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Abstract: Prediction of the state of roof collapse is a big challenge in tunnel engineering, while the limit analysis theory makes it 
possible to derive the analytical solutions of the collapse mechanisms. In this work, an exact solution of collapsing shape in shallow 
underwater tunnel is obtained by using the variation principle and the upper bound theorem based on nonlinear failure criterion. 
Numerical results under the effect of river water and supporting pressure are derived and discussed. The maximum water depth above 
the river bottom surface is determined under a given buried depth of shallow cavities and the critical depth of roof collapse is 
obtained under a constant river depth. In comparison with the previous results, the present solution shows a good agreement with the 
practical results. 
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1 Introduction 
 

It remains a big challenge to predict the potential 
collapse of a cavity roof correctly in geotechnical and 
civil engineering. Considering the random variability of 
the mechanical properties of the rock both in situ and 
from the presence of cracks and fractures in the rock 
mass, it is presented as a rather complex problem. If 
more factors are taken into consideration, i.e., the  
effect of river water, temperature, adjacent load as well 
as coupled field, it will become more and more 
complicated. Though it sounds very intricate, more and 
more scholars have devoted themselves to researching 
the stability of cavity, tunnel face, and other similar 
engineering since limit analysis theory was applied to 
derive the lower and upper bound solutions by DAVIS  
et al [1]. Meanwhile, after comparing with limit 
equilibrium method and slice method, it can be found 
that the solutions obtained from limit analysis are more 
rigorous and there is no assumption made on considering 
the corresponding forces in the work [2−5]. Therefore, 
limit analysis method has been widely used to analyze 
the stability and limit state of cavities excavated both in 
deep and shallow strata based on its advantages. 

At present, the limit analysis method is often taken 
as a supplementary method in geotechnical engineering 
and it has been mainly used to evaluate the stability of 
tunnel face excavated in shallow strata with linear 
Mohr–Coulomb criterion. However, attention should be 
highly paid to the collapse mechanism of tunnel that it is 
a complicated nonlinear evolution process and the 
characteristic properties of rock and soil material are also 
nonlinear which have been investigated in many tests. 
Consequently, the nonlinear failure criterion, such as 
Hoek–Brown failure criterion, and Power-law criterion, 
is the better choice in solving the problem of roof 
collapse for shallow-buried tunnels. Due to the 
advantage of Hoek–Brown failure criterion over 
reflecting the actual situation, it has been widely applied 
into geotechnical engineering [6−10]. MERIFIELD et al 
[11] obtained the ultimate bearing capacity of a surface 
footing on a rock mass with limit analysis theorems 
according to the generalized Hoek–Brown failure 
criterion, and the results of the bearing capacities show 
that the upper bound solutions are the same with the 
lower ones, which means that they are the real solutions. 
For the purpose of discussing the potential roof collapse 
of a deep rectangular cavity and tunnel with arbitrary 
sections, on the basis of Hoek–Brown failure criterion 
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and the upper bound theorem of limit analysis, FRALDI 
and GUARRACINO [12−13] calculated the exact 
solution of detaching profile. 

It is known to all that water as well as other fluid 
often has an effect on the stability of underwater 
structure to varying degrees, so it is of great significance 
to study its failure mechanism and corresponding control 
method. In previous study, HUANG et al [14] used the 
conformal mapping of the complex variable methods to 
calculate the analytical solutions of steady ground water 
flowing into a horizontal tunnel. FENG et al [15] 
investigated the effect of surrounding rock deterioration 
on segmental lining structure for underwater shield 
tunnel with large cross-section by means of model test 
and the result shows that the crown and bottom of tunnel 
are liable to collapse. WANG et al [16] proposed the 
theoretical and experimental study of external water 
pressure on tunnel lining in controlled drainage under 
high water level and the results indicate that there exists 
an optimum size for grouting zone to exert supporting 
pressure. According to the study done by above authors, 
the effect of water must be taken into account and it 
should be incorporated into the expression of upper 
bound theorem when using the method of limit analysis. 
Meanwhile, supporting structure which can provide 
supporting pressure should also be used reasonably to 
maintain the cavity being stable, especially for 
shallow-buried cavity and tunnel. 

 
2 Upper bound theorem 
 

According to the upper bound theorem, the load 
obtained by equating the rate of the energy dissipation to 
the external rate of work in any kinematically admissible 
velocity field is no less than the actual collapse load 
when the velocity boundary condition is met [17]. In this 
work, in order to take the effects of river water into 
consideration in the realm of the upper bound theorem of 
limit analysis for shallow underwater cavity, an 
assumption that the effect of river water is equal to the 
water pressure acting on the detaching curve is made, 
that is, the effect of water pressure can be seen as surface 
forces. Moreover, the supporting pressure is also 
regarded as surface forces acting on lining or other 
supporting structure, thus the upper bound theorem can 
be expressed as  

 

 
d d dij ij i i i is

T v s X v
 

                  (1) 

 
where σij and εij are the stress and strain rate in the 
kinematically admissible velocity field respectively; Ti 
means surface forces on boundary s, Xi is the body force; 
Ω represents the volume of the collapse mechanism; vi is 
the velocity along the velocity discontinuity surface. 

In this work, some other assumptions should be 
made when using the upper bound theorem to analyze 
the stability problem in geotechnical engineering: 

1) The material is perfectly plastic and follows an 
associated flow rule; 

2) The blocks bounded by the detaching curve and 
boundary surface are regarded as rigid materials [18−20]; 

3) The soil or rock mass is totally impermeable, i.e., 
rigid body; 

4) The river bottom surface is horizontal. 
 
3 Curved failure mode of roof collapse 
 

In the upper bound theorem of limit analysis, it is of 
great significance to construct a kinematically admissible 
failure mechanism. Considering the actual mechanical 
characteristics of rock mass over the roof of a 
shallow-buried cavity and that the river water doesn’t 
flow into the cavity so as to make sure that the bottom of 
river is stable, certainly choosing a curved velocity 
discontinuity line, f(x), to describe the detaching surface 
is made coincident with the reality well, as shown in  
Fig. 1. Due to the presence of velocity discontinuity 
surface, the plastic flow occurs along the detaching curve. 
Therefore, on the basis of associated flow rule and 
Hoek–Brown failure criterion, the energy dissipation rate 
along the velocity discontinuity surface can be computed. 
Then through equating the energy dissipation rate to the 
rate of external work, the virtual work equation meeting 
the velocity boundary condition is obtained. Moreover, 
for the purpose of deriving the exact shape of the 
collapsing block in a limit state, it is necessary to use the 
variational calculation method to minimize the objective 
function. 
 
4 Upper limit analysis 
 

Hoek–Brown failure criterion is widely used with 
two forms of expressions which are represented by major 
and minor principal stresses and normal and shear 
stresses, respectively [21]. Considering the fact that the 
energy dissipation along the detaching curve is caused by 
normal and shear stresses, the form of the later is of great 
convenience, i.e., 

1
c n t c( )

B
A                              (2) 

where σn means the normal stress; τ is the shear stress; A 
and B are physical parameters characterizing the soil or 
rock mass; σc and σt represent the uniaxial compressive 
strength and the tensile strength of the soil or rock mass, 
respectively. 

Based on the Hoek–Brown failure criterion 
expressed in terms of normal and shear stresses and 
associated flow rule, the normal and shear stresses and  
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Fig. 1 Dormant collapsing mechanism for rectangular underwater cavity 

 
strain on the detaching curve can be worked out 
immediately. Therefore, the energy dissipation rate 
determined by the internal forces on the detaching curve 
can be expressed as [12] 

n niD    τnγn= 

 1/(1 ) 1 1/(1 ) 2
t c ( ) (1 ) ( ) / 1 ( )B BAB B f x t f x v               

   

(3) 
 

where εn and γn are normal and shear plastic strain rate, 
respectively, f′(x) is the first derivative of f(x), and t is the 
thickness of the detaching surface. Thus, the total energy 
dissipation rate determined by the internal forces along 
the detaching curve is 
 

 
dis

D D t s    
 1/(1 ) 1 1/(1 )

t c 0
( ) (1 ) ( ) d

L B BAB B f x v x               (4) 
 
where 2d 1 ( ) ds f x x  is the elementary length of 
the detaching curve, f(x). Considering the symmetric 
characteristic of the collapsing block with regard to the 
y-axis, the corresponding calculation of the rate of work 
can choose a half and then the work rate of failure block 
produced by mass can be written as 
 

 

 0
( ) d

L
P f x v x                              (5) 

 
where γ is the soil weight per volume, and L means the 
half width of the failure block. The power of supporting 
pressure of shallow cavity can be written as 
 

qP q L v                                   (6) 

As the effect of river water is regarded as surface 
distribution force acting on the detaching curve, the 
power of water effect is expressed as 

 

w w 
( ) ds s

P H f x v s H Lv                   (7) 
 

where γw presents the water mass per volume and H is 
the depth of river water above the river bottom surface. 

Due to the result derived by virtue of virtual work 
equation which is one of the upper bound solutions rather 
than the real solution, it is necessary to find the solution 
most close to the real solution through optimization 
calculation method. Thus, an objective function which is 
made up of external rate of work and the internal energy 
rate of dissipation can be constructed as  

 

 

 1/(1 ) 1 1/(1 )
t c 0

 

w w 0

[ ( ), ( ), ]

   ( ) (1 ) ( ) ( ) d

    ( ), ( ), d

q s

L B B

L

f x f x x D P P P

AB B f x f x v x

qLv H Lv f x f x x v x qLv H Lv



  

  

  

     

      

   





 

      (8) 
 

where [ ( ), ( ), ]f x f x x   is a functional which can be 
written as 

 
 ( ), ( ),f x f x x      

1/(1 ) 1 1/(1 )
t c ( ) (1 ) ( ) ( )B BAB B f x f x         (9) 

 
On the basis of upper bound theorem, the analytical 

solution of detaching curve is derived by optimizing the 
objective function. For the purpose of making the 
integral ψ over the interval [0, L] to reach an extreme, 
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obviously, it is a typical problem of the calculus of 
variations, i.e., there exists a function, y=f(x), which 
satisfies the customary regularity conditions and then 
makes Eq. (8) reach a stationary value, thus the 
expression of ψ is functional which can be turned into an 
Euler equation according to variational principle. The 
first variation of the total dissipation ζ can be expressed 
as  

 ( ), , 0 0
( ) ( )

f x f x x
f x x f x

 
           

（ ）  

                    (10) 
and from Eq. (9), the corresponding expressions can be 
easily computed as  

1/(1 ) 1 /(1 )
c

/ ( )

/ ( ) ( ) ( )B B B

f x

f x AB B f x

 

    

   


    
     (11) 

( )x f x

 
   

  

1/(1 ) 1 (2 1) /(1 )
c ( ) (1 ) ( ) ( )B B BAB B f x f x        (12) 

 
By substituting Eqs. (11) and (12) into Eq. (10), the 

Euler equation of the problem presents 
 

(2 1) /(1 )( ) ( ) 0B Bf x f x                       (13) 

where 
1/(1 ) 1

c ( ) (1 )BAB B                          (14) 

It is a nonlinear second-order homogeneous 
differential equation in Eq. (13) which can be worked out 
by virtue of integral calculation. After the first 
integration, it can be written as  

1 /(1 )
0(1 ) ( ) 0B BB B f x x                   (15) 

 
where τ0 is a integral constant which can be calculated by 
the geometrical condition. On the basis of symmetrical 
characteristics of the detaching curve, f(x), it is indicated 
that it should satisfy f′(x=0)=0. Thus, the value of τ0 is 
equal to zero and the expression of detaching curve f(x) 
can be derived through integral calculation as 

(1 ) /
1/( ) =

(1 )

B B
BB

f x B x h
B





 

   
 

(1 ) /
1/ 1/

B B
B B

c

A x h




  

 
 

               (16) 

where h stands for an integration constant which can be 
calculated when the detaching curve f(x) has been 
obtained. 

By substituting Eq. (16) into Eq. (9), the expression 
of ψ is worked out: 

 
1/

1/ 1 1
t c

(1 ) /
1/ 1/ 1/

c

( ) (1 )
(1 )

    + =

B
B

B B
B B B

B
AB B

B

x A x h

  

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

 




 
      

 
  

 

   

1 1/ ( 1) / 1/ 1/
t c

B B B B Bh B A x                (17) 

By combining Eq. (17) with Eq. (8) through 
calculating the integral of ψ over the interval [0, L], the 
exact form of ζ shows 

 

   

 

 0

11/
w t

[ ( ), ( ), ] [ ( ), ( ), ] d

    1

L

B

f x f x x f x f x x v x qLv

H Lv h Lv A B

 

   

   

    

  

   1 / 1/ (1 ) /
c w

B B B B BL v qLv H Lv             (18) 
 
Moreover, there is another implicit condition of 

f(x=L)=0, i.e., 
 

 (1 ) /1/ 1/
c( ) 0 = /

B BB Bf x L h A L        (19) 
 
At last, in order to get the analytical solution, there 

exits another equation which includes the relationship 
between h and L based on upper bound theorem of limit 
analysis. Thus, it can be worked out easily by means of 
equating the rate of the energy dissipation to the external 
rate of work, i.e., 

 
  1/ 1[ ( ), ( ), ] 0 (1 )B

tf x f x x h L A B             

 1 / 1/ (1 ) /
c w 0B B B B BL qL HL              (20) 

 
Combining Eq. (19) and Eq. (20), the exact 

expression of h and L can be obtained as 
 

     1
t w1h B B H q                    (21) 

 

 ( 1) c t w
c

c

1
/

BB
B B H qB

L A h A
B

  
 

 
        

   
                                          (22) 

As a result, the expression of f(x) is 
 

 (1 ) /1/ 1/
c( )= /

B BB Bf x A x      

     1
t w1 B B H q                 (23) 

 
and the overall mass of roof collapse per unit length, G, 
can be calculated as 

 

   
11 1 1

c t w2 1
BB BG A B B H q   

         (24) 

 
5 Discussion of analytical results 
 

In order to evaluate the validity of the analytical 
solutions obtained in this work, comparisons between the 
results derived in this work and the previous work are 
made. Compared with the work of Ref. [12], it is obvious 
that the former is coincident with the later absolutely 
when q=0 and H=0, which indicates the validity of the 
method. 
 
6 Numerical results of collapse shape 
 

For the purpose of investigating the effect of 
parameters, including A, B, σc, σt, γ, H and q on the shape 
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of collapsing block, the numerical results are derived by 
virtue of calculating software. According to the 
analytical solution of detaching curve, f(x) , expressed in 
Eq. (23), the exact detaching curve of shallow 
underwater cavity or tunnel can be easily drawn with 
regard to different parameters in Fig. 2, where different 
parameters range as follows: A=0.15−0.75, B=0.5−0.9,  
σc/σt=1/300−1/50, σc=10 MPa, γ=(15−25) kN/m3,  H= 
(0−20) m, q=(0−0.2) MPa. 

It can be immediately seen from Fig. 2 that, A, B, σc, 
σt, γ, H and q all have an impact on the collapsing scale 

to some degree. With the increase of B, γ and q, the width 
and height of the collapsing block both tend to decrease. 
However, with increasing the values of σt and H, the 
width and height of the collapsing block have a 
increasing tendency. Moreover, the effect of parameter A 
is different from others, i.e., when A increases, the width 
of the collapsing block becomes larger, but the 
corresponding height remains the same. 

It is obvious that the depth of river water has 
adverse influence on the scale of roof collapse, so it 
should      be      controlled      effectively      by      discharging     the     water 

 

 
Fig. 2 Shapes of collapsing block with regard to different parameters: (a) Effect of strength parameter B; (b) Effect of strength 

parameter A; (c) Effect of tensile strength; (d) Effect of unit weight; (e) Effect of supporting pressure; (f) Effect of H 
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flow in good time when rainy season is coming. 
Meanwhile, it can be found that the maximum depth of 
river water can be calculated when the burial depth of 
cavity h0 is given and the expression is  

 

   1 1
max 0 w t w1H Bh B q                 (25) 

 
If the depth of river water is given as a constant and 

the supporting pressure hasn’t been exerted in the early 
stage, according to Fig. 2, there must be a critical height 
of collapsing block, which means the detaching curve 
can’t extend to river bottom surface, i.e., the water can’t 
flow into the cavity when h reaches h0, so the expression 
of hcritical can be written as 

 

     1
critical 0 t w1h h B B H               (26) 

 
What’s more, in the view of engineering, safety 

stock must be considered reasonably. In this situation, 
the ratio r=h0/h is a relatively effective parameter to 
describe the safety stock, so the value of ratio r can be 
used to evaluate the stability of the roof of cavities and it 
should be determined cautiously and reasonably specific 
to actual engineering situation. 

Generally, the excavated cavities or tunnels are 
under the complicated situation where many factors have 
different impacts on the stability of roof collapse to 
varying degrees, so primary lining or even twice lining 
which means exerting supporting pressure is widely used 
to protect the roof of cavities from collapsing [22−27]. 
Different values of supporting pressure can be chosen 
under different geological environment so as to 
guarantee that h=0, i.e., no roof collapse happens. In this 
case, the minimal supporting pressure can also be 
derived as 

 
min t wq H                               (27) 

 
From Fig. 2(e) and Fig. 2(f), it can be found 

obviously that h=0 when q=0.2 MPa and H=0 m, so 
choosing a reasonable value of q and keeping a proper 
water level H can make the roof of cavity much more 
stable. 
 
7 Conclusions 
 

1) By virtue of applying the upper bound theorem 
and the tool of calculus of variations, the analytical 
solutions describing the shape of roof collapse in 
underwater tunnel or cavity have been obtained 
according to Hoek–Brown failure criterion. The effect of 
river water is seen as work rate of distribution surface 
forces is incorporated into upper bound theorem and the 
result shows that it has an adverse impact on the scale of 
collapsing block to a large degree. The supporting 
pressure is also regarded as distribution force acting on 

the cavity structures whose work rate is incorporated into 
upper bound theorem. The more the supporting pressure 
exerts under certain situation, the more stable it will be. 
The solutions derived under the condition of river water 
agree with the work of FRALDI and GUARRACINO 
very well when q=0 and H=0, which proves the validity 
of the method proposed in this work by considering the 
effect of river water. 

2) In shallow-buried underwater tunnel or cavity, 
the supporting pressure exerting timely and reasonably 
has a positive effect on the stability of roof collapse, and 
it has a minimal value which can protect the cavity from 
water inflowing. There exists a maximum depth of river 
water when the buried depth is given so as to make sure 
that the detaching curve doesn’t extend to the river 
bottom surface. The method proposed in this work to 
evaluate the roof collapse can be regarded as a reference 
and a supplementary tool for stability analysis. 
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