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Abstract: Taking three-phase electrode adjusting system of submerged arc furnace as study object which has nonlinear, time-variant, 
multivariable and strong coupling features, a neural adaptive PSD(proportion, sum and differential) dispersive decoupling controller 
was developed by combining neural adaptive PSD algorithm with dispersive decoupling network. In this work, the production 
technology process and control difficulties of submerged arc furnace were simply introduced, the necessity of establishing a neural 
adaptive PSD dispersive decoupling controller was discussed, the design method and the implementation steps of the controller are 
expounded in detail, and the block diagram of the controlled system is presented. By comparison with experimental results of the 
conventional PID controller and the adaptive PSD controller, the decoupling ability, adaptive ability, self-learning ability and 
robustness of the neural adaptive PSD dispersive decoupling controller have been testified effectively. The controller is applicable to 
the three-phase electrode adjusting system of submerged arc furnace, and it will play an important role for achieving the power 
balance of three-phrase electrodes, saving energy and reducing consumption in the process of smelting. 
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1 Introduction 
 

Submerged arc furnace is widely used in smelting 
iron-alloy product as an arc resistance furnace. The 
current is transferred into the furnace through 
three-phase electrode, thereafter, the furnace can produce 
arcing resistance heat to heat up raw materials, since 
chemical reduction reactions should be taken place under 
certain temperature. Otherwise, furnace load is relevant 
to the distance between the foot of the electrode and 
metal pool. To get the best refining outcome, the 
three-phase power balance, in the smelting process, must 
be maintained by adjusting the position of the 
three-phase electrode whose inserted depth directly 
affects the electrode current [1]. 

Owing to the complexity of industrial smelting 
process, three-phase electrode adjusting system of 
submerged arc furnace has following characteristics.  

1) Nonlinearity: Adjusting the three-phase electrode 
movement, the control system can change the size of arc 
resistance. The electric arc is a complicated nonlinear 
phenomenon which is difficult to be precisely described 
by an mathematical model.  

2) Multiple variables and strong coupling: Owing to 
the feature of three-phase circuit, when disturbances 

occur in a single phase voltage or current, the other two 
phase circuit voltages and currents will be affected as 
well.  

3) Time variability: The dynamic characteristic of 
the circuit parameter varies with working conditions.  

4) Severe disturbances: There are many disturbance 
factors which can affect the system, such as the 
resistance of metal pool, the ingredient and humidity of 
raw material, electrode paste quality, smelting condition 
and heating surface and so on. 

At present, the inserted position of the electrode [2] 
is adjusted by the conventional PID (proportion, integral 
and differential) controller. However, it is not easy to 
modify the controller parameters online and the 
controller has no decoupling function. Moreover, the 
method of electrode adjustment is not suitable for 
real-time working condition because it is hard to reach 
the three-phase power balance and unable to meet the 
requirement of control, even worse, the system will be 
unsteady. Therefore, in this work, a neural adaptive PSD 
dispersive decoupling controller was proposed to meet 
the operating characteristics of three-phase electrode 
adjusting system of submerged arc furnace. A large 
number of simulation experiments show that the new 
control system has good dynamic performance and 
robustness, which means the proposed design is feasible 
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and effective in practical application. 
 

2 Design of neural adaptive PSD decoupling 
control system 

 
2.1 Adaptive PSD control algorithm 

Generally, process parameters first need to be 
identified, and then the adaptive control law can be 
established. Due to the nonlinearity and time variation of 
three-phase electrode adjusting system of submerged arc 
furnace, it is difficult to ensure the accuracy of the 
mathematical model derived from the identification. The 
mechanism of the adaptive control algorithms without 
direct parameter identification [3], proposed by 
MARSIK and STREJIC, is that the adaptive PSD control 
law can be formed according to the objective function 
established by the geometric characteristic of process 
error. This method does not need to identify process 
parameters, because it will form adaptive control law as 
long as the expected output and the actual one are 
monitored online. Thus, this kind of adaptive controller 
is simple and easy to realize.  

The adaptive PSD control law adopts incremental 
digital output [4], its mathematical expression is  
 

2
0 1( ) ( )[ ( ) ( ) ( ) ( ) ( )]u k K k e k R k e k R k e k          (1) 

 
where K(k) is the controller gain, ( )u k is the controller 
output increment, R0(k) is the proportional coefficient, 
R1(k) is the differential coefficient. Apart from this, e(k), 
e(k) and 2e(k) are process error, the first-order and 
second-order differential of errors, respectively. PSD 
incremental control law is designed to ensure that three 
absolute average values of proportion, sum and 
differential are equal, that is 
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The iterative algorithm [5] of the increments Te(k)  

and Tv(k) is  
 

e e( ) sgn[ ( ) ( 1) ( ) ]T k L e k T k e k                (4) 
  

2
v v( ) sgn[ ( ) ( 1) ( ) ]T k L e k T k e k              (5) 

 
where L is a constant, 0.05 0.1L  , when Te=2Tv, 

Te and Tv are optimal proportions, then the control law is 
 

2 2
v v( ) ( )[ ( ) 2 ( ) ( ) 2 ( ) ( )]u k K k e k T k e k T k e k        (6) 

MARSIK and STREJIC [3] presented the adaptive 

algorithm of gain ( )K k , whose recursion formula is 

When sgn( ( )) sgn( ( 1))e k e k  , 
 

( ) ( 1) ( 1) / ( 1)vK k K k CK k T k                 (7) 
 
where 0.025 0.075.C   

When sgn( ( )) sgn( ( 1))e k e k  ,  
 

( ) 0.75 ( 1)K k K k                            (8) 
 

The meaning of this algorithm is that when the sign 
of error is always the same, that is, continuously deviates 
from the given value, and the gain K(k) can 
automatically increase to adjust the output value to 
match with the given value as soon as possible; when the 
sign of error is different, this means that outputs swing in 
the vicinity of the given value, the gain K(k) can decrease 
automatically, adjust output carefully and make it 
consistent with the given value. 

 
2.2 Neural adaptive PSD controller 

In neuron PID controller [6], the gain K is the most 
sensitive parameter. As K changes, three items, namely P, 
I and D change at the same time. Therefore, how to 
choose the value of K would have a great effect on the 
performance of neural control system. It has been proved 
that when the value of K is larger, the system response 
will be faster, but the overshoot increases, on the other 
side. On the contrary, when K is smaller, system response 
will be slower, and the overshoot correspondingly 
decreases, but when the value of K is extremely small, 
the steady-state error will exist in the response of system. 

Because three-phase electrode adjusting system of 
submerged arc furnace has features like nonlinearity, 
time variability, multiple variables, strong coupling and 
severe disturbance, the characteristics of system change 
easily. Thus, a value of K should be designed to change 
according to the variations of control object features. 
Due to those features of three-phase electrode adjusting 
system, a neural adaptive PSD controller combining the 
adaptive PSD algorithm with neuron PID controller is 
developed [7]. The control principle is shown in Fig. 1.  

This controller use neural learning algorithm to 
adaptively adjust weight 1 2 3, andw w w , and use the 
PSD adaptive algorithm to adjust the value of gain K at 
the same time. This neural adaptive PSD controller 
adopts supervised Hebb leaning rule, and the algorithm is 
described as follows:  
 

( ) ( 1) ( )u k u k u k                            (9) 
 

Let threshold 0  , then  
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Fig. 1 Structure of neural adaptive PSD control system 
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1 1 I 1( 1) ( ) ( ) ( )w k w k u k x k                    (12) 

 
2 2 P 2( 1) ( ) ( ) ( )w k w k u k x k                   (13) 

 
3 3 D 3( 1) ( ) ( ) ( )w k w k u k x k                   (14) 

 

1( ) ( )x k e k  is the system error, equivalent to 
integral. 

2 ( ) ( ) ( ) ( 1)x k e k e k e k      is the change of the 
system error, equivalent to proportion. 

)1()()()( 2
3  kekekekx  is the 

first-order differential of the system error change, 
equivalent to differential. 

K(k) is computed according to Eqs. (7) and (8) . 
I, P and D are the integral learning rate, the 

proportion learning rate and the differential learning rate, 
respectively. 

Because an automatic gain K(k) adjusting method 
used in adaptive PSD algorithm is introduced into the 
neuron PID control algorithm which has been shown 
above, thus, the self-learning ability, self-organization 
ability and robustness of this control algorithm are 
improved significantly. 

 
2.3 Neural network dispersive decoupling controller 

As the three-phase electrode adjusting system has 
strong coupling characteristic, only improving the 
controller performance cannot get ideal control result. 
Therefore, a neural network dispersive decoupling 
controller [8] is introduced to solve this problem. This 
kind of dispersive decoupling controller is composed of 
n(n–1)SISO(single input single output) neural networks 
(n is the number of inputs). The whole decoupling target 
of control system is allocated to every  

neural subnet, respectively. So, this controller has 
following several features: 1) Every neural subnet, 
decoupling to one interference channel, is a single input 
and single output system and therefore the 
index-functions are simple and easy to implement; 2) 
Does not change the main channel characteristics of the 
generalized object; 3) What several neural subnets learn 
at the same time and parallelly process can  short 
learning time; 4) Eliminate the mutual interference of 
single MIMO (multiple input multiple output) neural 
network in the decoupling learning process, and improve 
the decoupling control result. 

A typical double input and double output controlled 
process is cited to explain the control principle of 
dispersive decoupling network, the schematic diagram of 
dispersive decoupling network is shown in Fig. 2 [9]. 

The neural network dispersive decoupling 
controllers ND1 and ND2 are the dynamic time-delay 
neural network (TDNN), every network has an input 
terminal and output terminal. Two delay links (TDL) 
provide the input and output delay signals to the network 
terminal respectively [10]. Considering a three-layer 
neural network, the output layer is one node. The 
activation function of the hidden layer neurons adopts  

hyperbolic tangent function
1 e

( )
1 e

x

x
f x









, and the 

output layer is a linear function. The outputs of ND1 and 
ND2 can be described as below.  

2 1 1 1 1 2 2 2( ) [ ( ),  ,  ( ),  ( 1),  ,  ( )]u k f x k x k n u k u k m     … …

(15)  
1 2 2 2 2 1 1 1( ) [ ( ),  ,  ( ),  ( 1),  ,  ( )]u k f x k x k n u k u k m     … …

(16) 
 
where 1 2 1 2, , andm m n n are positive integers, which can 
be approximated according to the order of controlled 
process. 

 For the neural network dispersive decoupling 
controller, as shown in the Fig. 2, the error of the actual     
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Fig. 2 Schematic diagrams of dispersive decoupling network: (a) ND1; (b) ND2 

 
output and the expected output should be taken as the 
objective function, but the output of the dispersive 
decoupling network is unknown. To avoid the 
contradiction, the dispersive decoupling controller and 
the controlled object need to be regarded as a generalized 
object, and only in this way can the system output error 
be taken as the objective function of the neural network, 
that is: 

The objective function [11] of neural network 
decoupling controller ND1 is 
 

 21 2 2
0

1
( ) ( )

2

N

k

J r k y k


                       (17) 

 
The objective function of neural network 

decoupling controller ND2 is  

 22 1 1
0

1
( ) ( )

2

N

k

J r k y k


                       (18) 

 
Using dynamic BP (back-propagation) algorithm, 

the weight updating in network is decided by the 
following equation. 
 

( ) ( 1)
J

w k w k
w

 
     


                   (19) 

 
where  is the learning rate,  is the momentum factor, N 
is the sampling number in the training. 

So, the weight updating equations of ND1 and ND2 
are expressed respectively as  
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For convenient discussing, the subscripts of 

variables are neglected, then the Eqs. (20) and (21) are 
expressed together as 
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The sign of the partial derivative
y
u

 is expressed 

as sgn( )
y
u

, through the adjusting learning rate  , 

let
y   
u

, then, the Eq. (22) can be written as 
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If y increases monotonely with u', then 

sign( ) 1
y


u

, on the contrary, sign( ) 1
y

 
u

.  

The relationship of the input and output in the net 
can be described as 
 

(2) (1)w u u                                 (24) 
 

(1) (1) (0)( )f wu u                            (25) 
 
where u' is the output signal of output layer, u(1) is the 

output signal of hidden layer, (1) (1) (1)
0 1[ , ,u uu  

(1) T, ] ,zu   (1)
0 1u   , (0)u is the input signal of input 

layer,    (0) [ ( ), ( 1), ,  ( ), 1 , 2 , , x k x k x k n u k u k       u  

  T] ,u k m  w(2) is the connection weight vector 

between the hidden layer and output layer,  2(2)
0[ , ww  

   2 2
1 2,  ,  ]w w    w(1) is the connection weight vector 

between the input layer and hidden layer.  
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The neural network decoupling controller is trained 

by simplified BP algorithm. To the neural network’s 
output layer, the equation is shown as  
 

(1)
(2) iu




u

w
                                (26) 

 
The equation for the hidden layer is 

 
2
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(2) (1) (0)
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u u
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         (27) 

 
Substituting Eqs. (26) and (27) into Eq. (23), the 

updating weight expression can be gotten for the output 
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and hidden layer.  
In the output layer,  
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In the hidden layer,  
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u
 

( 1)jiw k                         (29) 
 

In conclusion, the algorithm of the neural network 
decoupling control has following steps: 

1) Neural network decoupling controllers ND1, 
ND2 and the controlled process are connected in series.  

2) All the initial weights of the decoupling 
controllers are set in the range of [–1, 1] randomly. 

3) The input signals are given to make the output 
signals of the controller correspond with the decoupling 
input signals. 

4) Calculating the output of neural network u', u(1), 
u(0) through Eqs. (24) and (25). After that, given N 
numbers of the process variable y changes along with 
the time, until u' reaches the training number which has 
been set (in the beginning, u'=0) 

5) Calculating the weight changes of the output 
layer and hidden layer through Eqs. (28) and (29), and 
then updating the weight. 

6) Repeating steps (3)–(5) until the system reaches 
the given iteration times. 

 
2.4 Neural adaptive PSD dispersive decoupling 

control system 
The neural adaptive PSD dispersive decoupling 

control system combines neural adaptive PSD controller 
with neural network dispersive decoupler, whose 
structure is shown in Fig. 3. 

In Fig. 3, the neural adaptive PSD controller can 
adjust the value of K and the parameters P, I and D to 
adapt to the changes of the contorlled object in real time, 
and neural network dispersive decoupler can realize 
decoupling control on line. Therefore, the neural 
adaptive PSD dispersive decoupling controller can 
overcome the severe coupling and other control problems 
which cannot be solved by a single neural adaptive PSD 
controller used in a multivariable coupling system. It can 
also overcome the adaptive adjusting parameter problem 
which cannot be solved by the single dispersive 
decoupling controller used in the time-variation 
controlled object. In addition, the neural adaptive PSD 
control just has one neuron, so it has simple structure and 
short learning process; the dispersive decoupler supports 
parallel training of multiple subnets, and it can greatly 
shorten the learning time to solve the difficulty that the 
neural network controller has poor real-time 
performance. 

 

 

Fig. 3 Structure of neural adaptive PSD dispersive decoupling control system  
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3 Simulation experiment 
 
In this work, the research object is a 30 000 kW 

Si-Mn submerged arc furnace in a ferroalloy factory. The 
controlled parameters are the three-phase currents of the 
electrodes [12]. The structure of the control system is 
shown in Fig. 4. 

In Fig. 4, IA, IB and IC denote the current of A-phase, 
B-phase and C-phase electrodes, respectively. IAS, IBS 
and ICS denote the given current values of three-phase 
electrodes, respectively. LA, LB and LC denote insertion 
depth of three-phase electrodes, respectively.  
 

 
 
Fig. 4 Schematic diagram of three-phase electrode adjusting 

system of submerged arc furnace 

 
The controller adjusts the lift of electrodes through 

hydraulic transmission to maintain the constant electrode 
currents in the smelting process. The simulation 
experiments are conducted in order to illustrate the 
control effect of the neural adaptive PSD dispersive 
decoupling controller in the three-phase electrode 
adjusting system. Currently, the location-current model 
[13–14] is regarded as the more mature model of the 
submerged arc furnace, so constant current control 
strategy is still used in the simulation research. After 
collecting a large amounts of data and equipment 
parameters in the production field, the current-location 
mathematical model of the submerged arc furnace is 
established as follows： 
 

1 1 1

1 1

1 2

( ) [1.124 0.013] ( 1) [0.126 0.008] ( 2)

[1.049 0.014] ( ) [1.557 0.024] ( 1)

[0.411 0.032] ( 2) [0.232 0.025] ( )

I t I t I t

h t h t

h t h t

      
    
    

2 2 [0.149 0.020] ( 1) [0.132 0.014] ( 2)h t h t     

3 3[0.425 0.025] ( ) [1.143 0.042] ( 1)h t h t       

3[0.363 0.021] ( 2)h t                   (30) 
 

2 2 2

1 1

1 2

( ) [0.934 0.020] ( 1) [0.069 0.018] ( 2)

[0.936 0.026] ( ) [1.099 0.043] ( 1)

[0.255 0.032] ( 2) [1.131 0.027] ( )

I t I t I t

h t h t

h t h t

      
    
    

    2 2[1.491 0.031] ( 1) [0.417 0.029] ( 2)h t h t       

  3 3[0.099 0.021] ( ) [0.157 0.021] ( 1)h t h t      

3[0.049 0.026] ( 2)h t                   (31) 
 

3 3 3

1 1

1 2

2 2

3

( ) [0.981 0.014] ( 1) [0.125 0.018] ( 2)

[0.158 0.024] ( ) [0.268 0.023] ( 1)

[0.101 0.024] ( 2) [0.921 0.027] ( )

[1.299 0.051] ( 1) [0.376 0.027] ( 2)

[1.089 0.031] ( ) [1.458 0.05

I t I t I t

h t h t

h t h t

h t h t

h t

      

    
    
     
   31] ( 1)h t  

3[0.401 0.029] ( 2)h t                 (32) 
 

In these equations, the values before the sign “” 
represent the average values of parameters, and the 
values after the sign “” represent the upper and lower 
limits of identified parameters.  

It can be seen that when the insertion depth of one 
phase electrode of the three-phase electrode changes, the 
currents of the other two-phase electrode will also 
change at the same time. Therefore, the system has 
strong coupling feature. 

Taking MATLAB as the simulation platform [15], 
using the identified electrode location-current model, 
adopting the  lower limits of the model parameters, 
setting the initial values of PID (P=0.4, I=0.2, and 
D=0.4), setting the initial value of K (K=0.006), 
initializing randomly the weights between 0 and 1, and 
letting IAS = 4 kA, IBS = 5 kA, ICS = 6 kA. Figure 5 shows 
the responsing processes of the control system. 

For easy comparison, a simulation curve of digital 
PID control and a simulation curve of neural adaptive 
PSD control without dispersive decoupler are plotted in 
these figures. The curve 1 represents neural adaptive 
PSD dispersive decoupling control result, the curve 2 
represents the control result of the neural adaptive PSD 
and the curve 3 represents control result of the 
conventional PID. It can be seen that the neural adaptive 
PSD controller is much better than PID controller. After 
the introduction of dispersive decoupler， the system 
overshoot further decreases largely and the settling time 
is significantly shortened and the dynamic response is 
further improved. The control system shows good 
adaptability and robustness of the proposed design. 

Because the dynamic characteristics of circuit 
parameters of the submerged arc furnace vary with 
industrial operation condition, the model parameters are 
adjusted to the upper limits without changing the 
parameters of controller, just for illustrating the adaptive  
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Fig. 5 Response curves of three-phase electrode currents: (a) 
Current of A phase electrode; (b) Current of B phase electrode; 
(c) Current of C phase electrode  

 

performance of the controller. Figure 6 shows the 
simulation results. 

It can be seen that conventional PID control cannot 
adjust controller parameters according to the controlled 
object on line. So, it leads to bigger overshoot and longer 
settling time of the system. The neural adaptive PSD 
dispersive decoupling controller can adaptively adjust 
controller parameters according to the object change, so 
it can still have good control results. 

  

 

Fig. 6 Response curves of three-phase electrode currents with 
parameters changed: (a) Current of A phase electrode; (b) 
Current of B phase electrode; (c) Current of C phase electrode 

 

4 Conclusions 
 
The three-phase electrode adjusting system of 

submerged arc furnace is difficult to be established 
accurate mathematical model because of its features such 
as nonlinearity, time variability, multiple variables and 
strong coupling. The control system can achieve good 
control effects with the help of the method of neural 
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adaptive PSD dispersive decoupling control. This 
method can effectively improve the dynamic 
performance and eliminate the coupling effect among 
variables. It has four following remarkable 
characteristics: 1) It is able to identify the controller 
parameters according to the inputs and outputs of the 
generalized system and does not rely on the accurate 
mathematical model of the controlled system; 2) It has 
simple structure and clear physical significance; 3) This 
method has online learning function, so it can overcome 
the effect of the time-variant parameter in the controlled 
system, and the learning time is short and parameter 
convergence is rapid; 4) This method has strong adaptive 
ability and good decoupling performance. Therefore, the 
neural adaptive PSD dispersive decoupling control 
method has broad application prospects in three-phase 
electrode adjusting system of the submerged arc furnace. 
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