
 

J. Cent. South Univ. (2012) 19: 2650−2655   
DOI: 10.1007/s11771-012-1323-8 

 

Closed-form solution to thin-walled box girders considering effects of 
shear deformation and shear lag 

 
ZHOU Wang-bao(周旺保)1, JIANG Li-zhong(蒋丽忠)1,2, LIU Zhi-jie(刘志杰)1, LIU Xiao-jie(刘小洁) 1,2 

 
1. School of Civil Engineering, Central South University, Changsha 410075, China; 

2. National Engineering Laboratory for High Speed Railway Construction 
(Central South University), Changsha 410075, China 

 
© Central South University Press and Springer-Verlag Berlin Heidelberg 2012 

                                                                                                  
 

Abstract: Considering three longitudinal displacement functions and uniform axial displacement functions for shear lag effect and 
uniform axial deformation of thin-walled box girder with varying depths, a simple and efficient method with high precision to 
analyze the shear lag effect of thin-walled box girders was proposed. The governing differential equations and boundary conditions 
of the box girder under lateral loading were derived based on the energy-variational method, and closed-form solutions to stress and 
deflection corresponding to lateral loading were obtained. Analysis and calculations were carried out with respect to a trapezoidal 
box girder under concentrated loading or uniform loading and a rectangular box girder under concentrated loading. The analytical 
results were compared with numerical solutions derived according to the high order finite strip element method and the experimental 
results. The investigation shows that the closed-form solution is in good agreement with the numerical solutions derived according to 
the high order finite strip method and the experimental results, and has good stability. Because of the shear lag effect, the stress in 
cross-section centroid is no longer zero, thus it is not reasonable enough to assume that the strain in cross-section centroid is zero 
without considering uniform axial deformation. 
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1 Introduction 
 

Box girders have good structural properties of light 
weight and large flexural and tortional rigidity, and 
desirable lateral-distributed load could be obtained by 
installing a small amount of diaphragms. The prestressed 
reinforcements in the top and bottom plates could 
effectively resist the positive and negative moments, 
which are suitable for continuous beam bridges, rigid 
frame bridges and especially continuous horizontally 
curved box girder bridges. Cantilever erection, cantilever 
casting and incremental launching method are all 
available in dealing with construction of box girder, 
which satisfies the demand of modern construction. 
Therefore, box girders have been widely used and 
promoted in bridge construction [1−3]. However, as for 
the wide box girder with web plates of large spacing 
under a symmetrical loading, the distribution of bending 
stresses in thin-walled box girders at any transverse 
section is non-uniform, and in general, the stresses at the 
web-flange conjunction reach their maximum, 

decreasing towards the middle point of the top and 
bottom slabs and cantilever flanges. Its deformation does 
not obey the elementary beam theory. This phenomenon 
is called the shear lag effect [4−5]. The stress 
concentration induced by shear lag effect is likely to 
cause failure of the box girder when it is severe [1, 6−8]. 

The shear lag of the box girder has been studied 
without considering the effect of shear deformation 
[9−13]; NI [14] proposed warping displacement mode to 
consider the self-balancing of axial force, yet without 
taking the shear deformation of cross-section into 
account; the researches (e.g., Refs. [11−14]) were all 
based on the assumption that the functions of 
longitudinal warping amplitude of the upper and lower 
flange and the cantilever plate were the same. While 
LUO [15−18] proved that the assumption was valid only 
for rectangular box girders but invalid for trapezoidal 
box girders, so this assumption made in Refs. [11−14] 
was abandoned. Three longitudinal displacement 
functions and uniform axial displacement functions for 
thin-walled box girder with varying depths for uniform 
axial deformation were taken into account, which were 
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proved to be more reasonable. However, LUO [15−18] 

didn’t consider the uniform axial deformation of the 
whole cross-section due to shear lag effect. The uniform 
axial deformation made the centroidal axis no longer the 
neutral axis, which meant that axial stress existed in the 
centroid of the cross section. 

In this work, a simple and efficient analytical model 
with high precision was proposed, taking shear lag, shear 
deformation and uniform axial deformation into account. 
The governing differential equations and boundary 
conditions of the box girder were derived based on 
energy-variational method [2, 19−20], and the 
closed-form solution was found. Finally, results were 
compared with numerical solutions derived according to 
the high order finite strip method and the experimental 
results [17]. The calculation method was based on box 
girder under bending load. 
 
2 Basic assumptions 
 

1) Let   , 1,  2,  3ig x y i  represent longitudinal 
warping displacement function of the cantilever plate, 
the center of top plate and bottom plate, respectively  
(Fig. 1). According to the fact that the lateral shear 
strains of the edge of cantilever plate, the center of the 
roof plate and base plate are all zero, and considering the 
compatibility of the displacement of the flange and the 
web and the compatibility coordination of the 
displacement of the cantilever plate and the top plate, we 
can obtain 
 

     1 1 2 1 3 3, , , 0g x b g x b g x b    
 

     1 2 1 2 3,0 , , 0
0

g x g x b b g x

y y y

   
  

  
 

 
Therefore, it could be assumed that the longitudinal 

warping displacement of the top plate, cantilever plate 
and bottom plate are expressed as 

 

 
 
Fig. 1 Box girder of trapezoidal cross section: (a) Cross section; 

(b) Coordinate and load 

   
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 
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   
2
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3

, 1 ,
y

g x y h U x b y b
b

 
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where 1 2y b b y   ; 2b1, b2, 2b3 are the depths of top 
plate, cantilever plate, and bottom plate, respectively; hi 

(i=1, 2, 3) are coordinate values of the middle section of 
top plate, cantilever plate and bottom plate, respectively; 
H is the total height of the girder. 

2) The longitudinal displacement of each point on 
the cross-section of a box girder can be assumed to be 
the sum of the plane surface deflection, warping 
displacement, and uniform axial displacement. Using 
u0(x), the self-balanced axial force can be obtained: 
 

       
2

02
, = 1 ,i i i

i

y
u x y h x U x u x

b


  
         

 

 
, 1,3i ib y b i                        (2a) 

 

         2 2
2 2 2 2 0, = 1 ,u x y h x y b U x u x     

 
 

2 1 20 ,y b y b b y                    (2b) 
 

     4 0 1 3, = ,  u x z z x u x h z h              (2c) 
 
where 1 2y b b y   ;    'w x x   ; γ(=αsQ/GAw) 
is the average shear strain; αs is the shear coefficient; Aw 
is the cross-sectional area of the two web plates; G is the 
shear modulus; Q(x) is the shear force; W(x) is the 
vertical deflection of the box girder; U(x) (i=1, 2, 3) are 
the functions of longitudinal warping amplitude; U0 is 
the uniform longitudinal displacement; 2b1, b2, 2b3 and t1, 
t2, t3 are the depths and thicknesses of top plate, 
cantilever plate, and bottom plate, respectively; β and t4 
are the slope angle and thickness of the web. 

3) Vertical compression of the flange, lateral strain 
and bending, and shear deformation out of the plate are 
small enough to be neglected. 
 
3 Governing differential equation and its 

solution 
 
3.1 Expression of total potential energy 

Based on the aforementioned expression of the 
vertical displacement on the cross-section, the strain of 
flange at any point is given by 
 

2

02
1 ,  1, 2,3i

i i i
i

u y
h U u i

x b
 

                  
     (3a) 



J. Cent. South Univ. (2012) 19: 2650−2655 

 

2652 

 

 2

2
,  1,2,3i

i i i
i

u y
h U x i

y b



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

              (3b) 

 
 4 s w/Q GA                             (3c) 

 
4 0= z u                                    (3d) 

 
where y is replaced by y when i=2;  1,  2,  3,  4i i   
are the longitudinal positive strains of the top plate, 
cantilever plate, bottom plate and web plate, respectively; 

 1,  2,  3,  4i i   are the shear strains of the top plate, 
cantilever plate, bottom plate and web plate, respectively. 

According to law of conservation of energy, the 
external potential energy caused by bending can be 
expressed in terms of internal force as 
 

  

 0  0
d d

L L
V M x Q x                          (4) 
 

The strain energies of top plate, cantilever plate, 
bottom plate and web plate can be derived based on 
energy-variational method in conjunction with above 
assumption as follows: 
 

 1  2 2
t 1 1 1 0  0

1
2 d d

2

L b
U t E G y x                  (5) 

 

 2  2 2
c 2 2 2 0  0

1
2 d d

2

L b
U t E G y x                  (6) 
 

 3  2 2
b 3 3 3 0  0

1
2 d d

2

L b
U t E G y x                  (7) 
 

3

1

   2 2w
w 4 4 0   0

/ cos d d d
2

L h L

h

GA
U Et z x x            (8) 
 

Substituting Eq. (3) into Eqs. (5)−(8) results in 
 

2
 2 201

t 1 12 0
1

8 4
+

2 15 3

L uEI
U U U

h
 

 
      


  

 

20
1 12

1 1

2 4
2 d

3 3

u G
U U x

h Eb


      
  

           (9) 

 
2

2 202
c 2 220

2

8 4
+

2 15 3

L uEI
U U U

h
 

 
      


  

 

20
2 22

2 2

2 4
2 d

3 3

u G
U U x

h Eb


      
  

          (10) 

 
2

 2 23 0
b 3 32 0

3

8 4
+

2 15 3

LEI u
U U U

h
 

 
      


  

 

20
3 32

3 3

2 4
2 d

3 3

u G
U U x

h Eb


      
  

          (11) 
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 
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where E is the elastic modulus; G is the shear 

modulus;  22 1, 2,3i i i iI b t h i  ;  3 3
w 4 3 12 /I t h h   

(3cosβ). 
If the origin of coordinate system is set at the 

mid-height location of the cross-section, we get 
 

3 1 2 / 2h h h H                            (13) 
 

Consequently, the potential energy of the total 
system is 
 

t c b wV U U U U                         (14) 

 
3.2 Governing differential equations 

Substituting Eqs. (4), (9)−(12) into the above 
equation, and letting δΠ=0, we get the governing 
differential equations through integration of each term: 
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3
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1

i
i

I I I
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3
w
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I
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
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Equations (15)−(17) are the governing differential 

equations of the deformation of the box girder, and Eqs. 
(18)−(21) are the boundary conditions of the deformation 
of the box girder. 
 
3.3 Closed-form solution of governing differential 

equations 
The first integration of Eq. (16) gives 
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Substituting Eq. (22) into Eq. (16), we obtain 
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Substituting Eqs. (23)−(24) into Eq. (17) gives 
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where   11.5i i iqx EI c       . 

The homogeneous solution of Eq. (26) is 
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When q is constant, the particular solution of    

Eq. (25) is 
 

2
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The general solution of Eq. (26) is 
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where cij is the element of eigenvector of A−1B, and 
c3j=−1; λi (i=1, 2, 3) are three eigen values of A−1B; di 

and ei (i=1, 2, 3) are the constants of integration. 
Substituting Eq. (28) into Eq. (23)−(24) yields 
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3
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j ij i

i

c 


  , and
3

1
j ij i

i

c 


  are the constants 

which are related to the section dimension; ci (i=1, …, 6) 
are the constants of integration. 

According to the boundary conditions Eqs. (18)− 
(21), we can obtain the unknown coefficients. Then, by 
substituting Eqs. (29), (31) and (33) into the following 
stress calculating formula, we can obtain the close-form 
solution of longitudinal stress at each point of the web 
and flange: 
 

4 0=x zE Eu                               (35) 
 

 2 2
01 ,  1,  2,  3xi i i iEh y b U Eu i             (36) 

 
where y is replaced by y  when i=2. 

From Eqs. (28)−(34), we can learn that only Eq. (34) 
has the term of shear deformation, which means that 
shear deformation has influence on deflection, while it 
has no influence on normal stress and shear lag effect. 
From Eq. (35), we can learn that the centroid of 
cross-section is no longer zero at the location of the 
neutral axis, which means that longitudinal stress exists 
at the centroid of cross-section due to shear lag effect. 
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4 Verification of closed-form solution 
 
4.1 Comparison of closed-form solution, finite strip 

method and experimental results of a rectangular 
box girder 

To verify the proposed formula, a rectangular beam 
model made by organic glass is investigated [17]. The 
section size and the measurement point arrangement of 
this beam model with a span of 0.8 m and diaphragms 
installed at beam ends are shown in Fig. 2. Two 
concentrated loads equal in magnitude to 0.272 2 kN are 
symmetrically applied on the top of the web plate at the 
mid-span section. The elastic modulus of PMMA is 
measured to be 3 000 MPa, the Poisson ratio is taken as 
0.385, and the strain of mid-plane of the plate is taken as 
the average value of the results of upper and lower 
measurement points. 

 

  
Fig. 2 Rectangular box girder section (Unit: 10−2 m) 

 
The comparison of results from closed-form 

solution (P1), the experimental results (P) and the 
numerical solutions (P2) derived according to the high 
order finite strip method are shown in Fig. 3. It could be 
calculated from Fig. 3 the average values of P1/P    
and P2/P are 1.000 2 and 1.012 2, respectively, and the  
 

 
 
Fig. 3 Section strain at mid-span of simply-supported 

rectangular section box girder under concentrated load 

variances of the ratios are 0.002 4 and 0.001 6. The stress 
at the centroid point of the cross-section of box girder is 
no longer zero. It can be concluded that results from the 
close-form solution correlated are in good agreement 
with the experimental results, and have good stability. 
 

4.2 Comparison of closed-form solutions and 
numerical solutions derived according to high 
order finite strip method in a trapezoidal box 
girder 

A simply supported trapezoidal box girder with a 
span of 50 m and the section size shown in Fig. 4 is 
investigated. The elastic modulus of concrete E=3.1×104 
MPa, and the Poisson ratio μ=0.17. 1) Two concentrated 
loads equal in magnitude to 20 kN are symmetrically 
applied on the top of the web plate at the mid-span 
section. 2) A uniform load of q=2 kN/m is applied on the 
top of the web along the span. 

Table 1 and Fig. 5 show the analytical results 
obtained from different methods. It could be concluded 
from Table 1 and Fig. 5 that the average values of    
the ratios of the closed-form solutions to the numerical 
 

 
Fig. 4 Trapezoidal box girder section (Unit: 10−2 m) 
 

Table 1 Comparison of section strain at mid-span of 

simply-supported trapezoidal section box girder under uniform 

load (10−6) 

Calculation point designation
Present 
method 

Finite strip 
method [17]

Ratio

1 −97.7 −96.9 1.008

2 −98.5 −97.6 1.009

3 −99.8 −98.9 1.009
Cantilever slab 

4 −102.6 −100.7 1.019

4 −102.6 −100.7 1.019

5 −100.5 −99.6 1.009

6 −99.1 −99.4 0.997
Roof plate 

7 −98.3 −99.3 0.990

Cross section centroid 8 −7.7 −7.3 1.055

9 199.6 196.8 1.014

10 196.5 195.7 1.004Baseboard 

11 194.2 195.4 0.994

Average value — — — 1.011

Variance — — — 0.000 3
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Fig. 5 Section strain at mid-span of simply-supported 

trapezoidal section box girder under concentrated load 

 
solutions for two different kinds of loadings are 1.02 2 
and 1.011, respectively, and the variances of the ratios 
are 0.000 7 and 0.000 3, respectively. For trapezoidal box 
girder, we can draw the same conclusion as that for 
rectangular box girder. At the same time, the stress at the 
centroid point of the cross-section of box girder is no 
longer zero. It is not reasonable enough to neglect the 
uniform axial deformation. The proposed method in this 
work is more reasonable. 
 
5 Conclusions 
 

1) A method is proposed for direct calculation of 
stress in box girder. Verification of the method is 
performed by comparing the results with other analytical 
results using finite strip method and experimental results. 

2) The shear effect influences only the deflection, 
while has no impact on longitudinal positive strain and 
shear lag. Therefore, both shear lag and shear effect 
should be considered when calculating the deflection 
while only shear lag should be considered when 
calculating the section stress. 

3) The stress at cross-section centroid is no longer 
zero due to shear lag effect. Therefore, it is not scientific 
enough to assume the strain in cross-section centroid to 
be zero without considering the uniform axial 
deformation. The proposed method is more reasonable. 

4) Theoretical analysis method for the shear lag 
effect in box girder is explored, which provides 
important basis for the shear lag calculation in 
thin-walled box girder bridges. 
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