on the results illustrated 

in the latter is rather small and so the explicit expression 
of f(x) is obtained by virtue of integration. 
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where h0 is an integration constant decided by f(x=L1)=0, 
and it leads to h0=0. There is another geometric equation 
to be satisfied, as illustrated in Fig. 1. 
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As a consequence, 
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                                  (27) 
 
Therefore, the approximate form of detaching curve, 

f(x), is derived after simplification in the plane. With the 
help of rotational failure mechanism, three-dimensional 
velocity discontinuity field is obtained: 
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Owing to the cross section of tunnel is circular, then 

the form of g(x) can be expressed as below according to 
geometrical condition, 
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Then, it is 
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By substituting Eq. (25) into Eq. (13), ψ is derived. 
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By virtue of calculating the integral of ψ over the 
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interval [L1, L2] according to Eq. (12), the form of ζ in 
circular tunnel is computed as  
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At last, on the basis of upper bound theorem of limit 

analysis, it can be computed by equating the external rate 
of work to the rate of the energy dissipation, i.e., 
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As the expression of f(x) is derived, then the volume 

of roof collapse in circular tunnel can be calculated as  
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                                          (35) 
 
4.2 Energy dissipation and external rate of work in 

square tunnel 
In a similar way, the rate of energy dissipation and 

external rate of work in square tunnel can be obtained. In 
comparison with the calculation of that in circular tunnel, 
the power of supporting pressure in shallow rectangular 
tunnel is  

2
q 2π cos πP L qv                             (36) 

 
from which it can be immediately noticed that it has the 
same expression with that in circle tunnel, thus the 
expression of f(x, y) remains the same form with Eq. (28) 
in rectangular tunnel for other calculation is perfectly 
identical. Considering the geometric condition of square 
tunnel, the profile is the horizontal and so g(x)=H, 
g′(x)=0. Consequently, the expression of ζ in square 
tunnel is 
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and then by equating the external rate of work to the rate 
of the energy dissipation, that is 
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By virtue of combining Eq. (27) with Eq. (38), the 

collapse widths, L1 and L2, can be worked out.  As a 
consequence, the volume of collapsing block in square 
tunnel can be expressed as 
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5 Numerical results and discussion 
 
5.1 Comparison with previous work 

By virtue of upper bound theorem and variational 
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approach, the solution of describing the shape of velocity 
discontinuity surface is obtained. In order to verify the 
validity and agreement of the method proposed, 
corresponding comparison with the previous work 
should be conducted. For a circular tunnel, YANG and 
HUANG [20] derived the numerical solutions of the 
collapsing width in shallow tunnel without taking 
seepages forces and surface load into account, so the 
value of pore pressure coefficient rp and σs should be set 
to zero when comparing with their work. Table 1 shows 
the numerical results of the parameters corresponding to 
B=3/4, A=0.1, σc=2.5 MPa, σt=σc/100, R=5 m, γ=     
25 kN/m3, q=100 kPa, rp=0, σs=0, H=8 m were worked 
out in comparison with the work of YANG and HUANG 
[20]. 
 

Table 1 Comparison of existing and present solutions in 

shallow circular tunnel 

Solutions Ref. [20] This work Difference 

L1/m 2.870 5 2.472 4 13.9% 

L2/m  4.931 9 4.383 9 11.1% 

 
It can be found that the widths of collapsing block, 

L1 and L2, calculated in this work when rp=0 and σs=0 are 
approximately equal to those obtained by YANG and 
HUANG [20] from Table 1, in which the maximum 

difference is 13.9%. The results show that the solution 
derived in this work for charactering the failure 
mechanism of roof collapse has good agreement and 
validity in comparison with previous work. 
 
5.2 Effects of different parameters on shape of roof 

collapse 
In order to predict the impending roof collapse of 

tunnel with Hoek-Brown criterion, the numerical method 
has been employed to analyze the scope of collapsing 
block. Due to the fact that three-dimensional failure 
mechanism is derived from the plane collapse 
mechanism by rotating 360 °, every failure surface 
presents the same shape and also has identical properties, 
so it would be convenient to choose a plane to discuss 
the impact of parameters on collapsing scope. For a 
square tunnel, the numerical results are calculated using 
Eq. (27) and Eq. (38). Consequently, different shapes of 
roof collapse in two dimensions can be plotted in Fig. 2. 
Moreover, the numerical results of width as well as the 
volume of collapsing block in rectangular tunnel are 
given in Table 2. 

It appears apparently in Fig. 2 that, along with the 
increasing values of σc and rp, the dimensions of the roof 
collapse have a trend to increase. While with the increase 
of B and γ, the widths, L1 and L2, of the collapsing block 
tend to decrease. It can be immediately found that the 

 

 
Fig. 2 Shape of roof collapse in shallow square tunnel with respect to different parameters: (a) B; (b) rp; (c) σc; (d) γ 
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Table 2 Collapsing dimensions in shallow square tunnel under different parameters 

B  σc/MPa σt/MPa γ/(kN·m−3) rp L1/m L2/m  V/m3 

3/4 2.5 0.025 25 0.2 1.527 2 3.479 9 228.257 7 

4/5 2.5 0.025 25 0.2 1.282 5 2.991 6 163.480 1 

5/6 2.5 0.025 25 0.2 1.141 9 2.705 5 157.427 3 

3/4 2.5 0.025 25 0.2 1.527 2 3.479 9 228.257 7 

3/4 4.0 0.040 25 0.2 2.026 3 4.215 9 348.543 3 

3/4 5.0 0.050 25 0.2 2.358 0 4.669 2 437.485 6 

3/4 2.5 0.025 25 0.2 1.527 2 3.479 9 228.257 7 

3/4 2.5 0.025 20 0.2 2.181 4 4.234 8 363.289 3 

3/4 2.5 0.025 15 0.2 3.283 6 5.477 2 657.834 9 

3/4 2.5 0.025 25 0 1.012 0 2.870 6 143.121 8 

3/4 2.5 0.025 25 0.1 1.527 2 3.479 9 228.257 7 

3/4 2.5 0.025 25 0.2 2.401 0 4.484 9 415.331 0 

 
volume of roof collapse presents the same law with its 
collapsing dimensions in Table 2. The change rule of σc, 
B and γ is in complete accord with the research of 
FRALDI and GUARRACINO [21−22], that is, it shows 
great validity by comparing with the former work. 
Obviously, the seepage forces acting on the underground 
structures have a significant influence on the dimensions 
of roof collapse, which has also been illustrated in Fig. 2. 
 
5.3 Effects of hypothetic curve )(xf   on collapsing 

blocks 
The implicit solution of f(x) derived is based on the 

assumption, which means that it is just an approximate 
result. By virtue of making the graph of )(xf   shown in 
Fig. 3, in which the parameters are characterized by 
A=0.1, B=3/4, γ=25 kN/m3, σc=2.5 MPa, σt=σc/100, rp= 
0.1, p=100 kPa and σs=120 kPa, it is noticed that the 
difference between the hypothetic curve and the actual 
curve of )(xf   is relatively small, which indicates that 
replacing the actual curve of )(xf   with the hypothetic 
curve is valid. 
 

 
Fig. 3 Comparison of results between hypothetic curve and 

actual curve of )(xf   

 
6 Conclusions 
 

1) By constructing a three-dimensional rotational 
collapse mechanism under the condition of seepage 
forces, the approximate solution of velocity discontinuity 
surface in three dimensions is derived with the help of 
upper bound theorem and the tool of calculus of 
variations according to Hoek-Brown failure criterion. 
The effect of seepage forces is regarded as a work rate of 
external force incorporated to upper bound theorem and 
it has a detrimental impact on the stability of tunnel to a 
large degree. The parametric study indicates that the 
bottom and the top widths of the collapsing block tend to 
decrease along with the decrease of σc and rp, but 
increase with the decrease of B and γ. 

2) Based on the work in the stability analysis of 
rock slopes subjected to seepage forces with limit 
analysis method, the corresponding idea is used to derive 
the shape of impending collapsing block with three 
dimensions in square or circular tunnel and the solution 
shows great validity by comparing with the previous 
work. The method proposed in this work to predicate the 
roof collapse can be taken as a complementary tool and 
reference to stability analysis of tunnel. 
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