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Abstract: The discrete element method was used to investigate the microscopic characteristics of granular materials under simple 
shear loading conditions. A series of simple tests on photo-elastic materials were used as a benchmark. With respect to the original 
experimental observations, average micro-variables such as the shear stress, shear strain and the volumetric dilatancy were extracted 
to illustrate the performance of the DEM simulation. The change of anisotropic density distributions of contact normals and contact 
forces was demonstrated during the course of simple shear. On the basis of microscopic characteristics, an analytical approach was 
further used to explore the macroscopic behaviors involving anisotropic shear strength and anisotropic stress-dilatancy. This results 
show that under simple shear loading, anisotropic shear strength arises primarily due to the difference between principal directions of 
the stress and the fabric. In addition, non-coaxiality, referring to the difference between principal directions of the strain rate and the 
stress, generates less stress-dilatancy. In particular, the anisotropic hardening and anisotropic stress-dilatancy will reduce to the 
isotropic hardening and the classical Taylor’s stress-dilatancy under proportional loading. 
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1 Introduction 
 

Apart from proportional loading conditions such as 
biaxial or triaxial stress paths, the simple shear that 
involves the rotation of principal stress axis is a typical 
non-proporitonal loading. The simple shear condition is 
normally accepted as the same mode of deformation 
within a shear band. The simple shear is also 
predominant during earthquake shaking [1−3]. 
Numerous laboratory experiments [4−5] have been 
performed to explore the simple shear behaviors. These 
previous studies showed that due to the effects of 
principal stress rotation, the dilation and non-coaxiality 
under the simple shear significantly deviate from that 
under proportional loading. However, a complete 
understanding of the underlying mechanisms for simple 
shear condition is still lacking. Despite that simple shear 
deformation can be simulated in element tests, it is 
difficult to directly calibrate the rotation of principal 
stress axis in the simple shear devices (SSDs).  

In order to achieve better understanding of the 
underlying mechanism of soil responses, discrete 
element method (DEM) has been resorted to simulate 

laboratory element tests [6−8]. DEM can provide details 
of the particle interactions that cannot be measured in the 
laboratory, leading to better understanding of 
micromechanical responses in granular materials. 
Nevertheless, existing DEM simulations are limited to 
the proportional loading conditions, under which the 
micro-mechanism associated with the rotation of 
principal stress direction is not included [9]. 

In this work, discrete particle simulations have been 
carried out to examine the detailed simple shear 
processes. In addition, by using homogenization 
techniques, micromechanical variables are upscaled to 
the macro model and then the effects of the rotation of 
principal stress direction have been demonstrated. 
 
2 Numerical simulation 
 
2.1 Simple shear test 

The simple shear test can impose more uniform 
strains than the direct shear test mainly due to the 
better-defined side boundary conditions [5]. The most 
common type of SSD currently used is the Cambridge 
simple shear device (CAMSSD) as earlier reported by 
ROSCOE [4]. The simple shear boundaries have been 
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illustrated in Fig. 1, in which the solid lines show the 
initial positions of the wall boundaries and the dashed 
lines represent the deformed positions. The two side 
walls rotate at a constant angular velocity about the toes 
of side walls. The top wall can move vertically with 
constant normal pressure while the bottom wall is always 
fixed. 
 

  
Fig. 1 Sketch of CAMSSD 

 
ODA and KONISHI [10−11] conducted groups of 

simple shear tests of photoelastic material using 
CAMSSD. Photographs were taken during shear process 
to make statistics of contact normal. Right cylinders 
made by photoelastic material with the radii of 0.3, 0.4 
and 0.5 cm and the length of 1.9 cm were arranged in 
random packing in a loading frame. The scale of the 
loading frame is 16 cm×16 cm. The mixing ratio of 
cylinders with these three different radii was 25:15:8 by 
the number. This mixture of cylinders was put into the 
plane polarized light and uniaxially loaded through a 
loading arm P up to 392 N (normal force, equal to about 
130 kPa) in the rigid frame of two-dimensional simple 
shear apparatus with no lateral expansion. The initial 
void ratio is 0.22 for the dense packing model and 0.26 
for the loose packing model. Two distinct boundary 
conditions during the simple shear test are shown in Fig. 2.  
 

 

Fig. 2 Boundary conditions in simple shear test 

 
As a type of non-proportional loading, the direction 

of the principal stress and principal strain rate will rotate 
during shearing process. The inclination angle can be 
obtained easily due to elastic mechanics. 
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where 


 is the orientation of the principal stress, and 

 
 is the orientation of the principal strain rate. Both of 

them refer to the same y-axis. 
 
2.2 Procedure and parameters of simulation  

In this work, numerical simulations were performed 
for this simple shear test using software PFC2D. The 
simulation mainly consists of the following steps: 

(1) As shown in Fig. 3, four walls are created as 
rigid boundaries. The length of each wall is 24 cm, 50% 
longer than the height of specimen, so that large straining 
and rotation are allowed to take place during the shear 
deformation. Subsequently, 467 particles are generated to 
reach the initial dense state of specimen. 
 

 
Fig. 3 Specimen in initial state  

 
The interparticle contact law is viscoelastic, as 

stated by QIAN et al [12]. All material parameters for 
DEM simulations are listed in Table 1. 

(2) At the first stage of consolidation, the normal 
stress 130 kPa is applied to the top surface of sample 
while other three rigid walls are used to form three other 
fixed boundaries. 

(3) At the second stage of simple shear, two lateral 
walls will rotate about their toes with rotational velocity 
of 0.05 rad/s. In the meantime, the top wall is allowed to 
move horizontally with velocity of 8×10−3 m/s. During 
the second stage, consolidation pressure always keeps 
constant. It should be emphasized that for a laboratory 
simple shear test, only the stress and strain on the top 
boundary can be measured. It has been found that the top  
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Table 1 Material parameters for simulations of PFC  

Parameter Value 

Total number of particles 467 

Number of particles with the radii of 

0.3, 0.4, 0.5 cm 
243, 146, 78

Normal spring stiffness, kn/Pa 1.0×108 

Tangential spring stiffness, ks/Pa 6.0×107 

Local damping coefficients/(Pa·s) 0.7 

Interparticle friction coefficient at 

consolidation state 
1.0 

Interparticle friction coefficient at 

shearing stage 
0.4 

Density of particles/(kg·m−3) 2 700 

Friction coefficient between wall and particle 0.5 

 
boundary stress in the sample is generally not uniform, 
and only the stress in the centre of sample can be seen as 
an ideally uniform state [13−14], as assumed within the 
macroscopic constitutive theory. With these 
considerations, we attempt to use the average data over 
the circle with radius of 60 mm in the center of sample 
instead of the top boundary, in DEM analysis. 
 
3 Macro mechanic properties 
 

Figure 4 presents the shear stress−strain behaviors 
and dilation responses for testing and DEM simulations, 
respectively.  

It can be seen that DEM is able to reproduce the 
prepeak stress−strain and dilatancy responses for simple 
shear path, compared to the overall experimental 
observations on photoelastic materials. Nevertheless, it 
should be also noted that the present DEM tends to 
underestimate the shear stress level and overestimate the 
postpeak dilatation, with respect to experimental 
observations. This is primarily due to the following 
reasons: (1) the interparticle rolling resistance is not 
included in the present DEM simulation; (2) DEM data 
are obtained from the circle in the center of the sample 
while the experimental data are obtained on the top 
surface of the sample. 

Figure 5 further shows the non-coaxiality, referring 
to the difference between the principle directions of 
stress and strain rate. In principle, the non-coaxiality 
should be attributed to material anisotropy, particularly 
for non-proportional loading [15]. Note that for 
proportional loading conditions, coaxiality is the basic 
assumption in framework of classical plasiticicty, based 
on the observations of proportional path tests such as 

 

 
 

 
Fig. 4 Shear stress−shear strain and volumetric strain−shear 

strain responses for tests and DEM simulations: (a) Oda test 

data; (b) Simulation results 

 
biaxial or triaxial tests. 

It can also be seen that this model provides a good 
approximation of non-coaxiality during simple shear 
loading. The simulation results are in good agreement 
with the original experimental data. And for the 
convenience in obtaining more data, the simulated curve 
is smoother than the original one. 

Despite some quantitative difference between DEM 
simulations and the experimental observations, it is clear 
that the present DEM is able to reproduce the overall 
simple shear behaviors, specifically for the prepeak 
states that essentially correspond to the real constitutive 
responses [16]. 
 
4 Microscopic properties and anisotropies 

evolution 
 
4.1 Evolution of contact normal  

At the macro level, the mechanical behaviors of 
granular materials mainly depend on the interparticle 
contacts properties, namely the anisotropic distributions 
of contact normals and contact forces. For 2D problem, 
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the contact vector (li), contact force (fi) and contact 
normal (ni) between two neighbor particles are presented 
in Fig. 6. Note that li denotes the vector that connects the 
centroids of two neighbor particles. l and mi are the 
length and the unit vector of li, respectively. ni 

and ti are 
the unit vector of normal vector and tangential vector, 
respectively. 
 

 
 

 
Fig. 5 Comparison of principle direction of stress and strain 

rate: (a) Test data; (b) DEM simulations 

 

 
Fig. 6 Illustration of contact vector, contact force and contact 

normal 

To investigate the micro-macro behaviors, 
attentions should be paid to the orientation distribution of 
contact normals, which is usually used to describe the 
feature of microstructure [17−18]. It should be 
emphasized that it is extremely difficult to measure the 
distribution of contact normals over all particles in our 
laboratory experiments, particularly for non-proportional 
loading conditions. In this work, the user-defined 
program using PFC2D code is intended to simulate the 
evolution of contact normals for the simple shear path.  

According to ROTHENBURG and BATHURST [9], 
the preferred orientation of contact normals may be 
determined based on the frequency of contacts that fall 
within a certain angle interval. The overall frequency 
distributions of contact normals in various directions 
tend to be displayed as rose histogram (Fig. 7), 
essentially representing the fabric [19−22]. The 
orientation distribution of contact normal can be 
approximated by the second-order Fourier’ function as 
 

 a
1

( ) 1 cos 2( )
2π

E a                       (3) 

 
where a is the anisotropic coefficient defining the degree 
of anisotropy, and θa is the direction angle of maximum 
distribution density of contact. 

Analogous to anisotropic distribution of contact 
normals given by Eq. (3), the orientation distributions of 
contact normal force (fn) and contact tangent force (ft) 
may also be described as the following orientation- 
dependent functions [9]: 
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where an and at represent the anisotropy degrees for the 
distribution of nf and tf , respectively. The superposed 
bar denotes the average value within a certain angle 
interval (10° in this analysis). θt denotes their principal 
direction and 

0f  is the average value of fn over all 
contacts.   

Equation (3) may lead to the following equations: 
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Clearly, a and θa can be easily determined from  

Eq. (6). In the same way, Eqs. (4) and (5) may lead to    
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Analogously, an, θn, at and θt can be obtained from   
Eqs. (7) and (8). 

Figure 7 shows the evolution of density distribution 
of contact normal with the development of shear strain. 
The solid lines represent the DEM simulations and the 
dashed lines represent the theoretical approximaiton 
using the second-order distribution density function 
given by Eq. (3). 

It is shown that the frequency distribution of 
contact normals tends to concentrate on the Z axis at the 
initial shearing stage. As the shear strain increases, the 
degree of anisotropy (a) increases and the principal 
direction angle of the fabric rotates. During the shearing 
process, the redistribution of contact normals has a 
tendency that the density of contact normals increases 
near maximum compression and deceases near the minor 
compression. The principal direction of the fabric (i.e., 
direction with maximum density of contact normals) is 
always rotating towards the principal direction of stress 
(see Fig. 7). After the peak stress, the change of density 
distribution    tends    to    reach    a     stable     state.     Meanwhile,     the 

 

 

Fig. 7 Evolution of anisotropy of contact normals: (a) γ  =  0; (b) γ  =  0.04; (c) γ  =  0.09 (at peak stress state); (d) γ  =  0.13 
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degree of anisotropy has a fluctuant change and tends to 
reach a constant level. The evolution of fabric anisotropy 
is essentially in good agreement with previous study by 
QIAN et al [22]. 
 
4.2 Evolution of contact forces 
4.2.1 Normal contact force  

Figure 8 shows the evolution of anisotropies of 
contact normal force, namely orientation distribution of 

nf / 0f . The solid lines and dashed lines represent the 
DEM simulations and the theoretical approximaiton 
given by Eq. (4), respectively. Departing from the 
density distribution of contact normals, anisotropy in the 
orientation distribution of contact normal force has a 

relatively low growing rate before the peak stress, 
particularly at the initial shearing. After the stress peak, 
the degree of anisotropy turns to have a decreasing rate. 
In addition, the preferred distribution orientation is 
rotating towards the principal direction of stress and 
almost keeping a fixed direction after the stress peak. 
4.2.2 Tangential contact force  

Figure 9 presents the anisotropic distribution of 
tangential contact forces. It is evident that the preferred 
orientation θt for the distribution of tf  is rotating with 
an increase of shear strain and in good agreement with θn. 
On the other hand, the value of at seems to be much 
small with respect to those of a and an, as illustrated in 
Fig. 10. Moreover, the theoretical 

 

 
Fig. 8 Evolution of normal contact force: (a) γ=0; (b) γ=0.04; (c) γ=0.09 (peak stress state); (d) γ=0.13 
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Fig. 9 Evolution of tangential contact force: (a) γ=0; (b) γ=0.04; (c) γ=0.09 (peak stress state); (d) γ=0.13 

 
approximaiton of distribution of tf  by Eq. (5) does not 
fit the DEM simulations well after the stress peak. The 
deviation may be atrributed to the occurence of strain 
localization after the stress peak, at which the 
distribution becomes essentially non-uniform.      

Figure 11 shows that the difference among the 
principal direction angles of contact normal vectors, 
contact normal force vectors and tangent contact force 
vectors. Clearly, the changes of θt, θn and θa have a 
consistent tendency to follow θσ during shear 
deformation. These principal directions tend to reach a 
saturation state when approaching the critical state. 
Moreover, the principal direction of stress always 
precedes that of contact normals but falls behind those of 
normal and tangential contact forces.  
 
4.3 Stress−fabric−force relationship 

In this section, we attempt to upscale the above 

 

 
Fig. 10 Development of anisotropic coefficients a, an and at 

 
microscopic variables into the macroscopic variables for 
simple shear conditions.  
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Fig. 11 Principal directions of contact normal, contact forces 

and stress 

 
For simplicity, spherical particles are considered. In 

this case, ni 
and mi can be exchanged. Thus, the stress 

tensor in a unit volume can be associated with the 
interparticle contact forces as [9] 
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Note that anisotropy of the branch vector length is 

generally small for spherical particles. For this condition, 
the distribution of branch length is not correlated with 
the distribution of branch orientation, Equation (9) can 
be rewritten in the continuous form:   
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where N is the number of contacts over a unit volume; 
l is the average spacing of the centroids of two contact 
particles. 

Substituting Eqs.(3)−(5) into Eq. (10), one finds the 
hydrostatic pressure: 
 

 π

00

1
/ 2 d

2
n

iip Nl E f Nlf               (11) 

 
and the deviatoric stress components: 
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where sij is the devietoric part of σij. Equations (12) and 
(13) may lead to 
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where 2/ijij ssq   and θσ denotes the major principal 

direction of σij. 
Equation (14) implies that the macroscopic shear 

strength depends on three factors: (1) a, representing the 
degree of fabric anisotropy; (2) an 

and at, representing 
the anisotropic degrees of contact forces; (3) difference 
between the principal directions of stress (θσ), contact 
normal vectors (θa) and contact force (θt and θn) vectors.  

In Eq. (14), one should note that the mobilized 
friction angle ( ) can be related to the stress ratio by  
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It should be emphasized that for proportional 

loading θσ=θa=θn=θt as proposed by ROTHERNBURG 
and BATHURST [9]. Under this particular case, Eq. (14) 
will reduce to the following form: 
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In order to validate the stress−fabric−force 

relationship, Fig. 12 shows the comparisons of computed 
results of q/p given by Eqs. (14−16), respectively. 
ROTHERNBURG and BATHURST [9] has earlier 
proposed that Eq. (16) can be used to estimate the overall 
shear strength under biaxial loading. However, Fig. 12 
shows that Eq. (16) is not valid to represent the 
stress−fabric−force relationship due to ignorance of 
difference between θa, θt, θn and θσ. It indicates that the 
difference between principal directions of stress and 
these micro-variables (contact normal and contact force)  
 

 
Fig. 12 Comparison of anisotropic coefficient and macroscopic 

parameters 
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in essence leads to a decreasing overall interparticle 
shear resistance. 
 
4.4 Stress−dilatancy relationship 

In two-dimensional plane−strain conditions, the 
dissipated energy is equal to the plastic work. 
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where ijδ is Kronecker delta tensor; M is the stress ratio 
in critical state; sij and p
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Substituting Eqs. (18) and (19) into Eq. (17) yields  
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Equation (20) can be rewritten as 
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Note that      essentially represents the degree 

of non-coaxiality between stress and strain rate tensors. 
As a result, Eq. (21) provides a non-coaxial version 
stress−dilatancy relationship. Clearly,     , referring 
to coaxiality, holds for proportional loading such as 
biaxial compression. For this case, Eq. (21) is simplified 
to 
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which represents the classical Taylor’s stress−dilatancy 
relationship. 

With respect to DEM observations, Fig. 13 
illustrates the difference between the proposed non- 
coaxial and coaxial (i.e., Taylor’s) stress−dilatancy 
versions. Here, according to the sign convention in soil 
mechanics, compression is positive and dilation is 
negative. 

It is clear that the coaxial stress−dilatancy theory 
always produces a liear relationship between the rate of 
dilation ( d / dp p

v s  ) and stress ratio (q/p). In 
comparison, the non-coaxial stress−dilatancy theory has 
created less dilatancy and non-linear relationship 
between stress ratio and dilation rate, in good agreement 
with DEM simulations.  

 

 

Fig. 13 Comparison of stress−dilatancy relationships 

 
5 Conclusions 
 

1) During the course of simple shear, the anisotropic 
degree in the density distribution of contact normals 
(representing the fabric) is significantly growing with the 
development of shear strain. The anisotropic degree in 
the density distribution of normal contact forces has a 
similar change trend but a lower magnitude with respect 
to the fabric anisotropy. On the other hand, the 
anisotropic degree in the density distribution of 
tangential contact forces is always keeping in a very low 
constant level. 

2) During the shearing process, the principal 
directions (preferred distribution directions) of contact 
normal vectors, contact normal force vectors and tangent 
contact force have consistent developing tendency, 
namely following the principal direction of stress. 
Meanwhile, their principal directions tend to reach a 
saturation state at the critical state. In addition, the 
principal direction of stress always precedes that of 
contact normals but falls behind those of normal and 
tangent contact forces.  

3) The non-coaxiality between the principal 
directions of the stress and micro-variables (contact 
normals, contact forces) produces significant effects on 
macro behaviors. In general, non-coaxiality will soften 
the overrall friction strength and cause less dilatancy. In 
addition, the non-coaxiality induces non-linear stress− 
dilatancy relationship, departing from the classical linear 
Taylor’s stress-dilatancy. 
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