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Abstract: Triaxial cyclic loading tests have been performed to assess the influence of plastic deformation on inelastic deformational 
properties of anisotropic argillite with bedding planes which is regarded as a kind of transversely isotropic media. Considering 
argillite’s anisotropy and inelastic deformational properties, theoretical formulae for calculating oriented elastic parameters were 
deduced by the unloading curves, which can be better fitted for the description of its elasticity than loading curves. Test results 
indicate that with the growth of accumulated plastic, strain, the apparent elastic modulus of argillite decreases in a form of 
exponential decay function, whereas the apparent Poisson ratio increase in a form of power equation. A ratio of unloading 
recoverable strain to the total strain increment occurred during a loading cycle is defined to illustrate the characteristic relations 
between anisotropic coupled elasto-plastic deformation and plastic strain. It is significant to observe that high stress level and plastic 
history have an inhibiting effect on argillite anisotropy. 
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1 Introduction 
 

Experimental investigations reveal that rocks are 
anisotropic in deformation and strength, especially those 
rocks with fabric elements in the form of bedding, 
foliation, layering, fissuring, stratification or jointing 
[14]. Moreover, many theoretical and experimental 
studies show that elastic parameters of rock-like 
materials vary as plastic deformation occurs, which is 
known as inelasticity [5] and coupled elasto-plastic 
deformation [610]. Therefore, it is reasonable to 
consider that anisotropy and coupled elasto-plasticity are 
the two principal characteristics of bedding rocks, which 
are often mechanically regarded as transversely isotropic 
media. However, interactions and relations between both 
these characteristics are seldom covered by recent studies 
on elasto-plasticity of anisotropic rocks. Generally, the 
anisotropy and coupled elasto-plasticity of rock are 
researched individually. 

As for the anisotropy of rock, several 
methodologies [12, 4, 1113] for determining elastic 
parameters have been proposed, which are basically 

meaningful for further studies on this issue. Certainly, 
more important researches have been done, such as 
anisotropic failure criteria [1419], elasto-plastic models 
[20] and even more sophisticated coupled elasto-plastic 
damage model [2124]. These works provide more 
accurate prediction for complex physical phenomena of 
anisotropic rocks, like failure and plasticity.  

As far as coupled elasto-plasticity is concerned, 
theories and experiments were mainly focused on 
isotropic media [610, 25]. Theoretically, based upon the 
first and second laws of thermodynamics and Iliushins’ 
postulate in strain space, DAFALIAS [89] pointed out 
that non-associated flow occurs when materials exhibit 
coupled elasto-plastic deformation in his ground- 
breaking research. On the second law of thermodynamics, 
internal friction force brings about heat dissipation, 
which means that entropy irreversibly increases and 
results in non-associated flow [810]. This principle 
illustrates that plastic evolution inevitably affects the 
properties of materials. More practically, BIGONI and 
HUECKEL [67] discussed some issues on uniqueness 
and localization related to coupled elasto-plasticity and 
non-associated flow, respectively. MAIER and 
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HUECKEL [10] established a constitutive model which 
incorporated an elasto-plastic coupled strain. These 
researches theoretically provide a solid and necessary 
support for further studies. 

Experimentally, uniaxial and triaxial cyclic loading 
tests controlled by servo-mechanical testing system are 
the best choice for studying the coupled elasto-plastic 
issue. Under consolidated-undrained triaxial cyclic 
loading conditions, YOSHINAKA et al [2627] studied 
mechanical properties of four saturated Miocene soft 
rocks in Japan, and a significant finding is that the elastic 
modulus of rock decreases with the increases of plastic 
strain according to exponential equations.  

Recently, FUENKAJORN and PHUEAKPHUM [28] 
studied the influences of uniaxial cyclic loading on 
instantaneous and long-term creep properties of Maha 
Sarakham salt. Furthermore, in the view of 
microcracking, with two types of uniaxial cyclic loading 
test schemes, such as increasing-amplitude cyclic loading 
and constant-amplitude cyclic loading, HEAP and 
FAULKNER [29] researched the evolution features of 
static elastic properties of a kind of small-grain-sized 
Westerly granite. More significantly, similar 
experimental results have been observed by ZHANG et 
al [30], when they studied coupled elasto-plasticity of a 
kind of marble in both deformation and strength. All of 
these researches are discussed on isotropic rocks. 

To anisotropic ones, less attentions of coupled 
elsto-plasticity are paid. NIANDOU et al [31] conducted 
triaxial compression cyclic tests to study the properties 
of Tournemire shale in France (this shale is of transverse 
isotropy). The excellent relations they obtained were a 
series of empirical functions between the shale’s five 
elastic parameters and confining pressures. Although 
there was an evident phenomenon of coupled 
elasto-plasticity exhibiting in their stressstrain 
hysteresis curves of triaxial cyclic tests, no further 
research was discussed on this issue to establish relations 
between anisotropy and coupled elasto-plastic 
deformation. 

In this work, a detailed study on both anisotropy 
and coupled elasto-plasticity of anisotropic argillite was 
presented. Firstly, with basic rules of coupled 
elasto-plasticity, formulae for calculating elastic, plastic 
and coupled elasto-plastic strains, as well as equations 
that define elastic parameters by using cyclic unloading 
curves were proposed. Then, elastic theory and related 
five elastic parameters of transversely isotropic rocks 
were recapitulated. Based on the previous researches, 
relations between apparent elastic modulus (as well as 
apparent Poisson ratio) and plastic internal variable for 
transversely isotropic rocks were suggested. Secondly, 

triaxial loading cyclic tests on argillite specimens with 
various loading angles at two confining pressures were 
conducted. By analyzing test data, argillite’s 
characteristics of transversely isotropic coupled 
elasto-plasticity were studied. Finally, empirical 
functions between five elastic parameters and axial 
plastic strain (taken as plastic internal variable) were 
acquired.  

 

2 Coupled elasto-plastic deformation of 
rocks 

 
2.1 Elastic, plastic and coupled elasto-plastic strains 

Cyclic loading stressstrain curves of a rock 
specimen (whether this rock is isotropic or not) are 
illustrated in Fig. 1, where linear segments OA and OP 
are the axial and radial stressstrain curves, with their 
slopes E and v/E, respectively. E is defined as the 
original elastic modulus and v the original Poisson ratio 
when no plastic strains occur. Passing point A or P, the 
total strain of rock specimen will contain plastic part. For 
the purpose of making distinctions among various 
loading cycles, Ai and Pi are the i-th unloading points.  

For those ideal materials, unloading from point Ai or 
Pi, the stressstrain curve will pass along the curve AiHi 
or PiHi, parallel to OA or OP. Curves of unloading and 
subsequent re-loading are overlapped. Point Hi or Vi is 
the endpoint of unloading, and also the start point of 
re-loading. For such ideal conditions, AiHi//OA and 
PiVi//OP, coupled elasto-plastic deformation does not 
exist.  

Generally, rock materials show different behaviors. 
However, from point Ai or Pi the stress unloads to point 
Ci or Ri on the real unloading path AiBiCi or PiQiRi, then 
it re-loads along curve CiDiEiAi+1 or RiSiTiPi+1. Due to the 
non-coincidence between unloading and re-loading 
curves, a stressstrain hysteresis loop AiBiCiDiEi or 
PiQiRiSiTi is formed. Point Ci or Ri is the nadir of 
hysteresis loop, and point Ei or Ti the vertex.  

Actually, point Ci or Ri is the endpoint of unloading 
and does not always coincide with the ideal unloading 
endpoint Hi or Vi, because it invariably falls in front of Hi 
or Vi. This phenomenon is called coupled elasto-plastic 
deformation, which has been discussed in many 
literatures [810, 2527]. At the unloading point Ai or Pi, 
the total strain thus can be divided into irreversible 
plastic and reversible parts as  
 

i i i iOF C F OC   viz ( ) r( ) p( )
a a a

i i i                (1) 
 

i i i iOU R U OR   viz ( ) r( ) p( )
r r r
i i i                (2) 

 
Equations (1) and (2) are respectively for axial and  
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Fig. 1 Illustration of coupled elasto-plastic stress-strain curves of a rock specimen under uniaxial cyclic loading 

 
radial strain relations. Subscript “a” stands for “axial”, 
and “r” for “radial”. Superscript “ ( )i ” stands for 

unloading cycles, as well as “r’ and “p” stand for 
“reversible” and “plastic” strains, respectively. The total 

strains ( ( )
a
i  and ( )

r
i ) and plastic strains ( p( )

a
i  and 

p( )
r

i ) can be measured by testing. 
The strain HiFi or ViUi rebounding along the ideal 

unloading curve is defined as elastic strain e( )
a

i  

(or e( )
r

i ). While the strain CiFi or RiUi rebounding along 

the real unloading curve AiBiCi (or RiQiRi) is defined as 

the resilient strain r( )
a

i  (or r( )
r

i ). Thus, the resilient 

strain includes a part of strain CiHi or RiVi that is called 

coupled elasto-plastic strain ep( )
a

i  ( ep( )
r

i ). So, the total 

strain can be divided into three parts, which are 
 

( ) e( ) ep( ) p( )
a a a a
i i i i                              (3) 

 
( ) e( ) ep( ) p( )
r r r r
i i i i                              (4) 

 
2.2 Elastic parameters defined by unloading curves  

Rocks are porous materials with numerous 
micro-pores and micro-cracks. When they are applied 
with compressive stress, they (especially soft rocks) will 
exhibit irreversible plastic deformation. Many cyclic 
loading tests show that rocks inevitably develop new 
plastic strains during the process of loading. Thus, the 
deformational parameters tested by loading curves are 
exactly those of elasto-plasticity [32]. 

Therefore, elastic parameters determined by 
unloading curves are much more proper and truly able to 
reflect elasticity of rocks than those tested by loading 
curves. In this work, a testing method, defined on the  

unloading curves of triaxial cyclic tests, is suggested and 
adopted to calculate the argillite elastic parameters. As 
shown in Fig. 1, we connect the unloading point Ai and 
the nadir Ci of hysteresis loop with a line segment AiCi. 
So, the average elastic modulus E(i) of AiBiCi at the i-th 
unloading cycle can be represented by  

( )
r( )
a

( )i i i
i

i i

F A i
E

C F




                              (5) 

 
where (i) is the stress at the unloading point Ai and E(i) 

equals the slope of AiCi. Precisely the same with modulus, 
we have following formula to define Poisson ratio v(i)    

r( )
( ) r

r( )
a

i
i i i

i
i i

R U

C F





                              (6) 

 
In Eqs. (3) and (4), elastic strains ( e( )

a
i  and e( )

r
i ) 

and coupled elasto-plastic strains ( ep( )
a

i  and ep( )
r

i ) can 

be calculated by Eqs. (7) and (8):  
( ) 0

e( ) e( ) ( )
a a0 0

,  
i

i i i

E E

                          (7) 
 

0 ( ) ( )
e( )
a 0 ( )

0 ( )
ep( ) ( )
r 0 ( )

( )i i
i

i

i
i i

i

E E

E E

E E



  

 





      
 

                      (8) 

 
3 Triaxial cyclic loading tests  
 
3.1 Elastic parameters of bedding rocks 

Rock with one regular bedding plane or foliation 
can be simplified as transversely isotropic material. This 
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indicates that at each point in the rock there is an axis of 
rotational symmetry and that the rock has isotropic 
properties in the plane normal to that axis, this plane 
being the plane of transverse isotropy [1].  

Figure 2 shows the uniaxial compression test of a 
transversely isotropic rock specimen with an angle of , 
which is both the sampling angle and the loading angle. 
 is also the angle between axis of rock specimen and its 
isotropic plane. z is the applied compression stress on 
the end of specimen. 

 

 
 
Fig. 2 Specimen illustration of transversely isotropic rocks 

 
In Fig. 2, a fabric coordinate system OXYZ attached 

to the structure is set up, with its Z-fold axis being the 
axis of rotational symmetry and XOY plan being the 
plane of transverse isotropy. The global coordinate 
system Oxyz is obtained by rotating OXYZ 
counterclockwise around the X-axis with an angle of . 
Transversely isotropic materials have five elastic 
parameters, with the following definitions [1]: E1 and E2 
are elastic moduli in the plane of transverse isotropy and 
in the direction normal to it, respectively; v1 and v2 are 
Poisson ratios characterizing the lateral strain response in 
the plane of transverse isotropy to a stress acting parallel 
or normal to it, respectively; G2 is the shear modulus in 
planes normal to the plane of transverse isotropy.  

Some methodologies were developed by using 
uniaxial [13] and triaxial tests [11, 31] to determine the 
five elastic parameters. It is assumed that theories and 
formulae deduced for isotropic rocks are suitable for 
anisotropic rocks. So, as for the transversely isotropic 
rocks, their five elastic parameters and the plastic 
internal variable are supposed to be abstractly related as  
 

1 1 1 1

2 2 2 2

2 2

( ), ( )

( ), ( )

( )

E E

E E

G G

   

   



 

 









                ( 9 ) 

 
where  is the plastic internal variable. Moreover, the 

apparent elastic modulus E and apparent Poisson ratio 
v vary with loading angle  as well, so we suppose 
 

,( )E E                                  (10) 
 

,( )                                     (11) 

 
3.2 Rock specimen preparation 

The argillite rock specimens were sampled from an 
excavation slope in Sige Service Area of 
Xiamen-Chengdu Expressway in Rongjiang County, 
Guizhou Province, China (Fig. 3). Specimens were cored 
by a drilling at different angles  (0, 15, 30, 45,   
60 and 90) and cut from the core samples with a saw 
machine. Then, the ends of specimens were made flat 
with a grinding machine. All specimens were about   
42 mm in diameter and 99 mm in length (Fig. 4). Their 
physical and geometrical parameters are listed in Table 1.  

BX120-5AA foil strain gauges were glued in the 
way shown in Fig. 2. The angles of strain gauges were 0 
and 90, which can be used for testing radial strain r and 
axial strain a of a rock specimen. 
 
3.3 Triaxial cyclic loading tests 

Instron 1346 Servo-controlled Mechanical Testing 
System was used for all triaxial cyclic loading tests in 
this work. The system consists of a confining pressure 
cell, a data acquisition instrument, load frame, test 
controller and a computer. Loading, unloading and data 
collection can be conducted under the control of system 
software.  

The argillite rock specimens were wrapped in a 
rubber membrane and put into the sealed triaxial cell. By 
starting the system, confining pressure was firstly and 
gradually applied and reached the pre-set value. But the 
axial force was applied at the tempo of 0.2 kN/s. The 
frequency of collecting data by an instrument was set as 
1 Hz, namely one time each second. During a test, the 
confining pressure was kept as constant and cross-section 
compression stress of specimen was taken as traxial 
cyclic loading control points (listed in Table 2). When 
one specimen’s cross-section compression stress 
unloaded to its confining pressure, unloading was 
stopped. The rate of unloading was the same as that of 
loading. 
 
3.4 Test results 

Stressstrain curves for triaxial cyclic loading tests 
of argillite rock specimens with different coring angles 
are graphed in Figs. 5 and 6 at confining pressures of    
5 MPa and 10 MPa, respectively. Due to the failure of 
system’s data cable in the connection between foil strain 
gauges and triaxial cell, the radial strain data of rock   
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Fig. 3 Location of investigation site in Guizhou Province, China 
 
 

 
 
Fig. 4 Tested anisotropic argillite specimens with various 

coring angles 

 

specimens when angle   was 15, 30 and 60 were 
not recorded. 
 

4 Relations between elastic parameters and 
plastic axial strain 

 
In terms of plasticity of geo-materials, plastic work 

and plastic strain are often chosen as plastic internal 
variables. Following this convention, axial plastic strain 

p
a  is adopted as plastic internal variable to substitute  

in the following context. So, we assume that E and v 
are the common functions of axial plastic strain p

a and 
loading angle . 

Table 1 Physical and geometrical parameters of specimens 

Dimensions/mm Confining 
pressure/ 

MPa 

Dip of 
bedding/ 

() Length Diameter 

Length/ 
Diameter

ratio 

Density/
(kgm3)

5 0 99.50 42.23 2.36 2 617.99

5 15 99.67 42.51 2.34 2 559.23

5 30 97.74 42.43 2.30 2 498.16

5 45 98.44 42.22 2.33 2 478.74

5 60 98.55 42.38 2.33 2 447.98

5 90 96.18 42.17 2.28 2 423.45

10 0 99.74 42.65 2.34 2 593.49

10 15 99.83 42.25 2.36 2 516.91

10 30 99.01 42.44 2.33 2 517.55

10 45 98.72 42.36 2.33 2 518.35

10 60 98.50 42.35 2.33 2 429.21

10 90 101.39 42.40 2.39 2 449.12
 

Table 2 Unloading control points for triaxial cyclic loading, 
1/MPa  

Loading cycle 3=5 MPa 3=10 MPa 

1 10 15 

2 15 20 

3 20 25 

4 25 30 

5 30 35 

6 35 40 

7 40 45 
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Fig. 5 Triaxial cyclic loading stress-strain curves of argillite specimens with different dip angles (confining pressure: 5 MPa) 
 
4.1 Variations of oriented elastic parameters 

Apparent elastic modulus E and axial plastic strain 
p
a  corresponding to different unloading cycles can be 

calculated with Eq. (5) and measured by tests, 
respectively. A significant finding in this work is that 
apparent elastic modulus of argillite decreases with the 
growth of axial plastic strain and eventually is close to a 
constant. This characteristic of argillite can be illustrated 
with an exponential decay function: 

p
aexpE B A
t
 

    
 

                        (12) 

where B, A and t are empirical parameters and related to 

loading angle . Figure 7 shows experimental values and 
data-fitting curves of E vs p

a  at various loading 
angles and under two confining pressures. By data-fitting 

with Eq. (12), B, A and t corresponding to loading angles 
can be obtained and listed in Table 3. 

While  is confined to be a constant and a series of 
p

a
  is substituted into Eq. (12), a series of changing E 
corresponding to this fixed  will be obtained. By linking 

these points of E with same values of p

a
 , curves 

between E and  can be graphed in Fig. 8. These curves 
are called contour curves of E vs  at equivalent p

a
 . 

From Fig. 8, it is interesting to draw the following results:  
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Fig. 6 Triaxial cyclic loading stress-strain curves of argillite specimens with different dip angles (confining pressure: 10 MPa) 

 

 

Fig. 7 Relationships between apparent elastic modulus and axial plastic strain at two confining pressures: (a) 5 MPa; (b) 10 MPa 
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Table 3 Values of parameters A, B and t at various loading angles 

3=5 MPa 3=10 MPa 
Angle/() 

A/GPa B/GPa t A/GPa B/GPa t 

0 3.343 7.963 0.065 2 3.295 7.631 0.065 9 

15 2.947 7.895 0.062 4 3.057 7.100 0.068 7 

30 2.559 7.391 0.083 9 2.965 6.734 0.070 7 

45 2.354 7.353 0.088 6 2.472 6.487 0.074 3 

60 2.608 7.412 0.089 4 3.196 6.875 0.069 9 

90 2.917 7.509 0.073 1 3.805 7.270 0.057 8 

 
 

 

Fig. 8 Contour curves for apparent elastic modulus vs loading 

angle at equivalent axial plastic strain: (a) 3=5 MPa; (b) 3=10 

MPa 

 

1) At the same values of p

a
 , E at 10 MPa 

confining pressure is greater than that under 5 MPa.  
This illustrates that higher confining pressure has a 
considerable effect on elastic modulus. 

2) The anisotropy degree at 5 MPa confining 
pressure is more evident than that under 10 MPa. And it 
is clear that as the confining stress grows larger, the 
argillite anisotropy becomes weaker. Therefore, higher 
confining pressures can significantly restrain anisotropic 
deformation of rocks. 

3) The degree of argillite anisotropy depends highly 
upon plastic internal variable. With the growth of axial 
plastic strain, apparent elastic modulus and the degree of 
argillite’s anisotropy reduce.  

Only apparent Poisson ratios for =0, 45 and 90 
were obtained. With Eq. (6), vcan be calculated 
corresponding to each unloading cycle. It is significant to 
find that v increases with the growth of p

a  and it 
eventually tends to constant. Similarly, it is feasible to 
establish an empirical relation between v and p

a , 
which is  

p
aa bc                                  (13) 

 
where a, b and c are the empirical parameters related to 
loading angles and confining pressures. Experimental 

values of v vs p

a  and data-fitting curves with Eq. (13) 

are shown in Fig. 9 at three loading angles and at two 
confining stresses of 5 MPa and 10 MPa. Three 
empirical parameters of Eq. (13) are listed in Table 4. 
 

 
 
Fig. 9 Relationships between apparent Poisson ratio and axial 

plastic strain at two confining pressures: (a) 3=5 MPa; (b) 

3=10 MPa 
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Table 4 Values of a, b and c at various loading angles 

3=5 MPa  3=10 MPa Angle/

() a b c  a b c 

0 0.264 0.096 0 0.017 93  0.244 0.077 9 0.002 73

45 0.272 0.089 4 0.010 21  0.258 0.062 6 0.001 03

90 0.284 0.086 4 0.009 14  0.274 0.076 9 0.004 71

 

In Eqs. (12) and (13), when p
a 0  , the values that 

E and v tend to be are defined as original values of 
apparent elastic modulus and apparent Poisson ratio and 

recorded as 0E  and 0v  correspondingly. As 0E  and 
0v  are obtained (listed in Table 5), elastic strain and 

coupled elasto-plastic strain can be calculated by Eqs. (7) 

and (8). It is evident that 0E  and 0v  vary with 

loading angles. 
 

Table 5 Values of 0E , and 0v  at various loading angles 

5 MPa  10 MPa 
/() 0E /GPa 0v   0E /GPa 0v  

0 10.93 0.17  11.31 0.17 

15 10.16 —  10.84 — 

30 9.70 —  9.95 — 

45 8.96 0.18  9.71 0.20 

60 10.07 —  10.02 — 

90 11.08 0.20  10.43 0.20 

 
4.2 Variations of five elastic parameters 

Based on the testing methodology described in 
previous sections and provided in Refs. [12], the five 
elastic parameters for the test anisotropic argillite can be 
determined. Because of coupled elasto-plastic 
deformation, these five elastic parameters are related to 
plastic internal variable.  

When =0, E=E2 and v=v2, and when =90, 
E=E1 and v=v1. From the anisotropic elastic theory, 
calculation procedure of G2 can be presented as follows. 

1) Let axial plastic strain p

a  be a series of 
constant values 1 , 2 , n , Input this series of values 
into functions E1=E2

p
a( ) , E2=E2

p
a( ) , E=E

p
a( ),  and 

p
2 2 a( )   , and obtain a series of values for E1, E2, E 

and v2, corresponding to 1, 2, , n. 
2) Input these values into Eqs. (13) and (14) in Ref. 

[1], then we obtain several series of values for G2 
corresponding to 1, 2, , n.  

3) Use an exponential decay function (the same as 
Eq. (12)) to fit the relationship between G2 and axial 
plastic strain p

a . 
The calculated values and data-fitting curves of G2 

vs p
a  are shown in Fig. 10 at different confining 

pressures of 5 MPa and 10 MPa. 
 Significantly, based on these values, empirical  

 

 

 
Fig. 10 Relationships between shear modulus and plastic 
internal variables at two confining pressures 
 
functions between five elastic parameters of anisotropic 
argillite and axial plastic strain are obtained in the form 
of Eqs. (14) and (15) corresponding to 5 MPa and     
10 MPa confining pressures, respectively:  
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5 Characteristics of coupled elasto-plastic 

deformation of anisotropic argillite 
 
5.1 Relations between axial springback strain and 

plastic strain 
For a better understanding of the characteristics of 

the anisotropic argillite’s coupled elasto-plasticity, a 
comparison of deformational effect between coupled 
elasto-plasticity existing (E-P coupling) and no coupled 
elasto-plasticity existing (Non E-P coupling) is presented 
in the following. Before this discussion, two variables 
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related to plastic strain are defined.  
Firstly, taking into account the coupled 

elasto-plasticity, we define a ratio of axial reversible 
strain r ( )

a

i  to the total strain increment ( )
a
i  during 

each cycle loading as 
r( )

a

( )
1 a

i

i i

i
i i

C F

C F









                              (16) 

Secondly, by contrast, assume that the argillite had 
no coupled elasto-plastic deformation. Another ratio in 

terms of axial elastic strain e( )
a

i  to the total strain 

increment ( )
a
i  during each loading cycle is defined as 
e( )
a

( )
1 a

i
i i

i
i i

H F

C F









                            (17) 

Input the values of original apparent elastic modulus 
0E  listed in Table 5 into Eq. (7), and values of e( )

a
i  

can be obtained. 
Obviously, we have 0 1   and 0 1  . This 

normalization approach is useful, because it can make it 
possible to compare quantitatively the elastic properties 
while loading strain increments are not equal. By tests 
and calculation, we can establish the relationships of  vs 

p( )
a

i  and   vs p( )
a

i , which are in form of 
experimental values and data-fitting curves as illustrated 
in Figs. 11 and 12 at two confining pressures. Fitting 
functions are in a common form as   
y=mndx                                (18)  

 

 

Fig. 11 Relationships between  (or ) and p
a  under different loading angles (confining pressure: 5 MPa): (a) 0; (b) 15; (c) 30; (d) 30; 

(e) 60; (f) 90 
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Fig. 12 Relationships between  (or ) and p

a  under different loading angles  (confining pressure: 10 MPa) : (a) 0; (b) 15; (c) 

30; (d) 30; (e) 60; (f) 90 
 

where y represents  or, and x  refers to axial plastic 
strain p

a . m, n and d are empirical parameters used in 

data fitting and related to loading angles and confining 

pressures. 
From Figs. 11 and 12,  and  increase with the 

growth of p
a . When p

a  is low, the increase amplitudes 

of  and  are considerably large. With the growth of p
a , 

curves tend to stable values. It is noteworthy that , 

and with the growth of plastic strain p
a , the gaps 

between them increase. 

5.2 Anisotropy of argillite in coupled elasto-plastic 

deformation  
A good way to study the argillite’s anisotropic 

coupled elasto-plastic deformational charaterisitcs is to 
graph the contour curves of   vs   at equivalent 
axial plastic strain a

p .  
According to the test results, at 5 MPa confining 

pressure, we set x =0.08%, 0.15%, 0.25% and 0.35%. 
At 10 MPa, however, set x =0.06%, 0.10%, 0.20% and 
0.35%. Here, x refers to axial plastic strain p

a . Firstly, 
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let =0, input these four values of x  into Eq. (18) and 
four different values of y  ( y  ) are obtained. 
Through the same calculating processes, another five sets 
of values of  corresponding to =15, 30, 45, 60 and 
90 are obtained. Link the points of  with same value of 

p
a  by line segments to be curves, which are the contour 

curves of   vs  at equivalent p
a  (Fig. 13). From 

these curves, two main characteristics can be observed: 
 

 

 
 
Fig. 13 Anisotropy of coupled elasto-plasticity for tested 
argillitecontour curves of vs  at p

a : (a) 3=5 MPa; (b) 

3=10 MPa 

 

1) At low plastic strain phase, argillite has a high 

anisotropic degree in coupled elasto-plastic deformation. 

With the growth of plastic strain, the degree of 

anisotropy reduces and the variation of  with  tends to 

be gentle. 
2) Confining pressure has a salient influence on the 

anisotropic degree of argillite’s coupled elasto-plastic 
deformation. As plastic strain and confining pressure 
increase, anisotropic degree of this kind of deformation 
is suppressed. 
 
6 Conclusions 

 
1) Based on a review of previous works about 

rocks’ coupled elasto-plasticity, a caption on this issue is 
illustrated graphically. More practically, a kind of 
bedding argillite (which is of transverse isotropy) is 
selected to conduct triaxial cyclic loading tests.  

2) On the loading process, argillite’s mechanical 
response is of elasto-plasticity and the moduli 
determined by loading curves are less than those tested 
by unloading curves, of which can better reflect 
argillite’s elastic properties to a large extent. So, elastic 
parameters of argillite are measured by unloading curves. 

3) The apparent elastic modulus of tested argillite at 
10 MPa confining pressure is larger than that at the 
confining pressure of 5 MPa at the same loading angle. It 
means that higher confining pressure has a positive effect 
on argillite’s elastic properties. 

4) With the growth of axial plastic strain, the 
bedding argillite’s apparent elastic modulus decreases in 
a form of exponential decay function, whereas apparent 
Poisson ratio increase is in the form of power equation. 
The degradation of elastic parameters induced by 
coupled elasto-plasticity accords well with the previous 
research results. 

5) Anisotropic effect of tested argillite’s coupled 
elasto-plasticity has been investigated by discussing the 
shape of contour curves of E  vs  and of  vs  at 
equivalent p

a  at two confining pressures. It has been 
found that the anisotropic degree of bedding argillite is 
suppressed with the growth of confining pressures and 
axial plastic strains. This indicates that higher confining 
pressure and larger accumulated plastic strains have 
strong inhibitions upon the argillite’s anisotropy in 
deformation. 

6) A reinforcement effect on elastic parameters is 
observed, which is related to restraint effect of higher 
confining pressure. A comparison, between the curves of 
  vs p

a  and  vs p
a  provides a striking illustration 

that transversely isotropic argillite has a conspicuous 
coupled elasto-plastic deformation, because much more 
reversible strains are included in the total strain 
increment in subsequent loading cycles. So, anisotropy 
and coupled elasto-plasticity upon the elastic parameters 
are essentially required in the elaborate description of 
mechanical properties of the anisotropic argillite. 
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