
 

J. Cent. South Univ. (2013) 20: 640647 
DOI: 10.1007/s11771-013-1530-y 

 
Effect of static transmission error on dynamic responses of spiral bevel gears 

 
TANG Jin-yuan(唐进元), HU Ze-hua(胡泽华), WU Li-juan(吴丽娟), CHEN Si-yu(陈思雨) 

 
State Key Laboratory of High Performance Complex Manufacturing, (Central South University), 

 Changsha 410083, China 
 

© Central South University Press and Springer-Verlag Berlin Heidelberg 2013 
                                                                                                  
 
Abstract: The effect of static transmission error on nonlinear dynamic response of the spiral bevel gear system combining with 
time-varying stiffness and backlash was investigated. Firstly, two different control equations of the spiral bevel gear model were 
adopted, where the static transmission error was expressed in two patterns as predesigned parabolic function and sine function of 
transmission errors. The dynamic response, bifurcation map, time domain response, phase curve and Poincare map were obtained by 
applying the explicit Runge-Kutta integration routine with variable-step. A comparative study was carried out and some profound 
phenomena were detected. The results show that there are many different kinds of tooth rattling phenomena at low speed. With the 
increase of speed, the system enters into stable motion without any rattling in the region (0.72, 1.64), which indicates that the system 
with predesigned parabolic function of transmission error has preferable capability at high speed. 
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1 Introduction 
 

Gear pair is the most extensive mechanism for 
transmission power and motion in various machineries 
and equipments. Spiral bevel gears and hypoid gears are 
the most complicated gear transmission systems, which 
are widely used in industrial departments such as the 
field of aeronautics, astronautics, transportation and 
instrument manufacturing [1–4]. As for the research of 
the dynamic response of spur gears and helical gears, 
KAHRAMAN and SINGH [5] presented and solved the 
dynamic equations with backlash and transmission error 
in the involute cylindrical gear model. Combined with 
the harmonic balance method, jump frequency, 
sub-harmonic resonance and chaotic phenomena were 
detected, though the model was of single degree of 
freedom (SDOF) with a constant stiffness.  

Subsequently, lots of literature had been focusing on 
the research of nonlinear gear dynamics. However, due 
to the complexities of the gear surface and the gear mesh, 
there were few studies about spiral bevel gears. The 
current literature concentrated on the tooth contact 
analysis (TCA) at the static or quasi-static state [6–12]. 
GOSSELIN et al [11] proposed an LTCA method to 
analyze the dynamic error of spiral bevel gears with load, 
and the effects of the shape and amplitude of the 

unloaded transmission error curve on the loaded dynamic 
behaviours were demonstrated. The comprehensive 
deformation and contact deformation deduced by bend 
deformation and shear deformation were considered and 
improved, and the initial contact surface departure 
deduced by assembly error was analyzed as well. 
SIMON [12] studied the effect of motion deviation, 
adjustment error of the pinion shaft and angle error on 
the shape, location of contact zones and on the potential 
line of action. LITVIN et al [6–9] adopted the 
predesigned parabolic static transmission error to modify 
the spiral bevel gears, and excellent transmission 
properties were obtained with tooth contact analysis, 
which were all based on static analyses. 

For the nonlinear dynamics of spiral bevel gears, 
YANG et al [13] established an SDOF hypoid gear 
dynamic equation, which included the time-varying 
stiffness, transmission error and backlash, and obtained 
the FFT responses by using the shooting method and 
continuous parameter method. WANG et al [14] 
established a 7-DOF nonlinear dynamic model of the 
spiral bevel gear with the dynamic relative transmission 
error, backlash and time-varying stiffness. The vibration 
displacement and velocity in the torsional, horizontal and 
vertical directions in the spiral bevel gear model under 
different conditions were depicted. The system entered 
into period doubling bifurcation and chaotic motion, and 
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the jump phenomena were detected with the varying 
mesh frequency. A 14-DOF system including 
time-varying mesh stiffness, transmission error and 
backlash was implemented by CHENG and LIM [15]. 
Transmission error was considered as the main excitation 
source and the dynamic responses were discussed. 
Sub-harmonic resonance and jump phenomena caused by 
the backlash of the tooth face under light load were 
detected. WANG et al [16] exhibited a hypoid gear 
vibration model with the consideration of nonlinear 
backlash, time-varying mesh points, time-varying mesh 
direction, time-varying mesh stiffness and dynamic 
transmission error, and the mesh parameters were 
denoted as harmonic components. The effect of 
time-varying mesh stiffness, static transmission error and 
load on the dynamic responses was included and 
demonstrated. 

The main parameters discussed previously were 
time-varying mesh stiffness and nonlinear backlash, and 
the static transmission error and time-varying mesh 
stiffness were unfolded as Flouries series. For the static 
analyses and design, parabolic transmission error was the 
optimum transmission error curve. Combined with the 
model of spiral bevel gear transmission system [16], in 
this work, a comparative study was conducted, which 
focused on the different effects of parabolic transmission 
error and sine transmission error on the gear dynamics. 
 
2 Gear model 

 
The model of spiral bevel gears transmission system 

is shown in Fig. 1, and the parameters are listed in Table 1. 
From Fig. 1, the torsional vibration equations of 

gear transmission system could be expressed as  

 p p p m p p g gI c e                 

     p m p p g g p( )k f e T                         (1) 

g g g m p p g g g m p p g g( ) (I c e k f                             

      g)e T                                (2) 
 
where Ip and Ig are the moments of inertia of the pinion 

and gear, respectively; Tp and Tg are the torques of 

transmission gear pairs; mc  and mk are the damping 

ratio and mesh stiffness of gear pairs, respectively. The 

backlash equation could be expressed as  
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   (3) 

 
where 2b is the backlash of gear pairs. p and g are 

the directional rotation radii of the pinion and gear, 

respectively, which could be denoted as 

 

 p p p p    n j r                              (4) 
 

 g g g g    n r j                              (5) 
 
where rp and rg are the position vectors of mesh points of 

the pinion and gear, respectively; np and ng are the unit 

normal vectors of mesh point; jp and jg are the unit 

vectors along pinion and gear rotating axes. 
Because 

p  and 
g  are slowly changing 

parameters, then 0l l      and set p px     

g g e    .  
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And the equivalent mass and backlash equations are

 

 
 
Fig. 1 Torsion model of spiral bevel gear: (a) Torsional vibration model of spiral bevel gear; (b) Coordinate systems for pinion and gear  
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Table 1 Gear parameters and their values 

Gear parameter Value 

Pinion tooth number 10 

Gear tooth number 43 

Offset of pinion/m 0.031 8 

Radius of pinion/m 0.048 

Radius of gear/m 0.168 

Moment of inertia of 
pinion/(kgm2) 0.002 

Moment of inertia of 
gear/(kgm2) 0.05 

Backlash/μm 20 

Damping ratio 0.03 

 

 e 2 2
p p g g

,    
1

,  0,        

,  

x b x b

m f x x b
I I
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 

 

    (7) 

Set dimensionless parameters x x b  , nt t  , 

n    , p p pm    , g g gm    , m mmk k k   

and ,e e b   and substitute them into Eqs. (6) and (7), 

then get 
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                   (9) 
 

According to the characteristics of the gear mesh 

period, the varying parameters p , g  and k with the 

variation of mesh points could be expressed as the 

Fourier series in the fundamental harmonic form:  
 

 p pa p
1

1 cos jj j
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j
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
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Gear transmission error was deduced from the gear 

machining errors, assembly errors and manufacturing 
errors, which made the gear mesh profile deviate from 

the theoretical mesh position and the correct mesh way 
of involute gear was destroyed. And the instantaneous 
transmission ratio varied and deduced collision and 
impact, which carried out the error excitation of gear 
mesh. The measured error value as the error excitation 
could describe the actual situation explicitly. For the 
restrictions of measurement conditions and time, it was 
hard to accomplish. 

In the present literature on the nonlinear dynamics 
of spiral bevel gears [13–16], according to the 
accumulation tolerances of the standard tooth space 
based on the accuracy grade of spiral bevel gears and 
hypoid gears, the static transmission error was simulated 
as harmonic function: 
 

 0
1

cos jrj rj
j

e e e t 



                      (13) 

 
Transmission error was regarded as the main 

excitation of the gear noise and vibration of the gear. The 
static transmission error was predesigned as parabolic 
format in design process, which could incorporate the 
linear error deduced from the misalignment of the gear 
shaft. The method was marvelously applied in the 
quasi-static analyses, and could reduce vibration and 
noise obviously. The pre-design parabolic transmission 
error in the mesh surface of the gear pairs could be 
expressed as 
 
  2t at                                   (14) 

 
The whole motion graph, as shown in Fig. 2, could 

be plotted when the transmission error curves on one pair 
gear tooth surface were plotted as the period of  

n p2πT N repeatedly.  

  
Fig. 2 Parabolic static transmission error 

 
 Equation (8) shows that the static transmission error 

(STE) in the nonlinear model came out at the second 
derivative, and the second derivative of the parabolic 
transmission error is shown in Fig. 3. It is an impulse 
excitation, which is quite different from the traditional  
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Fig. 3 Second derivative of parabolic transmission error 

 
dynamic model of gear transmission system. To avoid 
the situation referred above, an assumption should be 
made as 
 

1 p p g gx                                    (15) 
 
Then, 
 

1x x e                                     (16) 
 

Substituting Eq. (16) into Eq. (8), it could be 
simplified as 
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where 
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1 1
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          (18) 

 
To study the STE of spiral bevel gears, two different 

equations of analytical models, Eq. (8) and Eq. (17) were 
established, both of which could represent the dynamic 
characteristics of the gear system. STE was an analytical 
method based on the static or quasi-static states. 
However, it was not certain to suppress the vibration and 
noise in actual motion process. And, the value of 
parameter a should to be set suitably. To tackle the 
problems, a comparative study was conducted under the 
two models, focusing on the effect of STE on the 
characteristics of dynamic responses of spiral bevel 
gears. 

 
3 Comparison of two models 
 

The diversity of gear dynamic responses in two 

different models was discussed. And the high-order 

harmonic components of parameters such as p, g, k and 

e varying with mesh points were ignored. Set the 

systematic parameters as fp=2, p=0.03, er1=0.5, ka1=0.5, 

pa=ga=0.01, =0.75, p1=g1=0, k1=–4/5, r1=0. The 

system response curves of Eq. (8) and Eq. (17) are plotted 

in Figs. 4(a) and 4(b), respectively, where the horizontal 

vector stands for the pinion rotational frequency , and 

the vertical vector stands for the root-mean-square (RMS) 

value of the steady state responses xrms [17].  

 

  
Fig. 4 Response curves of two different models; (a) Sine STE 

case; (b) Pre-design parabolic STE case  

 
For Eq. (8), with the increase of frequency  in the 

zone [0.01, 1] (as positive sweep frequency), the 
response curve of the gear system is plotted in Fig. 4(a) 
and the arrow denotes the jump direction. The amplitude 
value jumps at xrns=1.235 and =0.27 and then enters 
into steady state motion, so the system is under 
single-sided impact. However, the second jump 
phenomenon appears at =0.71 and the system enters 
into chaotic motion. When the value of  decreases from 
1 to 0.01 (in negative sweep frequency), the response 
curve of the gear system is plotted. The system stays in 
chaotic state at high frequency. With the decrease of 
frequency , the jump phenomenon is detected at 
=0.83, and then enters into steady state motion. From 
the description of Fig. 4, we can conclude that 
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co-existing solutions exist in the zone (0.725, 0.835), 
which is corresponding to the calculation and experiment 
results in Ref. [18]. We can see that a peak value appears 
at resonance frequency =0.3 in the system response 
from Eq. (17), as shown in Fig. 4(b). Moreover, the multi 
solution zone, which is in the zone (0.725, 0.815), is 
narrow compared to the situation of Eq. (8). All the 
above analyses can demonstrate that co-existing 
solutions and multi impact are carried out and equivalent 
in the two different models. 

 
4 Effect of static transmission error 

 
4.1 Effect of sine static transmission error 

In this subsection, the effect of sine static 

transmission error on dynamic characteristics of the 

spiral bevel gear system is studied. Setting fp=1, 3, the 

system parameters are the same as the previous 

subsection, and the response curves of the system are 

shown in Fig. 5. When the load is fp=1, the results of the 

positive sweep frequency calculation are plotted in Fig. 

5(a). The first upward jump phenomenon is detected at 

the mesh frequency =0.2 along with the increase of 

rmsx . With the increase of frequency , the system 

enters into chaotic motion and the downward jump  
 

 
Fig. 5 System response curves with variation of loads: (a) fp=1; 

(b) fp=3 

appears around =0.7. The results of the negative sweep 
frequency are also plotted in Fig. 5(a). The value of xrms 
is decreases and the system responses jump upward 
around =0.84 and then enter into steady motion. When 
the load is fp=3, the results of the positive sweep 
frequency calculation are plotted in Fig. 5(b), and the 
value of xrms oscillates around 2 at a low frequency 
period. The first upward jump is carried out at the mesh 
frequency =0.38 and xrms reaches the peak value 3.15. 
The value of xrms decreases with the increase of 
frequency . The system appears downward jump at 
=0.8 and enters into chaotic motion. The results of the 
negative sweep frequency are also plotted in Fig. 5(b), 
and both the values of frequency increase where upward 
jump and downward jump appear, and the two sweep 
frequency curves are crossed. All the analyses above can 
demonstrate that the value of load can affect the 
characteristics of the response extensively. With the 
increase of load, the jump frequency increases as well 
and the co-existing solution zones are altered obviously. 

 
4.2 Effect of parabolic static transmission error  

The system parameters are the same as referred 
previously. When the STE of the spiral bevel gear system 
is in pre-design parabolic form, the system response is 
shown in Fig. 6. At low velocity, the value of xrms 
response is large and a little jump process exhibits. The 
positive and negative sweep frequency zones are (0.58, 
0.70) and (0.56, 0.72), respectively. At high velocity, a 
downward jump appears at =1.64 in positive direction. 
Conversely, an upward jump appears at =1.74 in 
negative direction. With the comparative analyses, the 
nonlinear characteristics of the spiral bevel gear system 
are not transformed with the pre-design parabolic STE, 
and impact and frequency jump still exist in the system.  

 

 
 
Fig. 6 System response with parabolic STE 
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The motion of the system is extremely unstable at low 
velocity in this case, and the vibration and impact are 
severe. On the contrary, the motion of the system is 
stable at high velocity, gear tooth impact and gear 
surface impact disappear, the jump frequency entering 
into chaotic motion increases and excellent high velocity 
property can be carried out. 

 
4.3 Chaotic and bifurcation 

When the load fp=1, the displacement varying with 
mesh frequency  in the Eq. (15) can be deduced, as 
shown in Fig. 7. The displacement varies obviously at 
low frequency zones, no obvious period doubling 
bifurcation appears and the system enters into chaotic 
motion at =0.48. With the increase of frequency, the  

 

 
 
Fig. 7 Bifurcation graph at load fp=1 

 

 

Fig. 8 Time domain response and phase space: (a), (b) =0.1; (c), (d) =0.3; (e), (f) =0.6 
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chaos is suppressed, and 2-period bifurcate enters into 
4-period bifurcate obviously in the high frequency zone 
(0.8, 1). For the further study on the motion of the spiral 
bevel gear system, Fig. 8 exhibits the time domain 
responses and phase space graphs at =0.1, 0.3 and 0.6. 
The time domain response and phase space graph at 
=0.1 are plotted in Figs. 8(a) and (b), respectively. The 
displacement varies periodically, and the period is 2Tn. In 
the first period Tn, the oscillation amplitude is large, the 
gear tooth impact is serious, and the vibration impact 
decreases until the tooth pair mesh departure. In the 
second period Tn , the mesh departure changes into tooth 
back impact, and gear tooth surface impact, mesh 
departure and tooth back impact appear periodically. The 
time domain response and phase space graph at =0.3 
are plotted in Figs. 8(c) and (d), respectively. The period 
of displacement is Tn/2, and the tooth surface impact and 
tooth back impact decrease a little. The time domain 
response and phase space graph at =0.6 are plotted in 
Figs. 8(e) and (f), respectively. The system is in chaotic 
motion, and the tooth surface impact and tooth back 
impact still exist. Moreover, the motion is disordered. 
The Poincare mappings of the system responses at =0.5 
and =0.6 are plotted in Fig. 9. And we can infer that the 
Poincare mapping is narrow in two tortuous curves zone 
 

 
 
Fig. 9 Poincare mapping: (a) =0.5; (b) =0.6 

at =0.5. With the increase of frequency , the phase 
space is twisted and rotated in a certain angle, as shown 
in Fig. 9(b). 
 
5 Conclusions 

 
1) The nonlinear characteristics of the two dynamic 

equations in the spiral bevel gear transmission system are 
equivalent such as frequency jump and chaos. Only the 
values of jump frequency and those of the chaotic 
frequency have slight differences. 

2) When the excitation is in sine format, the 
performance of the spiral bevel gear transmission system 
at low velocity is high and weak gear tooth surface 
impact exists. However, the frequency value of jumping 
into chaos is no larger than 0.9, which implies that the 
performance of the system at high velocity under the 
excitation situation is poor. 

3) When the excitation is in parabolic format, the 
property of the spiral bevel gear transmission system at 
low velocity is limited with the severe gear tooth surface 
impact, tooth back impact and tooth mesh departure. The 
gear transmission motion tends to be steady with the 
increase of velocity. No gear tooth impact exists in the 
frequency zone (0.72, 1.64), and upward jump 
phenomenon is observed at =1.74 in the negative 
sweep frequency direction, which can demonstrate that 
the property of the system at high velocity under this 
excitation is excellent. 

4) Various forms of gear tooth surface impact and 
tooth back impact in the spiral bevel gear transmission 
system are detected. The mesh process of the spiral bevel 
gears at low velocity is a continuous action of mesh and 
impact. 
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